ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 34 (1999), S. 5811-5819 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The chemical stability of diffusion couples and coarse grain powder mixtures of calcium substituted lanthanum manganite and cubic calcia stabilized zirconia have been studied. The aim was to investigate the chemical stability of these materials as a model system for respectively the cathode and the electrolyte in solid oxide fuel cells. With increasing amount of Ca in lanthanum manganite, the major secondary phase was shifted from La2Zr2O7 to CaZrO3, and the thickness of the reaction layers of secondary phases was increasing with increasing heat treatment time. Precipitation of La2O3 had taken place in the perovskite containing low amounts of Ca (0 and 20 mol %). The transport mechanisms of the cations were strongly dependent on the interface geometry. La0.7Ca0.3MnO3 was observed to give the most stable interface to zirconia both in air and in reducing atmosphere (pO ∼ 10−6 atm). A-site deficiency of LaMnO3 was also observed to increase the stability. However, we conclude that a thin film of an electrode material consisting of lanthanum manganite on a zirconia substrate is unstable, regardless of A-site deficiency, because the solubility limit of Mn in the zirconia is not reached. From the experimental data, a reaction mechanism has been proposed, based on observations of relative diffusion rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...