ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 31 (1996), S. 147-162 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A combined Sr, O and C isotope study has been carried out in the Pucará basin, central Peru, to compare local isotopic trends of the San Vicente and Shalipayco Zn-Pb Mississippi Valley-type (MVT) deposits with regional geochemical patterns of the sedimentary host basin. Gypsum, limestone and regional replacement dolomite yield 87Sr/86Sr ratios that fall within or slightly below the published range of seawater 87Sr/86Sr values for the Lower Jurassic and the Upper Triassic. Our data indicate that the Sr isotopic composition of seawater between the Hettangian and the Toarcian may extend to lower 87Sr/86Sr ratios than previously published values. An 87Sr-enrichment is noted in (1) carbonate rocks from the lowermost part of the Pucará basin, and (2) different carbonate generations at the MVT deposits. This indicates that host rocks at MVT deposits and in the lower-most part of the carbonate sequence interacted with 87Srenriched fluids. The fluids acquired their radiogenic nature by interaction with lithologies underlying the carbonate rocks of the Pucará basin. The San Ramón granite, similar Permo-Triassic intrusions and their clastic derivatives in the Mitu Group are likely sources of radiogenic 87Sr. The Brazilian shield and its erosion products are an additional potential source of radiogenic 87Sr. Volcanic rocks of the Mitu Group are not a significant source for radiogenic 87Sr; however, molasse-type sedimentary rocks and volcaniclastic rocks cannot be ruled out as a possible source of radiogenic 87Sr. The marked enrichment in 87Sr of carbonates toward the lower part of the Pucará Group is accompanied by only a slight decrease in δ 18O values and essentially no change in δ 13C values, whereas replacement dolomite and sparry carbonates at the MVT deposits display a coherent trend of progressive 87Sr-enrichment, and 18O- and 13C-depletion. The depletion in 18O in carbonates from the MVT deposits are likely related to a temperature increase, possibly coupled with a 18O-enrichment of the ore-forming fluids. Progressively lower δ 13C values throughout the paragenetic sequence at the MVT deposits are interpreted as a gradually more important contribution from organically derived carbon. Quantitative calculations show that a single fluid-rock interaction model satisfactorily reproduces the marked 87Sr-enrichment and the slight decrease in δ 18O values in carbonate rocks from the lower part of the Pucará Group. By contrast, the isotopic covariation trends of the MVT deposits are better reproduced by a model combining fluid mixing and fluid-rock interaction. The modelled ore-bearing fluids have a range of compositions between a hot, saline, radiogenic brine that had interacted with lithologies underlying the Pucará sequence and cooler, dilute brines possibly representing local fluids within the Pucará sequence. The composition of the local fluids varies according to the nature of the lithologies present in the neighborhood of the different MVT deposits. The proportion of the radiogenic fluid in the modelled fluid mixtures interacting with the carbonate host rocks at the MVT deposits decreases as one moves up in the stratigraphic sequence of the Pucará Group.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...