ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Saccharomyces cerevisiae  (307)
  • Springer  (307)
  • Blackwell Publishing Ltd
  • Annual Reviews
  • 2005-2009
  • 1990-1994  (243)
  • 1980-1984  (64)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 116 (1990), S. 93-105 
    ISSN: 1432-1424
    Keywords: clathrin ; genetics ; Saccharomyces cerevisiae ; exocytosis ; endocytosis ; prohormone maturation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: electron probe X-ray microanalysis ; Saccharomyces cerevisiae ; ethidium ; brontophenol blue ; cationic dye ; cytolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary K+ efflux provoked by ethidium proceeds partially as an all-or-none effect by which the diffusion barrier for K+ is disrupted and partially from still intact cells, presumably by exchange against ethidium. This is shown by the application of an electron probe microanalysis X-ray technique by which the K+ content of a number of individual cells is analyzed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Thiolase ; Peroxisome evolution ; Bootstrap analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The thiolase family is a widespread group of proteins present in prokaryotes and three cellular compartments of eukaryotes. This fact makes this family interesting in order to study the evolutionary process of eukaryotes. Using the sequence of peroxisomal thiolase from Saccharomyces cerevisiae recently obtained by us and the other known thiolase sequences, a phylogenetic analysis has been carried out. It shows that all these proteins derived from a primitive enzyme, present in the common ancestor of eubacteria and eukaryotes, which evolved into different specialized thiolases confined to various cell compartments. The evolutionary tree obtained is compatible with the endosymbiotic theory for the origin of peroxisomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 38 (1994), S. 363-368 
    ISSN: 1432-1432
    Keywords: Saccharomyces cerevisiae ; 2-μm circle ; DNA sequencing ; Horizontal transmission ; Site-specific recombination ; Selfish DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We compared the nucleotide substitution pattern over the entire genome of two unique variants of the 6,300-bp selfish DNA (2 μm) plasmid in Saccharomyces cerevisiae. The DNA sequence of the left-unique region is identical among 2-μm variants, while the right-unique region shows substantial divergence. This chimeric pattern cannot be explained by neutral or Darwinian selection models. We propose that horizontal transmission of the 2-μm plasmid coupled with a directed, polarized gene conversion maintains the DNA sequence of the left-unique region, whereas the right-unique region is subject to random drift and Darwinian selection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 40 (1984), S. 1159-1161 
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; 5-trifluoromethyl-6-àzauracil ; yeast cell cultures ; cell division ; inhibition of
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Cell division, as studied in asynchronous cultures of yeast cells, is sensitive to 5-trifluoromethyl-6-azauracil (F3CAzU). Under defined conditions (10 mmoles l−1 F3CAzU) this compound blocks immediately and completely the process of cell division. Using synchronized cells, the time-point at which division process of yeast cell can be inhibited by F3CAzU has been determined. The inhibitor effect of this compound is completely reversed by thymine, thymidine and uracil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 46 (1990), S. 193-200 
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; protein toxin ; yeast toxin precursor ; protease processing ; lectin ; (1→6)-β-D-glucan ; receptor ; resistant mutants ; spheroplasts ; ion-permeable channels ; site-directed mutagenesis ; toxin functional domains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The K1 killer toxin ofSaccharomyces cerevisiae is a secreted, virally-coded protein lethal to sensitive yeasts. Killer yeasts are immune to the toxin they produce. This killer system has been extensively examined from genetic and molecular perspectives. Here we review the biology of killer yeasts, and examine the synthesis and action of the protein toxin and the immunity component. We summarise the structure of the toxin precursor gene and its protein products, outline the proteolytic processing of the toxin subunits from the precursor, and their passage through the yeast secretory pathway. We then discuss the mode of action of the toxin, its lectin-like interaction with a cell wall glucan, and its probable role in forming channels in the yeast plasma membrane. In addition we describe models of how a toxin precursor species functions as the immunity component, probably by interfering with channel formation. We conclude with a review of the functional domains of the toxin structural gene as determined by site-directed mutagenesis. This work has identified regions associated with glucan binding, toxin activity, and immunity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 48 (1992), S. 1162-1164 
    ISSN: 1420-9071
    Keywords: Polygodial ; warburganal ; antifungal activity ; Candida albicans ; Saccharomyces cerevisiae ; Pityrosporum ovale ; enhancing effect ; antioxidants ; vitamin C ; BHA ; anethole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The antifungal activity of two drimane sesquiterpene dialdehydes, polygodial (1) and warburganal (2), alone and in combination with several other substances, was examined against three fungi,Candida albicans, Saccharomyces cerevisiae andPityrosporum ovale employing a broth dilution method. Anethole significantly synergized the activity of the two sesquiterpenoids againstC. albicans andS. cerevisiae however, it had only an, additive effect againstP. ovale. By contrast, two antioxidants, ascorbic acid (vitamin C) and BHA (butylated hydroxyanisole), noticeably enhanced the activity of the sesquiterpenoids againstP. ovale, but had no, effect againstC. albicans andS. cerevisiae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Catabolite repression and inactivation ; Inhibition of protease B
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Catabolite inactivation of fructose-1,6-bisphosphatase, isocitrate lyase, phosphoenolpruvate carboxykinase and malate dehydrogenase in intact cells could be prevented by phenylmethylsulfonyl fluoride added 40 min prior to the addition of glucose. Protein synthesis, fermentative and respiratory activity and catabolite repression were not affected. Elimination of catabolite inactivation by the addition of PMSF revealed that catabolite repression started at different times for different enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 128 (1980), S. 157-161 
    ISSN: 1432-072X
    Keywords: Lactobacillus brevis ; Streptococcus lactis ; Saccharomyces cerevisiae ; Concanavalin A ; Symbiosis ; Tibi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tibi grains consist of a unique and very stable symbiotic association of Lactobacillus brevis, Streptococcus lactis and Saccharomyces cerevisiae embedded in a dextran matrix. The structural organization of the grain was examined by light, scanning and transmission electron microscopy. The grain was constituted of an outer compact layer and an inner spongy structure. The outer layer was more densely populated by the microorganisms than the inner layer but dextran, stained on frozen thin sections with fluorescein-conjugated concanavalin A, was more abundant in the inner layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-072X
    Keywords: a Pheromone ; α Pheromone ; Hansenula wingei ; Inducible mutant ; Saccharomyces cerevisiae ; Saccharomyces kluyveri ; Sexual agglutinability ; Shmoo ; Synthetic analogues
