ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 73 (1970), S. 177-192 
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A comparative study has been made of the metabolism in several strains of Thiobacillus neapolitanus of formate, acetate, propionate, butyrate, valerate and pyruvate. Conflicting reports in the literature concerning the mechanism of pyruvate assimilation in thiobacilli have been resolved. Pyruvate undergoes decarboxylation to yield acetyl coenzyme A, which is converted to glutamate, proline and arginine via reactions of the incomplete Krebs' cycle of this organism. Pyruvate is converted also to alanine, valine, isoleucine, leucine and lysine by mechanisms like those in heterotrophs. No aspartate is formed from the C-3 of pyruvate. Removal of the C-1 of pyruvate yields carbon dioxide, which is refixed into all cell constituents. Formate is not produced by this scission reaction, as formate itself is incorporated almost exclusively into purines. Aspartate can be synthesized by the activities of phosphoenolpyruvate carboxylase and oxaloacetate-glutamate transamination. Carbon from propionate is converted principally to lipids, although some amino acid production occurs with the same distinctive labelling pattern as is found after acetate assimilation by T. neapolitanus strains C and X. Butyrate and valerate also showed some distinctive patterns of incorporation into cell constituents. Fluoropyruvate and fluoropropionate inhibited the growth of T. neapolitanus and the mechanisms of this poisoning are discussed. Generally these compounds contributed only small proportions of the total cell carbon and tended to be converted to limited numbers of cell components. The thiobacilli thus tend to conserve carbon from these compounds and not to degrade them to carbon dioxide on a large scale when growing in an otherwise autotrophic medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...