ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1993-10-08
    Description: Catalytic antibodies that control the reaction pathways of the Diels-Alder cycloaddition have been generated. One antibody catalyzes the favored endo and the other the disfavored exo pathway to yield the respective cis and trans adducts in enantiomerically pure form. A comparison of the x-ray structure of the hapten with the calculated geometry of the transition structure showed that [2.2.2] bicyclic compounds are excellent mimics of the transition state of the Diels-Alder reaction. To achieve catalysis and the high degree of stereoselectivity shown here, the antibody must simultaneously control the conformation of the individual reactants and their relation to each other. In the case of the disfavored process, binding energy must be used to reroute the reaction along a higher energy pathway. The rerouting of reaction pathways has become a major focus of antibody catalysis and other disfavored reactions can be expected to be catalyzed so long as the energy barrier is not extreme. The energy requirements needed for absolute control of all of the stereoisomers of many Diels-Alder reactions fall in the energy range (approximately 20 kilocalories per mole) deliverable by antibody binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gouverneur, V E -- Houk, K N -- de Pascual-Teresa, B -- Beno, B -- Janda, K D -- Lerner, R A -- New York, N.Y. -- Science. 1993 Oct 8;262(5131):204-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211138" target="_blank"〉PubMed〈/a〉
    Keywords: Acrylamide ; Acrylamides/chemistry ; Animals ; Antibodies, Catalytic/*chemistry ; Catalysis ; Haptens/chemistry ; Mice ; Models, Chemical ; Molecular Conformation ; Stereoisomerism ; Thermodynamics ; Urethane/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...