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three analogues of the peptidyl pheromone, α pheromone of Saccharomyces kluyveri, synthesized based on the amino acid sequence proposed by Sato et al. (Agric Biol Chem 45:1531–1533, 1981) were tested for both shmoo-inducing and agglutinability-inducing actions. Purified natural α pheromone of the yeast showed the highest activity among the peptides tested. When methionine in the peptides was oxidized, the activity decreased significatly. α Pheromone of S. kluyveri induced sexual agglutinability in a cells of Saccharomyces cerevisiae, and shmoo in a cells of S. cerevisiae and S. kluyveri. a Pheromone of S. kluyveri had no agglutinability-inducing action on α cells of S. cerevisiae. a Cells of S. kluyveri inactivated only α pheromone of the same species, but a cells of S. cerevisiae inactivated α pheromones of both S. cerevisiae and S. kluyveri.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 132 (1982), S. 236-240 
    ISSN: 1432-072X
    Keywords: α Pheromone ; Cycloheximide ; Inducible a strain ; Phenylmethylsulfonyl fluoride ; Saccharomyces cerevisiae ; Sexual agglutinability ; Temperature-sensitive
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When α pheromone-pretreated cells of an inducible a strain of Saccharomyces cerevisiae carrying the inducible gene saa1 were incubated in a growth medium at 28°C, induction of sexual agglutinability began after a 10 min lag period. If the cells were incubated at 38°C during the lag period, no induction occurred even after incubation at 28°C. Contrary to this, if the cells were incubated at 28°C during the lag period, almost complete induction occurred, even after transfer to 38°C. Temperature shift experiments revealed that 5 min incubation at 28°C was necessary for the initiation of the temperature-sensitive period and further 5 min incubation for the completion of the period. The temperature-sensitive period was sensitive to phenylmethylsulfonyl fluoride.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 134 (1983), S. 171-174 
    ISSN: 1432-072X
    Keywords: Acetate growth medium ; Anti-microtubule agent ; Bud initiation ; Ethyl N-phenylcarbamate ; Meiosis ; Mitotic cell cycle ; Saccharomyces cerevisiae ; Sporulation induction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When diploid cells of Saccharomyces cerevisiae were incubated in acetate growth media containing 2.5 mM ethyl N-phenylcarbamate (EPC), bud initiation was inhibited preferentially, and eventually overgrown, unbudded cells accumulated. During subsequent incubation, meiosis and ascospore formation occurred at high frequencies. The behavior of EPC-treated cells was essentially the same as that of cells transferred to a starvation sporulation medium. EPC thus has a pronounced effect on the mitotic growth of yeast cells, which leads to meiotic development. Our observations indicate that EPC has a decisive function in the initiation of meiosis in rich growth media.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 137 (1984), S. 357-361 
    ISSN: 1432-072X
    Keywords: Yeast ; Saccharomyces cerevisiae ; Killer toxin ; Extracellular glycoprotein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a molecular weight of Mr=16,000. The amino acid composition of the toxin type K2 of S. cerevisiae strain 399 was determined and compared with the composition of two other toxins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-072X
    Keywords: cAMP ; Cat mutants ; Glucose repression ; Glucose-induced ; Intracellular pH ; Ras ; Saccharomyces cerevisiae ; Signal transduction ; Trehalase ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Addition of glucose to derepressed cells of the yeast Saccharomyces cerevisiae induces a transient, specific cAMP signal. Intracellular acidification in these cells, as caused by addition of protonophores like 2,4-dinitrophenol (DNP) causes a large, lasting increase in the cAMP level. The effect of glucose and DNP was investigated in glucose-repressed wild type cells and in cells of two mutants which are deficient in derepression of glucose-repressible proteins, cat1 and cat3. Addition of glucose to cells of the cat3 mutant caused a transient increase in the cAMP level whereas cells of the cat1 mutant and in most cases also repressed wild type cells did not respond to glucose addition with a cAMP increase. The glucose-induced cAMP increase in cat3 cells and the cAMP increase occasionally present in repressed wild type cells however could be prevented completely by addition of a very low level of glucose in advance. In derepressed wild type cells this does not prevent the specific glucose-induced cAMP signal at all. These results indicate that repressed cells do not show a true glucose-induced cAMP signal. When DNP was added to glucose-repressed wild type cells or to cells of the cat1 and cat3 mutants no cAMP increase was observed. Addition of a very low level of glucose before the DNP restored the cAMP increase which points to lack of ATP as the cause for the absence of the DNP effect. These data show that intracellular acidification is able to enhance the cAMP level in repressed cells. The glucose-induced artefactual increase occasionally observed in repressed cells is probably caused by the fact that their low intracellular pH is only restored after the ATP level has increased to such an extent that it is no longer limiting for cAMP synthesis. It is unclear why the artefactual increases are not always observed. Measurement of glucose- and DNP-induced activation of trehalase confirmed the physiological validity of the changes observed in the cAMP level. Our results are consistent with the idea that the glucose-induced signaling pathway contains a glucose-repressible protein and that the protein is located before the point where intracellular acidification triggers activation of the pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 158 (1992), S. 115-126 
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Yeast cells ; Yeast protoplasts ; Cell wall ; Congo red ; (1 » 3)-β-d-glucan microfibrils ; Cytokinesis ; Reversion of walled protoplasts to cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Congo red was applied to growing yeast cells and regenerating protoplasts in order to study its effects on wall biogenesis and cell morphogenesis. In the presence of the dye, the whole yeast cells grew and divided to form chains of connected cells showing aberrant wall structures on both sides of the septum. The wall-less protoplasts in solid medium with the dye exhibited an abnormal increase in volume, regeneration of aberrant cell walls and inability to carry out cytokinesis or protoplast reversion to cells. In liquid medium, the protoplasts synthesized glucan nets composed mainly of thin fibrils orientated at random, whereas normally, in the absence of dye, the nets consist of rather thick fibrils, 10 to 20 nm in width, assembled into broad ribbons. These fibrils are known to consist of triple 6/1 helical strands of (1 » 3)-β-d-glucan aggregated laterally in crystalline packing. The thin fibrils (c. 4 to 8 nm wide) can contain only a few triple helical strands (c. 1.6 nm wide) and are supposed to be prevented from further aggregation and crystallization by complexing with Congo red on their surfaces. Some loose triple 6/1 helical strands (native elementary fibrils) are also discernible. They represent the first native (1 » 3)-β-d-glucan elementary fibrils depicted by electron microscopy. The effects of Congo red on growth and the wall structure in normal cells and regenerating protoplasts in solid medium can be explained by the presence of a complex which the dye forms with (helical) chain parts of the glucan network and which results in a loss of rigidity by a blocked lateral interaction between the helices.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 162 (1994), S. 211-214 
