ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Gravity waves (GW) carry energy and momentum from the troposphere to the middle atmosphere and have a strong influence on the circulation there. Global atmospheric models cannot fully resolve GWs, and therefore rely on highly simplified GW parametrizations that, among other limitations, account for vertical wave propagation only and neglect refraction. This is a major source of uncertainty in models, and leads to well‐known problems, such as the late break‐up of polar vortex due to the “missing” GW drag around 60°S. To investigate these phenomena, GW observations over Southern Andes were performed during SouthTRAC aircraft campaign. This paper presents measurements from a SouthTRAC flight on 21 September 2019, including 3‐D tomographic temperature data of the infrared limb imager GLORIA (8–15 km altitude) and temperature profiles of the ALIMA lidar (20–80 km altitude). GLORIA observations revealed multiple overlapping waves of different wavelengths. 3‐D wave vectors were determined from the GLORIA data and used to initialize a GW ray‐tracer. The ray‐traced GW parameters were compared with ALIMA observations, showing good agreement between the instruments and direct evidence of oblique (partly meridional) GW propagation. ALIMA data analysis confirmed that most waves at 25–40 km altitudes were indeed orographic GWs, including waves seemingly upstream of the Andes. We directly observed horizontal GW refraction, which has not been achieved before SouthTRAC. Refraction and oblique propagation caused significant meridional transport of horizontal momentum as well as horizontal momentum exchange between waves and the background flow all along the wave paths, not just in wave excitation and breaking regions.〈/p〉
    Description: Plain Language Summary: Gravity waves (GW) are temperature and wind disturbances in the atmosphere that carry energy and momentum from troposphere to the middle atmosphere and have a strong influence on the circulation there. Global atmospheric models currently cannot adequately represent GW propagation: the facts that GWs can change wavefront orientation (refraction) and travel horizontally (and not just vertically) are typically neglected. This leads to important known model inaccuracies, for example, too low temperatures in southern polar regions. SouthTRAC aircraft measurement campaign observed GWs exited by wind flow over the Southern Andes in September–November 2019. Temperature measurements were conducted with the IR spectrometer GLORIA (provided 3‐D data) and the ALIMA lidar instrument. GLORIA data revealed many overlapping waves of different wavelengths, their propagation further up was investigated using ray‐tracing. Most waves seen by GLORIA were ray‐traced to ALIMA observations where their parameters were confirmed, thus validating our ray‐tracing technique and the two instruments against each other. We directly observed wave propagation in both vertical and horizontal directions and change in horizontal wave orientation (the latter was not seen before SouthTRAC). Due to these phenomena, many GWs carried momentum that had different directions and was deposited in a different location than most models typically predict.〈/p〉
    Description: Key Points: High‐resolution multi‐instrument measurements of orographic gravity waves (GWs) over the Andes were carried out. Oblique GW propagation and strong horizontal refraction were observed and analyzed using ray‐tracing. Significant redistribution of horizontal momentum due to horizontal refraction was observed all along the path of wave propagation.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: German Ministry for Education and Research
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://www.ecmwf.int/en/forecasts/datasets
    Description: https://doi.org/10.5281/zenodo.7155729
    Keywords: ddc:551.5 ; gravity waves ; refraction ; remote sensing ; lidar ; ray‐tracing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...