ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Gravity waves (GW) carry energy and momentum from the troposphere to the middle atmosphere and have a strong influence on the circulation there. Global atmospheric models cannot fully resolve GWs, and therefore rely on highly simplified GW parametrizations that, among other limitations, account for vertical wave propagation only and neglect refraction. This is a major source of uncertainty in models, and leads to well‐known problems, such as the late break‐up of polar vortex due to the “missing” GW drag around 60°S. To investigate these phenomena, GW observations over Southern Andes were performed during SouthTRAC aircraft campaign. This paper presents measurements from a SouthTRAC flight on 21 September 2019, including 3‐D tomographic temperature data of the infrared limb imager GLORIA (8–15 km altitude) and temperature profiles of the ALIMA lidar (20–80 km altitude). GLORIA observations revealed multiple overlapping waves of different wavelengths. 3‐D wave vectors were determined from the GLORIA data and used to initialize a GW ray‐tracer. The ray‐traced GW parameters were compared with ALIMA observations, showing good agreement between the instruments and direct evidence of oblique (partly meridional) GW propagation. ALIMA data analysis confirmed that most waves at 25–40 km altitudes were indeed orographic GWs, including waves seemingly upstream of the Andes. We directly observed horizontal GW refraction, which has not been achieved before SouthTRAC. Refraction and oblique propagation caused significant meridional transport of horizontal momentum as well as horizontal momentum exchange between waves and the background flow all along the wave paths, not just in wave excitation and breaking regions.〈/p〉
    Description: Plain Language Summary: Gravity waves (GW) are temperature and wind disturbances in the atmosphere that carry energy and momentum from troposphere to the middle atmosphere and have a strong influence on the circulation there. Global atmospheric models currently cannot adequately represent GW propagation: the facts that GWs can change wavefront orientation (refraction) and travel horizontally (and not just vertically) are typically neglected. This leads to important known model inaccuracies, for example, too low temperatures in southern polar regions. SouthTRAC aircraft measurement campaign observed GWs exited by wind flow over the Southern Andes in September–November 2019. Temperature measurements were conducted with the IR spectrometer GLORIA (provided 3‐D data) and the ALIMA lidar instrument. GLORIA data revealed many overlapping waves of different wavelengths, their propagation further up was investigated using ray‐tracing. Most waves seen by GLORIA were ray‐traced to ALIMA observations where their parameters were confirmed, thus validating our ray‐tracing technique and the two instruments against each other. We directly observed wave propagation in both vertical and horizontal directions and change in horizontal wave orientation (the latter was not seen before SouthTRAC). Due to these phenomena, many GWs carried momentum that had different directions and was deposited in a different location than most models typically predict.〈/p〉
    Description: Key Points: High‐resolution multi‐instrument measurements of orographic gravity waves (GWs) over the Andes were carried out. Oblique GW propagation and strong horizontal refraction were observed and analyzed using ray‐tracing. Significant redistribution of horizontal momentum due to horizontal refraction was observed all along the path of wave propagation.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: German Ministry for Education and Research
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://www.ecmwf.int/en/forecasts/datasets
    Description: https://doi.org/10.5281/zenodo.7155729
    Keywords: ddc:551.5 ; gravity waves ; refraction ; remote sensing ; lidar ; ray‐tracing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Jet streams are important sources of non‐orographic internal gravity waves and clear air turbulence (CAT). We analyze non‐orographic gravity waves and CAT during a merger of the polar front jet stream (PFJ) with the subtropical jet stream (STJ) above the southern Atlantic. Thereby, we use a novel combination of airborne observations covering the meso‐scale and turbulent scale in combination with high‐resolution deterministic short‐term forecasts. Coherent phase lines of temperature perturbations by gravity waves stretching along a highly sheared tropopause fold are simulated by the ECMWF IFS (integrated forecast system) forecasts. During the merging event, the PFJ reverses its direction from approximately antiparallel to parallel with respect to the STJ, going along with strong wind shear and horizontal deformation. Temperature perturbations in limb‐imaging and lidar observations onboard the research aircraft HALO during the SouthTRAC campaign show remarkable agreement with the IFS data. Ten hours earlier, the IFS data show an “X‐shaped” pattern in the temperature perturbations emanating from the sheared tropopause fold. Tendencies of the IFS wind components show that these gravity waves are excited by spontaneous emission adjusting the strongly divergent flow when the PFJ impinges the STJ. In situ observations of temperature and wind components at 100 Hz confirm upward propagation of the probed portion of the gravity waves. They furthermore reveal embedded episodes of light‐to‐moderate CAT, Kelvin Helmholtz waves, and indications for partial wave reflection. Patches of low Richardson numbers in the IFS data coincide with the CAT observations, suggesting that this event was accessible to turbulence forecasting.〈/p〉