    ISSN: 1432-072X
    Keywords: Killer toxin ; Saccharomyces cerevisiae ; Toxin binding ; Cell wall receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A recently described new method for determination of killer toxin activity was used for kinetic measurenments of K1 toxin binding. The cells of the killer sensitive strain Saccharomyces cerevisiae S6 were shown to carry two classes of toxin binding sites differing widely in their half-saturation constants and maximum binding rates. The low-affinity and high-velocity binding component (K T1=2.6x109 L.U./ml, V max1=0.19 s-1) probably reflects diffusion-limited binding to cell wall receptors; the high-affinity and low-velocity component (K T2=3.2x107 L.U./ml, V max2=0.03 s-1) presumably indicates the binding of the toxin to plasma membrane receptors. Adsorption of most of the killer toxin K1 to the surface of sensitive cells occured within 1 min and was virtually complete within 5 min. The amount of toxin that saturated practically all cell receptors was about 600 lethal units (L.U.) per cell of S. cerevisiae S6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Pyruvate decarboxylase ; Pyruvate kinase ; Signalling ; Glycolysis mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pyruvate decarboxylase, PDCase, activity in wild-type yeast cells growing on ethanol is quite low but increases up to tenfold upon addition of glucose, less with galactose and only slightly with glycerol. PDCase levels in glycolysis mutant strains growing on ethanol or acetate were higher than in the wild-type strain. These levels correlated with the sum of the concentrations of three-carbon glycolytic metabolites. The highest accumulation was observed in a fructose bisphosphate aldolase deletion mutant concomintant with the highest PDCase activity wild-type level. On the other hand, the PDCase levels in the different mutants again correlated with the sum of the concentrations of the three-carbon glycolytic metabolites. This was interpreted to mean that full induction of PDCase activity requires the accumulation of hexose-and triosephosphates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Sporulation ; Inessential genes ; Genome organization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The SPR6 gene of Saccharomyces cerevisiae encodes a moderately abundant RNA that is present at high levels only during sporulation. The gene contains a long open reading frame that could encode a hydrophilic protein approximately 21 kDa in size. This protein is probably produced by the yeast, because the lacZ gene of Escherichia coli is expressed during sporulation when fused to SPR6 in the expected reading frame. SPR6 is inessential for sporulation; mutants that lack SPR6 activity sporulate normally and produce viable ascospores. Nonetheless, the SPR6 gene encodes a function that is relevant to sporulating cells; the wild-type allele can enhance sporulation in strains that are defective for several SPR functions. SPR6 is located on chromosome V, 14.4 centimorgans centromere-distal to MET6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Nucleo-mitochondrial interactions ; Mitochondrial status ; Lycorine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In a previous paper we have shown that the alkaloid lycorine inhibits growth of rho +, mit - and rho -, strains of Saccharomyces cerevisiae, whereas strains devoid of mitochondrial DNA (rho o) are resistant to more than 200 μg/ml of the alkaloid. In this report we show that hypersuppressive petites are almost as resistant as rho o mutants, whereas isogenic rho - petites, which have retained tained longer segments of the genome, are sensitive to the drug.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-0983
    Keywords: Mutagen hyper-resistance ; Nitrogen mustard ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A screening of haploid yeast strains for enhanced resistance to nitrogen mustard (HN2) yielded a recessive mutant allele, hnm1, that conferred hyper-resistance (HYR) to HN2. Diploids, homo- or heterozygous for the HNM1 locus, exhibit normal wild-type like resistance while homozygosity for hnm1 leads to the phenotype HYR to HN2. The hnm1 mutation could be found in yeast strains proficient or deficient in different DNA repair systems. In these mostly HN2-sensitive haploid repair-deficient mutants, hnm1 acted as a partial suppressor of HN2 sensitivity. All isolated recessive mutations conferring hyper-resistance belonged to a single complementations group. The HYR to HN2 phenotype was maximally expressed in growing cells and was associated with reduced mutability by HN2. HNM1 most probably controls uptake of HN2 which would be impaired in the hnm1 mutants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; G418 resistance ; Gene cartridges ; Heterologous Gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Coding sequence cartridges for aminoglycoside phosphotransferase (APT) were isolated from bacterial transposon Tn903. When incorporated into a heterologous gene construction utilising the PGK1 promoter and terminator, the heterologous APT gene provided a G418-resistance determinant that functioned efficiently as a dominant marker for yeast in both multiple- and single-copy. Transformant colonies on selective medium appeared rapidly, within 36–48 h, and growth rate of the transformed cells was normal. A simple and highly sensitive radiolabelling assay for APT enzyme activity was developed for use with crude cell protein extracts. Enzyme activity units were equated to the amount of APT protein present in the cells, and the APT protein was shown to be stable in yeast. Heterologous APT expression was 130-fold reduced compared with homologous PGK1. This resulted from an estimated two-fold decrease in mRNA level and a 65-fold decrease in translation efficiency. The latter was unaffected by AUG sequence context change, but corresponded with a high frequency of minor codons in the APT-coding sequence. APT can be used as a semi-quantitative reporter of gene expression, whose useful features are in vivo detection via the G418-resistance phenotype and powerful cell-free assay.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1432-0983
    Keywords: Gene cloning ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have carried out experiments aimed at explaining the observed variations in transformation frequencies when Saccharomyces cerevisiae or Saccharomyces carlbergensis are transformed with chimeric plasmids that contain one of 4 possible EcoRI fragments of the yeast 2-μm circle. These plasmids fall into 2 classes when used to transform 2 different yeast his3 auxotrophs, one (strain LL20) harbours indigenous 2-μm circle, and the other (strain YF233) is devoid of this plasmid. Hybrid plasmids containing either the 2.4 mega-dalton (mD) R-form EcoRI fragment (pYF88) or the l.4 mD L-form EcoRI fragment (pYF177) of 2-μm circle transform either of the two hosts at a high frequency (50,000 colonies per Mg in LL20 and 10,000 colonies per μg in YF233). Hybrid plasmids containing the 1.5 mD R-form EcoRI fragment (pYF87) or the 2.5 mD L-form EcoRI fragment (pYF178) of the 2-μm circle transform LL20 at a reduced frequency (6,000–16,000 colonies per μg) and YF233 at extremely low frequencies (1–5 colonies per μg). All plasmids retrieved from strain YF233 that had been transformed with pYF88 or pYF177 were identical to the original transforming plasmid. Of the plasmids retrieved from strain LL20 that had been transformed with pYF87 and pYF178, approximately half had acquired an extra copy of the 2-μm circle. Of the plasmids retrieved from strain LL20 that had been transformed with pYF88 and pYF177, an average of only approximately 13% had acquired an extra copy of 2-μm circle. Taken together, these observations indicate that the transformation of yeast by a plasmid lacking the ability to replicate (pYF87 and pYF1780) occurs by the recombinational acquisition of 1 copy of the host 2-μm circle, which serves to supply the incoming plasmid with missing essential sequences. A comparison of 2-μm circle DNA fragments carried by pYF88 and pYF177 indicates that the region of 2-μm circle required for high frequency transformation is a 1.2 mD segment that is common to the 2.4 mD R-form and 1.4 ml) L-form EcoRI fragments. This region extends from the EcoRI cut site adjacent to the PstI site, through to the end of the inverted repeat. However, the inverted repeat sequence alone is not sufficient to bestow high frequency transformation of yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 20 (1991), S. 181-184 
