Skip to main content
Log in

Reactions between La1−x CaxMnO3 and CaO-stabilized ZrO2 Part II Diffusion couples

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The chemical stability of diffusion couples and coarse grain powder mixtures of calcium substituted lanthanum manganite and cubic calcia stabilized zirconia have been studied. The aim was to investigate the chemical stability of these materials as a model system for respectively the cathode and the electrolyte in solid oxide fuel cells. With increasing amount of Ca in lanthanum manganite, the major secondary phase was shifted from La2Zr2O7 to CaZrO3, and the thickness of the reaction layers of secondary phases was increasing with increasing heat treatment time. Precipitation of La2O3 had taken place in the perovskite containing low amounts of Ca (0 and 20 mol %). The transport mechanisms of the cations were strongly dependent on the interface geometry. La0.7Ca0.3MnO3 was observed to give the most stable interface to zirconia both in air and in reducing atmosphere (pO ∼ 10−6 atm). A-site deficiency of LaMnO3 was also observed to increase the stability. However, we conclude that a thin film of an electrode material consisting of lanthanum manganite on a zirconia substrate is unstable, regardless of A-site deficiency, because the solubility limit of Mn in the zirconia is not reached. From the experimental data, a reaction mechanism has been proposed, based on observations of relative diffusion rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wiik, C. R. Schmidt, S. Faaland, S. Shamsili, M.-A. Einarsrud and T. Grande, J. Amer. Ceram. Soc. 82(3) (1999) 721.

    Google Scholar 

  2. K. Kleveland, M.-A. Einarsrud, C. R. Schmidt, S. Shamsili, S. Faaland, K. Wiik and T. Grande, ibid. 82(3) (1999) 729.

    Google Scholar 

  3. H. Kaneko, H. Taimatsu, K. Wada and E. Iwamoto, Proceedings of the Second International Symposium on Solid Oxide Fuel Cells, Athens, 1991, edited by F. Gross, P. Zegers, S. C. Singhal and O. Yamamoto, p. 673.

  4. J. Mizusaki, H. Tagawa, K. Tsuneyoshi and A. Sawata, J. Electrochem. Soc. 138(7) (1991) 1867.

    Google Scholar 

  5. J. Mizusaki, H. Tagawa, K. Tsuneyoshi, A. Sawara, M. Katou and K. Hirano, Denki Kagaku 586) (1990) 520.

    Google Scholar 

  6. H. Tagawa, J. Mizusaki, M. Katou, K. Hirano, A. Sawata and K. Tsuneyoshi, Proceedings of the Second International Symposium on Solid Oxide Fuel Cells, Athens, 1991, edited by F. Gross, P. Zegers, S. C. Singhal and O. Yamamoto, p. 681.

  7. Y. Takeda, Y. Sakai, T. Ichikawa, N. Imanishi and O. Amamoto, Solid State Ionics 72(1994) 257.

    Google Scholar 

  8. K. Tsuneyoshi, K. Mori, A. Sawata, J. Mizusaki and H. Tagawa, ibid. 35(1989) 263.

    Google Scholar 

  9. H. Taimatsu, K. Wada, H. Kaneko and H. Yamamura, J. Amer. Ceram. Soc. 75(2) (1992) 401.

    Google Scholar 

  10. S. Faaland, M.-A. Einarsrud, K. Wiik and T. Grande, J. Mater. Sci. 34(1999) 957.

    Google Scholar 

  11. H. Schmalzried, in “Chemical Kinetics of Solids” (VCH, Weinheim, 1995) p. 153.

  12. A. Mitterdorfer, M. Cantoniand L. J. Gauckler, Proceedings of the Second European Solid Oxide Fuel Cell Forum, Oslo, May 1996, edited by B. Thorstensen, p. 373.

  13. A. Rouanet, Rev. Int. Hautes Temp. Refract. 8(1971) 161.

    Google Scholar 

  14. T. Noguchi and O. Yonemochi, J. Amer. Ceram. Soc. 52(1969) 178.

    Google Scholar 

  15. R. L. Shultz and A. Muan, ibid. 54(1971) 504.

    Google Scholar 

  16. L. M. Lopato, L. I. Lugin, G. I. Gerasimyuk and A. V. Shevchenko, Ukr. Khim. Zh. 38(2) (1972) 143.

    Google Scholar 

  17. R. D. Shannon and C. T. Prewitt, Acta Cryst. B25(1968) 925.

    Google Scholar 

  18. Willer and Daire, Bull. Soc.Fr. Mineral. Cristallogr. 92(1969) 33.

    Google Scholar 

  19. C. Clausen, C. Bagger, J. B. Bilde-sørensen and A. Horsewell, Solid State Ionics 70/71(1994) 59.

    Google Scholar 

  20. Y. Yin and B. B. Argent, J. Phase Equilibria 14(4) (1993) 439.

    Google Scholar 

  21. J. R. Hellmann and V. S. Stubican, J. Amer. Ceram. Soc. 66(1983) 260.

    Google Scholar 

  22. V. S. Stubican, G. S. Corman, . R. Hellmann and G. Senft, in 'Advances in Ceramics' 12 Science and Technology of Zirconia II, edited by N. Claussen, M. Ruhle and A. H. Heuer (Am. Ceram. Soc., 1984) p. 96.

  23. S. K. Lau and S. C. Singhal, in 'Corrosion 85: The International Corrosion Forum Devoted to the Protection and Performance of Materials, Boston, March 1985' (NACE, Houston, 1985) p. 79.

  24. J. D. Carter, C. C. Appel and M. Mogensen, J. Solid State Chem. 122(1996) 407.

    Google Scholar 

  25. H. S. Carslaw and J. C. Jaeger, in “Conduction of Heat in Solid,” 2nd ed. (Oxford University Press, Oxford, 1959) p. 60.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faaland, S., Einarsrud, MA., Wiik, K. et al. Reactions between La1−x CaxMnO3 and CaO-stabilized ZrO2 Part II Diffusion couples. Journal of Materials Science 34, 5811–5819 (1999). https://doi.org/10.1023/A:1004766419921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004766419921

Keywords

Navigation