    Description: Plain Language Summary: Gravity waves play an in important role in vertical and horizontal energy transport in the atmosphere and are significant factors in wheather forecasting and climate projections. Among other processes, tropospheric jet streams are known to be sources of gravity waves. They furthermore can be accompanied by tropopause folds (i.e., local tropopause depressions, where stratospheric air can reach deeply into the troposphere) and turbulence, which is relevant for aviation safety. Using a novel combination of airborne observations and data by a state‐of‐the‐art forecasting system, we analyze gravity waves and turbulence during a merger of tropospheric jet streams above the southern Atlantic. The observations show a high degree of agreement with the forecast data from the troposphere to the stratosphere. Ten hours earlier, the forcast data show an “X‐shaped” gravity wave structure that emerges from a highly sheared tropopause fold between the merging jet streams. Fast in situ observations at the flight level provide information on the characteristics of the observed waves and show light‐to‐moderate turbulence, small‐scale waves and indications for partial wave reflection. The observed turbulence events are consistently located in regions where the forecast data suggest potential for turbulence.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Non‐orographic internal gravity waves and clear air turbulence are observed in merging jet streams〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉State‐of‐the art high resolution forecast agrees with novel combination of airborne sensors〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉“X‐shaped” gravity wave feature resulting from merging jet streams at a highly sheared tropopause fold〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5445/IR/1000151856
    Description: https://www.ecmwf.int/en/forecasts
    Description: https://www.ready.noaa.gov/
    Keywords: ddc:551.5 ; gravity waves ; jet streams ; clear air turbulence ; remote sensing ; in situ observations ; field campaigns
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-28
    Description: Horizontal gravity wave (GW) refraction was observed around the Andes and Drake Passage during the SouthTRAC campaign. GWs interact with the background wind through refraction and dissipation. This interaction helps to drive midatmospheric circulations and slows down the polar vortex by taking GW momentum flux (GWMF) from one location to another. The SouthTRAC campaign was composed to gain improved understanding of the propagation and dissipation of GWs. This study uses observational data from this campaign collected by the German High Altitude Long Range research aircraft on 12 September 2019. During the campaign a minor sudden stratospheric warming in the southern hemisphere occurred, which heavily influenced GW propagation and refraction and thus also the location and amount of GWMF deposition. Observations include measurements from below the aircraft by Gimballed Limb Observer for Radiance Imaging of the Atmosphere and above the aircraft by Airborne Lidar for the Middle Atmosphere. Refraction is identified in two different GW packets as low as ≈4 km and as high as 58 km. One GW packet of orographic origin and one of nonorographic origin is used to investigate refraction. Observations are supplemented by the Gravity‐wave Regional Or Global Ray Tracer, a simplified mountain wave model, ERA5 data and high‐resolution (3 km) WRF data. Contrary to some previous studies we find that refraction makes a noteworthy contribution in the amount and the location of GWMF deposition. This case study highlights the importance of refraction and provides compelling arguments that models should account for this.
    Description: Plain Language Summary: Gravity waves (GWs) are very important for models to reproduce a midatmospheric circulations. But the fact is that models oversimplify the GW physics which results in GWs being underrepresented in models. GW refraction is one of the processes not captured by the physics in model parameterization schemes. This article uses high‐resolution observations from the SouthTRAC campaign to show how GWs refract and highlight the importance there‐of. This case study shows a 25% increase in the GWMF during propagation. The increase in momentum flux is linked to refraction which results in a shortening in the GW horizontal wavelength. This article shows that refraction is important for the amount as well as the location of GWMF deposition. This case study highlights the importance of refraction and provides compelling arguments that models should account for this.
    Description: Key Points: A case study reveals that refraction results in a 25% increase in gravity wave momentum flux (GWMF). Including refraction dynamics affects the location of GWMF deposition. Refraction is prominent in strong wind gradients (i.e., displaced vortex conditions).