    ISSN: 1432-0983
    Keywords: Alpha amylase ; Secretion ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Extracellular glucoamylase activity was increased by a gene, which is present in super-secretor, but absent in low-secretor, strains of the yeast Saccharomyces cerevisiae. Genetic data indicated that this super-secretor gene is linked to the STA3 structural gene for glucoamylase. This gene appears to act specifically since it increased the secretion of glucoamylase but not of other secreted enzymes like acid phosphatase and invertase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Transcriptional activator ; Oxidative stress ; Glutathione
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The PAR1/SNQ3 gene of S. cerevisiae, which increases resistance to iron chelators in multi-copy transformants, is identical to the YAP1 gene, a yeast activator protein isolated as a functional homologue of the human c-jun oncogene by binding specifically to the AP-1 consensus box. The observed H2O2-sensitivity of par1 mutants has been attributed to an increased sensitivity to reduced oxygen intermediates. Accordingly, par1 mutants did not survive an elevated oxygen pressure and were very sensitive to menadione and methylviologene, two chemicals enhancing the deleterious effects of oxygen. The specific activities of enzymes involved in oxygen detoxification, such as superoxide dismutase, glucose 6-phosphate dehydrogenase and glutathione reductase, were decreased in par1 mutants and increased after PAR1 over-expression. As in the case of oxygen detoxification enzymes, the cellular levels of glutathione were similarly affected. These observations indicate that PAR1/YAP1/SNQ3 is involved in the gene regulation of certain oxygen detoxification enzymes. The finding that H2O2 promotes DNA-binding of human c-jun is consistent with a similar function for PAR1/YAP1/SNQ3 and c-jun in cellular metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondrial trp-tRNA synthetase ; Nuclear mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The conditional respiratory-deficient Saccharomyces cerevisiae mutant pet-ts2281 was complemented by an yeast genomic DNA library. The gene thus isolated was sequenced and proved to be identical to the known MSW1 sequence encoding mitochondrial tryptophanyl-tRNA synthetase (Myers and Tzagoloff 1985). Compared to the wild-type, the ts2281 mutant allele of MSW1 contained a single T→C transition leading to a Leu→Ser replacement at position 294 of the protein sequence. In addition to this mutational alteration, our sequence data for the wild-type gene differ from the originally published MSW1 sequence at five other DNA positions which affect two locally restricted regions of the polypeptide chain. As expected, at the non-permissive temperature ts2281 cells are specifically defective in mitochondrial trp-tRNA formation and, thus, in overall mitochondrial protein synthesis. In addition, the patterns of cytochrome b mRNA maturation intermediates were distinctly different in ts2281 and wild-type yeast cells. The mutational effect of the observed amino-acid substitution in ts2281 is discussed in terms of weakened hydrogen bonding in the C-terminal half of the MSW1-encoded protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1432-0983
    Keywords: Psoralen sensitivity ; Saccharomyces cerevisiae ; DNA repair ; Oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The complementation and genetical analysis of yeast mutants sensitive to photoactivated 3-carbethoxy-psoralen define three novel recessive mutant alleles pso-5-1, pso6-1, and pso7-1. Their cross-sensitivity to UV254nm, radiomimetic mutagens, and to chemicals enhancing oxidative stress suggest that these mutants are either impaired in metabolic steps protecting from oxidative stress or in mechanisms of the repair of oxygen-dependent DNA lesions. None of the three novel mutant alleles block the induction of reverse mutation by photoactivated mono- and bi-functional psoralens, nitrogen mustards, or UV254nm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; recA gene expression ; UV radiation ; Mitotic gene conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of the Escherichia coli RecA protein on mitotic recombination in the diploid D7 strain of Saccharomyces cerevisiae damaged by UV radiation was investigated. The D7 strain was transformed by two modified versions of the pNF2 plasmid: one, containing the ADH-1 promoter, and the other containing the recA gene tandemly arranged behind the ADH-1 promoter region. Immunological analysis proved the presence of the 38-kDa RecA protein in D7/pNF2ADHrecA transformants. We observed a positive effect of recA gene expression on mitotic gene conversion, mainly at higher doses of UV radiation. The results indicate that a RecA-like activity could participate in steps preceeding mitotic conversion events in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Multiple mutants of DNA repair ; Sensitivity to nitrogen mustard and to radiation ; Thermoconditional DNA repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Three haploid yeast mutants (snm) sensitive or thermoconditionally sensitive to the DNA cross-linking agent nitrogen mustard (HN2) were crossed with four rad strains representing mutations in the three pathways of DNA dark repair. The resulting haploid double and triple mutant strains were tested for their sensitivity to UV, HN2 and HN1. From the observed epistatic or synergistic interactions of the combinations of mutant alleles we could derive the relation of the SNM1 and SNM2 genes to the postulated repair pathways. Alleles snm1-1 and snml-2 ts were found epistatic to genes of the rad3 group, whereas snm2-1 ts was epistatic to rad6. The snm1 and snm2 mutant alleles interacted synergistically. From these data it is concluded that the SNM1 gene product plays a cross-link specific role in excision repair while the SNM2 gene product may be involved in a system of error-prone repair.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 6 (1982), S. 163-165 
    ISSN: 1432-0983
    Keywords: Hybridization ; Polyethylene glycol ; Nuclear transfer ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Viable hybrids of Saccharomyces cerevisiae were obtained by transfer of isolated diploid nuclei into haploid protoplasts using a polyethylene glycol (PEG) fusion procedure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; DEL1 ; rad ; ste7
