ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 22 (1980), S. 119-136 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The steroid transformation of hydrocortisone to prednisolone, combining the two techniques of immobilized whole cells and high steroid concentrations, was investigated and found to be a feasible process. Freeze-dried Corynebacterium simplex cells were immobilized in collagen, tanned with glutaraldehyde, and cast into a membrane. The reaction was studied at hydrocortisone concentrations ranging from 5 to 50 mg/ml. The following aspects of the system were examined: (1) the substrate concentration effect upon the reaction; (2) the effect of enzyme concentration; (3) the rate-concentration relationship; and (4) the product inhibition characteristics of the system. The optimal substrate concentration was found to be 15 mg/ml of a membrane concentration of 80 mg/ml. This reaction attained an 80% conversion in 48 hr. A liner relation was found between the initial reaction rate and membrane concentration. One can thus increase the net production of steroid per unit volume and time by increasing the membrane levels. A physical limit to this increase occurred at membrane concentrations greater than 125 mg/ml. The rate-concentration relationship was linear when graphed on a Line weaver-Burk plot: giving a Km′ and Vm′ value of 5.39 mg/ml and 0.556 mg/ml/hr, respectively. When the data were tested for competitive product inhibition, the curves fitted the experimental points fairly well and produced Km′ and Vm′ values of 4.52 mg/ml and 0.566 mg/ml/hr, respectively. Product inhibition experiments showed that the inhibition was not purely competitive. At low substrate concentrations, product inhibited the enzyme; at high substrate concentrations, the enzyme was first stimulated and then depressed by increasing levels of products. This behavior has been analyzed and shown to be possibly a result of the information of a tertiary intermediate produced during the reaction.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...