    Description: ANPCYT PICT
    Description: DFG
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Instituto de Física de Buenos Aires
    Description: SNCAD MinCyT initiative
    Description: HALO‐SPP
    Description: ROMIC WASCLIM
    Description: https://doi.org/10.5281/zenodo.6997443
    Description: https://cds.climate.copernicus.eu/cdsapp%23%21/home
    Keywords: ddc:551.5 ; gravity wave ; mountain wave ; refraction ; Andes ; Drake Passage ; gravity wave momentum flux
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2010-06-10
    Print ISSN: 0723-4864
    Electronic ISSN: 1432-1114
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-14
    Description: In January 2010 and December 2011, synoptic-scale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 and 40μm were recorded by four different optical in situ instruments. Three of these particle instruments are based on the detection of forward-scattered light by single particles. The fourth instrument is a grayscale optical array imaging probe. Optical particle diameters of up to 35μm were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas-phase and particle-bound NOy was measured, as well as water vapor concentrations. The optical characteristics of the clouds were measured by the remote sensing lidar MAL (Miniature Aerosol Lidar) and by the in situ backscatter sonde MAS (Multiwavelength Aerosol Scatterometer), showing the synoptic scale of the encountered PSCs. The particle mode below 2μm in size diameter has been identified as supercooled ternary solution (STS) droplets. The PSC particles in the size range above 2μm in diameter are considered to consist of nitric acid hydrates, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. Therefore the measurement uncertainties concerning probable overestimations of measured particle sizes and volumes are discussed in detail. We hypothesize that either a strong asphericity or an alternate particle composition (e.g., water ice coated with NAT) could explain our observations. In particular, with respect to the denitrification by sedimentation of large HNO3-containing particles, generally considered to be NAT, our new measurements raise questions concerning composition, shape and nucleation pathways. Answering these would improve the numerical simulation of PSC microphysical processes like cloud particle formation, growth and denitrification, which is necessary for better predictions of future polar ozone losses, especially under changing global climate conditions. Generally, it seems that the occurrence of large NAT particles – sometimes termed "NAT rocks" – are a regular feature of synoptic-scale PSCs in the Arctic.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-16
    Description: The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-11-27
    Description: Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over 〉106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-11-24
    Description: The mid-infrared FTIR-limb-sounder Michelson Interferometer for Passive Atmospheric Sounding – STRatospheric aircraft (MIPAS-STR) was deployed onboard the stratospheric aircraft M55 Geophysica during the RECONCILE campaign in the arctic winter/spring 2010. From the MIPAS-STR measurements, vertical profiles and 2-dimensional vertical cross-sections of temperature and trace gases are retrieved. Detailed mesoscale structures of polar vortex air, extra vortex air and vortex filaments are identified in the results at a typical vertical resolution of 1 to 2 km and typical horizontal sampling density of 45 or 25 km, depending on the sampling programme. Results are shown for the RECONCILE flight 11 on 2 March 2010 and are validated with collocated in-situ measurements of temperature, O3, CFC-11, CFC-12 and H2O. Exceptional agreement is found for the in-situ comparisons of temperature and O3, with mean differences (vertical profile/along flight track) of 0.2/−0.2 K for temperature and −0.01/0.05 ppmv for O3 and corresponding sample standard deviations of the mean differences of 0.7/0.6 K and 0.1/0.3 ppmv. The comparison of the retrieved vertical cross-sections of HNO3 from MIPAS-STR and the infrared limb-sounder Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere – New Frontiers (CRISTA-NF) indicates comprehensive agreement. We discuss MIPAS-STR in its current configuration, the spectral and radiometric calibration of the measurements and the retrieval of atmospheric parameters from the spectra. The MIPAS-STR measurements are significantly affected by continuum-like contributions, which are attributed to background aerosol and broad spectral signatures from interfering trace gases and are important for mid-infrared limb-sounding measurements in the Upper Troposphere/Lower Stratosphere (UTLS) region. Considering for continuum-like effects, we present a scheme suitable for accurate retrievals of temperature and an extended set of trace gases, including the correction of a systematic line-of-sight offset.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-13
    Description: In January 2010 and December 2011 synoptic scale PSC fields were probed during seven flights of the high altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction.) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 μm and 40 μm were recorded simultaneously by up to four different optical in situ instruments. Three of these particle instruments are based on the detection of forward scattered light by single particles. The fourth instrument is a grey scale optical array imaging probe. Optical particle diameters of up to 35 μm were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas phase and particle bound NOy were measured, as well as water vapor concentrations, and other variables. Two remote sensing particle instruments, the Miniature Aerosol Lidar (MAL) and the backscatter sonde (MAS, Multiwavelenght Aerosol Scatterometer) showed the synoptic scale of the encountered PSCs. The particle mode below 2 μm in size diameter has been identified as supercooled ternary solution droplets (STS). The PSC particles in the size range above 2 μm in diameter are considered to consist of nitric acid hydrates or ice, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. In particular, with respect to the denitrification by sedimentation of large HNO3-contaning particles, generally considered as NAT, our new measurements raise questions concerning composition, shape and nucleation pathways. Measurement uncertainties are discussed concerning probable overestimations of measured particle sizes and volumes. We hypothesize that either a strong asphericity or the particle composition (e.g. water-ice coated with NAT) could explain our observations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...