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In DEL1 strains of the yeast, Saccharomyces cerevisiae, the iso-1-cytochrome c (CYC1) region is flanked on either side by Tyl elements in direct orientation which promote cyc1 deletions of the bracketed DNA in the haploid cell. In this study, we asked which genes might control this event by testing the possibility that the DEL1 mutation mechanism requires an enzyme (or enzymes) that is also utilized in the repair of damaged DNA. To this end, we independently coupled eight repair mutations, rad3–2, rad4–4, rad6–1, rad6–3, rad9–1, rev3–1, rad50–1, and rad51-1, toDEL1 and asked whether DEL1 was still functional. We found that none of these rad mutations significantly affects the mutation frequency of 10−6-10−5 established in DEL1 strains for the CYC1 locus. Furthermore, we determined that ste7, a temperature-sensitive sterile allele known to alter gene regulation in Ty-mediated mutations, is not required for DEL1 function. Finally, DEL1 is not temperature-sensitive at 23° or 37 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1432-0983
    Keywords: Oversecretion mutants ; Protease defect ; Wall glucan defect ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two chromosomal mutations in yeast that result in oversecretion of the K1 killer toxin protein were examined. A recessive mutation in gene ski5 appears to lead to toxin oversecretion through a defect in a cell surface, PMSF-inhibited protease. A wild type killer strain degraded toxin following synthesis, and degradation could be partially prevented by addition of PMSF to the growth medium. The ski5 mutation caused an approximate ten fold oversecretion of toxin, similar to that seen in a PMSF-treated wild type culture, and no increased oversecretion in the presence of PMSF. The ski5 mutation caused oversecretion of other low molecular weight secreted proteins and appeared to oversecrete the α-factor pheromone, as judged by activity tests. The ski5 mutation was complemented by mutations in ski genes 1–4, and the mutant was not supersensitive to mating pheromones or K2 killer toxin. We also examined killer strains with a mutation in the nuclear gene krel which results in a defective (1→6)-β-D-glucan cell wall receptor for killer toxin. Such strains oversecrete toxin into the growth medium, but also, unexpectedly, oversecrete most other secreted proteins. The defect in (1→6)-β-D-glucan in these mutants appears to perturb the partitioning of secreted proteins between the cell wall and the medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 6 (1982), S. 159-162 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Transformation ; Gene subcloning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have developped a procedure to delimit the boundaries of a cloned gene carried on a DNA fragment as large as 4 to 5 kilobases. The method consists in the following. Two series of limit digest products generated with a tetranucleotide recognition sequence endonuclease and originating from either of the two ends of this DNA segment are tested for their complementing capacity by yeast transformation. The gene is then delimited by the overlap of the two shortest complementing fragments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 7 (1983), S. 235-237 
    ISSN: 1432-0983
    Keywords: DNA replication ; Shuttle vectors ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mitotic segregation of three 2 μm-pBR322 chimaeric plasmids (YEp6, YEp21, and YEp24) was studied in yeast. Each displayed a characteristic rate of loss: YEp6 was lost at approximately twice the rate of YEp21 and YEp24. The loss rates were not significantly increased when two chimaeric plasmids were coresident, nor was the endogenous 2 μm plasmid itself displaced. Therefore these plasmids appear to be compatible in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 8 (1984), S. 81-84 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondrial genes ; Vegetative segregation ; Uniparental inheritance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Zygotes of Saccharomyces cerevisiae that are heteroplasmic for mitochondrial alleles produce diploid progeny that are homoplasmic for one allele or the other, judged by the criterion that upon further subcloning they produce daughter cells of only one phenotype or the other. Here we show that when such cells are subjected to strong selection for the missing allele, it cannot be detected, so that it is probably not present in even a single copy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Pyrimidine salvage pathway ; Semi-dominant mutants ; FUR1 ; Uracil phosphoribosyl transferase ; Regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In Saccharomyces cerevisiae, the protein encoded by the FUR1 gene is absolutely required for the expression of uracil phosphoribosyl transferase activity. The occurrence of semi-dominant mutations for 5-fluorouracil-(5FU)-resistance at this locus led us to clone and sequence the semi-dominant fur 1–5 allele. A single point mutation, resulting in the substitution of arginine 134 for serine, is responsible for this mutant phenotype. The fur 1–5 allele is transcribed and expressed at the same level as the wild-type allele. But, in contrast with the wild-type, the UPR Tase activity of the fur 1–5 mutant strain is stimulated in vitro by UTP and does not, therefore, correspond to a loss of feedback of UPR Tase activity. We found that uracil, as a free base, induces a significative increase in transcription and UPR Tase activity in a wild-type strain as well as in uracil-overproducing mutants which principally explains the high efficiency of the pyrimidine salvage pathway in S. cerevisiae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    ISSN: 1432-0983
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; CaMV 35S promoter ; CaMV 35S terminator ; Heterologous expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Complementation of fission yeast mutants by plant genomic libraries could be a promising method for the isolation of novel plant genes. One important prerequisite is the functioning of plant promoters and terminators in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Therefore, we studied the expression of the bacterial β-glucuronidase (GUS) reporter gene under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter and 35S terminator. We show here that S. pombe initiates transcription at exactly the same start site as was reported for tobacco. The 35S CaMV terminator is appropriately recognized leading to a polyadenylated mRNA of the same size as obtained in plant cells transformed with the same construct. Furthermore, the GUS-mRNA is translated into fully functional GUS protein, as determined by an enzymatic assay. Interestingly, expression of the 35S promoter in the budding yeast S. cerevisiae was found to be only moderate and about hundredfold lower than in S. pombe. To investigate whether different transcript stabilities are responsible for this enormous expression difference in the two yeasts, the 35S promoter was substituted by the ADH (alcohol dehydrogenase) promoter from fission yeast. In contrast to the differential expression pattern of the 35S promoter, the ADH promoter resulted in equally high expression rates in both fission and budding yeast, comparable to the 35S promoter in S. pombe. Since the copy number of the 35S-GUS constructs differs only by a factor of two in the two yeasts, it appears that differential recognition of the 35S promoter is responsible for the different transcription rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondria ; Intron-encoded proteins ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The respiratory competency of a yeast strain devoid of mitchondrial introns is quite normal. However, it may be asked whether intron-encoded proteins participate in metabolisms other than those of mitochondrial introns. Using strains without mitochondrial introns we have answered two questions. The first was: does the absence of intron-encoded proteins abolsh mitochondrial recombination? The second was: do mitochondrial introns and intron-encoded proteins play a part in mitochondrial DNA rearrangements induced by ethidium bromide (rho- production)? We have shown that the introns and intron-encoded proteins are not essential essential components of either phenomenon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 18 (1990), S. 401-403 
    ISSN: 1432-0983
    Keywords: Baking yeast ; Saccharomyces cerevisiae ; Dough leavening ; Benomyl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary To investigate the leavening ability of yeast in dough, chromosome loss was induced by benomyl treatment in YOY1037, a diploid between a baking strain and a laboratory strain, and its effect on the leavening ability was studied. When benomyl-treated cells were spread on plates with a dye indicator for ploidy, about 20% of the visible colonies were stained dark blue or dark purple; the rest stained pale blue, similar to the diploid YOY1037. Strains showing the MATα phenotype, and non-galactose fermenting strains, apparently having lost particular chromosomes, were observed only in those with darkcoloured colonies. Strains with dark-coloured colonies showed a wider range of leavening ability than did those with pale-coloured colonies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 2 (1980), S. 115-120 
    ISSN: 1432-0983
    Keywords: Galactose fermentation ; Saccharomyces cerevisiae ; Regulatory mutant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A novel type of regulatory mutation for galactose metabolism in Saccharomyces cerevisiae is described. The mutation named gal11 was recessive, non-allelic to GAL4, GAL80, GAL2, or GAL3, and unlinked to the gene cluster of GAL1, GAL10, and GAL7. It caused a ‘coordinate’ reduction of galactokinase, galactose-1-P uridylyl transferase, and UDP-glucose 4-epimerase by a factor of more than 5, rendering the mutant cells galactose-nonfermenting. The effect of the mutation was manifested not only in cells grown on galactose but also in cells constitutively synthesizing the galactose-metabolizing enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 19 (1991), S. 9-14 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mevalonate kinase ; Ergosterol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nucleotide sequence of the ERG12 gene, encoding mevalonate kinase, from Saccharomyces cerevisiae is presented. The longest open reading frame may code for a protein containing 443 amino acids with a deduced relative molecular mass of 48 500. The analysis of the nucleotide sequence reveals a complete identity with the yeast gene RAR1, isolated elsewhere by complementation of a rar1 mutation involved in the stability of plasmids with weak ARS. In addition, we show that mevalonate kinase is not a rate-limiting enzyme; however its sensitivity to FFP could be a key regulatory mechanism in the sterol pathway of yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1432-0983
    Keywords: Trans-kingdom conjugation ; DNA integration ; Saccharomyces cerevisiae ; Escherichia coli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary IncQ-derived conjugative shuttle vectors, which carried the yeast gene URA3 and/or the yeast autonomously replicating sequence (ARS1), were constructed. Both the ars-plus plasmid pAY205 and the ars-less plasmid pAY201 were successfully transmitted from E. coli to S. cerevisiae by the action of mob and tra. In this trans-kingdom conjugation, plasmid pAY205 could replicate and be retained in transconjugants. Plasmid pAY201 caused the formation of “micro-colonies” of abortive transconjugants due to its transient expression and rapid disappearance. Nevertheless, one per about 103 colonies caused by transmitted pAY201 plasmids were uncurable by integration into the homologous region of a yeast chromosome. Analyses by restriction enzyme mapping and Southern hybridization indicate that this integration is primarily caused by a double crossover during conjugation and not by a single reciprocal recombination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Melibiose fermentation ; MEL ; Polymeric genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We used a combination of genetic hybridization analysis and electrokaryotyping with radioactively labelled MEL1 gene probe hybridization to isolate and identify seven polymeric genes for the fermentation of melibiose in strain CBS 5378 of Saccharomyces cerevisiae (syn. norbensis). Four of the MEL genes, i.e. MEL3, MEL4, MEL6 and MEL7, were allelic to those found in S. cerevisiae strain CBS 4411 (syn. S. oleaginosus) whereas three genes, i.e. MEL8, MEL9 and MEL10 occupied new loci. Electrokaryotyping showed that all seven MEL genes in CBS 5378 were located on different chromosomes. The new MEL8, MEL9 and MEL10 genes were found on chromosomes XV, X/XIV and XII, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Ergosterol ; Squalene synthetase ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ERG9 gene of Saccharomyces cerevisiae has been cloned by complementation of the erg9-1 mutation which affects squalene synthetase. From the 5kkb insert isolated, the functional gene has been localized on a DNA fragment of 2.5 kb. The presence of squalene synthetase activity in E. coli bearing the yeast DNA fragment isolated, indicates that the structural gene encoding squalene synthetase has been cloned. The sequence of the 2.5 kb fragment contains an open reading frame which could encode a protein of 444 amino acids with a deduced relative molecular mass of 51 600. The amino acid sequence reveals one to four potential transmembrane domains with a hydrophobic segment in the C-terminal region. The N-terminus of the deduced protein strongly resembles the signal sequence of yeast invertase suggesting a specific mechanism of integration into the membranes of the endoplasmic reticulum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; β-phenethyl-alcohol ; ARO4 gene ; DAHP synthase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary o-Fluoro-dl-phenylalanine (OFP)-resistant mutants which overproduce β-phenethyl-alcohol were isolated from a laboratory strain of Saccharomyces cerevisiae. Cells of one of the mutants accumulated tyrosine and phenylalanine 1.5–3 fold more than did wild-type cells. Its 3-deoxy-d-arabino-hepturosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15), encoded by ARO4, was free from feedback inhibition by tyrosine. Genetic analysis revealed that the mutation was controlled by a single dominant gene, ARO4-OFP, encoding feedback-resistant DAHP synthase by tyrosine, and that this gene caused both the OFP resistance and β-phenethyl-alcohol overproduction. This was supported by molecular genetic studies using cloned ARO4 both from the wild-type and its mutant strain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1432-0983
    Keywords: 1,3-β-glucanase genes ; Saccharomyces cerevisiae ; Chromosomal mapping ; Genetic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The map position of three 1,3-β-glucanase-encoding genes in S. cerevisiae has been determined following conventional meiotic and mitotic mapping combined with recombinant DNA techniques. EXG1, EXG2 and SSG1 were localized to chromosomes XII, IV and XV, respectively, by hybridizing the cloned genes to Southern blots of chromosomes sepaated by pulsed-field gel electrophoresis, in conjunction with the rad52-1-dependent chromosome-loss mapping technique. Meiotic tetrad analyses further localized the EXG1 gene 6.1 centimorgans centromere-proximal to CDC25 on the right arm of chromosome XII. EXG2 was positioned between LYS4 and GCN2 on the right arm of chromosome IV, at distances of 6.2 centimorgans from LYS4 and 4.9 centimorgans from GCN2. Finally, the SSG1 locus mapped on the right arm of chromosome XV, about 8.2 centimorgans to the centromere-proximal side of HIS3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Hydrostatic pressure ; Tetraploidy ; Homozygous diploid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Hydrostatic pressure and a dye plate method were used to investigate the direct induction of tetraploids or homozygous diploids from the industrial diploid or haploid yeast Saccharomyces cerevisiae. Above 200 MPa, hydrostatic pressure greatly inactivated the strains HF399s1 (α haploid), P-540 (a/α diploid), and P-544 (a/α diploid). At the same time, when pressure-treated cells of these strains were spread on a dye plate, some of the visible colonies were stained red/blue or dark blue (variant colonies); the rest stained violet, similar to colonies originating from diploid cells or haploid cells that were not pressure-treated. In addition, above 100 MPa, the formation of variant colonies increased with increasing pressure, and maximized (1x10-1) at 200 and 250 MPa, respectively. The size of almost all variant cells from P-544, P-540, and HF399s1 was visibly increased compared with that of untreated cells and the measured cellular DNA content of P-540 and HF399s1 was double that of untreated cells. Furthermore, based on random spore analysis and mass-matings, induced variants in the diploid strains were found to be tetraploid with an a/a/α/α genotype at the mating-type locus or, in the haploid strains, homozygous diploid with an α/α genotype. From these results we conclude that pressure treatment in combination with a dye plate is a useful method for strain improvement by direct induction of tetraploids or homozygous diploids from industrial strains whether diploid or haploids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1432-0983
    Keywords: Sulphite-resistant mutants ; Sulphite uptake ; Acetaldehyde accumulation ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth inhibition and cell killing caused by sulphite were reduced in seven Saccharomyces cerevisiae sulphite-resistant independent mutants, compared to their parental strains. Genetic analysis showed that in the seven mutants resistance was inherited as a single-gene dominant mutation and that all the analyzed mutations were allelic, thus identifying a major gene responsible for sulphite resistance in S. cerevisiae. Two of the mutants, MBS20-9 and MBS30, were further characterized. 35S-sulphite uptake experiments showed that the ability to accumulate sulphite was markedly reduced in the two resistant strains. No difference between resistant and sensitive strains with respect to glyceraldehyde-3-phosphate dehydrogenase sensitivity to sulphite, or to intracellular glutathione content, were revealed. In contrast, the extracellular acetaldehyde concentration was higher in the resistant mutants, both in the presence and in the absence of sulphite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Stationary phase ; mtDNA ; Storage carbohydrate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Double-mutant cells of the budding yeast Saccharomyces cerevisiae harboring the gcs1-1 and sed1-1 mutations are conditionally defective (cold-sensitive) only for reentry into the mitotic cycle from stationary phase. If already proliferating at the permissive temperature (29°C), these reentry-mutant cells continue to proliferate when transferred to the restrictive temperature of 14°C, but under these conditions reentry-mutant cells lose mitochondrial DNA (mtDNA). In addition, upon exhaustion of the nutrient supply at 14°C, these reentry-mutant cells entered stationary phase at a decreased cell concentration and did not accumulate the reserve carbohydrates trehalose and glycogen. Both of these deficiencies were due to the loss of mtDNA, as shown by the responses of wild-type cells also lacking mtDNA. Mitochondrial status did not affect other aspects of the reentry-mutant phenotype. Although mitochondrial activity and the accumulation of carbohydrate reserves are typical features of cells in stationary phase, the reentry-mutant phenotype reveals that neither entry into nor exit from stationary phase need involve mitochondrial function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1432-0983
    Keywords: Glycosylphosphatidylinositol anchored-protein ; Southern analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The GGP1 gene encodes the only GPI-anchored glycoprotein (gp115) that has been purified todate in the budding yeast Saccharomyces cerevisiae. It is a single-copy gene whose deduced amino-acid sequence shares no significant homology to any other known protein. In this paper we report a Southern hybridization analysis of genomic DNA from different eukaryotic organisms to identify homologues of the GGP1 gene. We have analyzed DNA prepared from a unicellular green alga (Chlamydomonas eugametos), from two distantly related yeast species (Candida cylindracea and Schizosaccharomyces pombe), and from the common bean Phasoleus vulgaris. The moderate stringency of the experimental conditions and the high specificity of the probes used indicate that a single-copy of GGP1-related sequences exists in all these eukaryotic organisms. The chromosomal localization of the GGP1 gene in S. cerevisiae has also been determined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 92-94 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Gene mapping ; Idiomorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The STA2 (glucoamylase) gene of Saccharomyces cerevisiae has been mapped close to the end of the left arm of chromosome II. Meiotic analysis of a cross between a haploid strain containing STA2, and another strain carrying the melibiase gene MEL1 (which is known to be at the end of the left arm of chromosome II) produced parental ditype tetrads only. Since there is no significant DNA sequence similarity between the STA2 and MEL1 genes, or their respective flanking regions, we conclude that these two genes are carried by separate non-hybridizing sequences of chromosomal DNA, either of which can reside at the end of the left arm of chromosome II. By analogy with the mating-type locus of Neurospora crassa, we suggest that the STA2 and MEL1 genes are idiomorphs with respect to one another.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Phospholipid synthesis ; Phospholipid-N-methyltransferase ; Mutant ; Over-expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By functional complementation of the auxotrophic requirements for choline of a cdg1, cho2 double-mutant, by transformation with a genomic DNA library in a high copy number plasmid, two different types of complementing DNA inserts were identified. One type of insert was earlier shown to represent the CHO2 structural gene. In this report we describe the molecular and biochemical characterization of the second type of complementing activity. The transcript encoded by the cloned gene was about 1000-nt in length and was regulated in response to the soluble phospholipid precursors, inositol and choline. A gene disruption resulted in no obvious growth phenotype at 23°C or 30°C, but in a lack of growth at 37°C in the presence of monomethylethanolamine. Null-mutants exhibited an inositol-secretion phenotype, indicative of mutations in the lipid biosynthetic pathway. Complementation analysis, biochemical analysis of the phospholipid methylation pathway in vivo, and comparison of the restriction pattern of the cloned gene to published sequences, unequivocally identified the cloned gene as the OPI3 gene, encoding phospholipid-N-methyltransferase in yeast. When present in multiple copies the OPI3 gene efficiently suppresses the phospholipid methylation defect of a cho2 mutation. As a result of impaired synthesis of phosphatidylcholine, the INO1-deregulation phenotype is abolished in cho2 mutants transformed with the OPI3 gene on a high copy number plasmid. Taken together, these data demonstrate a significantly overlapping specificity of the OPI3 gene product for three sequential phospholipid methylation reactions in the de novo Ptd-Cho biosynthetic pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 22 (1992), S. 267-272 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Sterol 14-reductase ; Ergosterol ; Fenpropidin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have transformed Saccharomyces cerevisiae with a genomic library contained in the replicative vector pFL44. The resulting transformants were screened for resistance to fenpropidin, a specific inhibitor of sterol 14-reductase. A plasmid was isolated that transformed yeast both to resistance to fenpropidin and to an increased specific activity of sterol 14-reductase. Sterol analysis of transformed cells grown in the presence of increasing concentrations of the inhibitor confirmed that resistance was a consequence of over-production of sterol 14-reductase. By chromosomal gene disruption, we have, for the first time, constructed yeast strains defective in sterol 14-reductase. As expected, since yeast in unable to take up sterols in aerobiosis, the disrupted strains do not grow in the presence of oxygen, even if exogenous sterols are supplied. However, disrupted cells grow in anaerobiosis with exogenous oleic acid and ergosterol supplemens. They also grow in aerobiosis if they bear an additional mutation allowing sterol uptake. In this last growth condition the cells require a “sparking” ergosterol supplementation (25nM) and accumulate ignosterol (ergosta-8, 14-dienol) as the end-product of the sterol pathway. These results reveal that ignosterol is not obviously toxic to yeast membranes and strongly suggest that the molecular basis of the antifungal-activity morpholine and piperidine is directly related to the specific inhibition of ergosterol formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Fructose-1,6-bisphosphatase ; Glucose repression ; Gene activation ; Gluconeogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Fructose-1,6-bisphosphatase is a key enzyme in gluconeogenesis and the FBP1 gene is not transcribed during growth with glucose. Genetic analysis indicated a positive regulation of FBP1 expression after exhaustion of glucose. By linker-deletion analysis, two upstream activation sites (UAS1 and UAS2) were localized and the respective UAS-binding factors (DAP I and DAP II for derepression activating protein) were identified by gel retardation. UAS1 and UAS2 span about 30 bp each, and are separated by approximately 30 bp. Both UAS sites act synergistically. Although UAS1 showed some similarities to the DNA-binding consensus for the general yeast activator Rap1, competition experiments and DEAE-chromatography proved that DAP I and Rap1 correspond to different proteins. Gel retardation by DAP I depended on carbon sources and did not occur in cells growing logarithmically with glucose, whereas a strong retardation signal was obtained with ethanol-grown cells. The present results suggest that DAP I and DAP II are the final regulatory elements for glucose derepression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 95-99 
    ISSN: 1432-0983
    Keywords: Translational fidelity ; Paromomycin ; Stuttering ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Missense errors in the translation of mRNAs in Saccharomyces cerevisiae were screened by looking for charge heterogeneity of proteins on two-dimensional gels resulting from the substitution of charged and neutral amino acids. No such mistranslation was detected in wild-type yeast strains grown in the presence of the translational error-inducing antibiotic paromomycin. However, paromomycin-induced mistranslation of a heterologous mRNA, encoding human phosphoglycerate kinase expressed in yeast, was seen. We suggest that the combination of error-prone translation of a heterologous mRNA, and growth in the presence of paromomycin, leads to an accumulation of mistranslated proteins that can be detected by two-dimensional gel electrophoresis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Dynamin ; Mitochondria ; GTP binding protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The isolation and characterization of MGM1, and yeast gene with homology to members of the dynamin gene family, is described. The MGM1 gene is located on the right arm of chromosome XV between STE4 and PTP2. Sequence analysis revealed a single open reading frame of 902 residues capable of encoding a protein with an approximate molecular mass of 101 kDa. Loss of MGM1 resulted in slow growth on rich medium, failure to grow on non-fermentable carbon sources, and loss of mitochondrial DNA. The mitochondria also appeared abnormal when visualized with an antibody to a mitochondrial-matrix marker. MGM1 encodes a dynamin-like protein involved in the propagation of functional mitochondria in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1432-0983
    Keywords: ABC superfamily ; Multidrug resistance ; Saccharomyces cerevisiae ; YDR1 gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A multidrug resistance gene, YDR1, of Saccharomyces cerevisiae, which encodes a 170-kDa protein of a member of the ABC superfamily, was identified. Disruption of YDR1 resulted in hypersensitivity to cycloheximide, cerulenin, compactin, staurosporine and fluphenazine, indicating that YDR1 is an important determinant of cross resistance to apparently-unrelated drugs. The Ydr1 protein bears the highest similarity to the S. cerevisiae Snq2 protein required for resistance to the mutagen 4-NQO. The drug-specificity analysis of YDR1 and SNQ2 by gene disruption, and its phenotypic suppression by the overexpressed genes, revealed overlapping, yet distinct, specificities. YDR1 was responsible for cycloheximide, cerulenin and compactin resistance, whereas, SNQ2 was responsible for 4-NQO resistance. The two genes had overlapping specificities toward staurosporine and fluphenazine. The transcription of YDR1 and SNQ2 was induced by various drugs, both relevant and irrelevant to the resistance caused by the gene, suggesting that drug specificity can be mainly attributed to the functional difference of the putative transporters. The transcription of these genes was also increased by heat shock. The yeast drug-resistance system provides a novel model for mammalian multidrug resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    ISSN: 1432-0983
    Keywords: Overexpression ; Peroxisomes ; Saccharomyces cerevisiae ; Stabilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have constructed a gene coding for the 12-kDa intermediate form of the 2s methionine-rich protein from Bertholletia excelsa seeds. This protein, expressed intracellularly in yeast, is characterised by a 20-min balf-life. By adding 11 amino acids corresponding to the peroxisome-targeting sequence (PTSc) of luciferase, we have significantly increased its half-life. This stabilization allowed accumulation of the BZN protein into the peroxisome as judged by cell fractionation. Accumulation of the 12-kDa protein results in a significant increase of the total methionine content in yeast cells (30%) indicating that such a microorganism could represent a practicable protected shuttl for an animal-feed additive.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    ISSN: 1432-0983
    Keywords: 2-Oxoglutarate dehydrogenase ; Molecular cloning ; Saccharomyces cerevisiae ; Sequencing ; Suppressor ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activity of mitochondrial 2-oxoglutarate dehydrogenase in S. cerevisiae can be impaired either by the ogd1 or the kgd1 mutation. The OGD1 gene and two suppressor genes were isolated by complementation of the ogd1 mutant. The complementation of the kdg1 mutant by the OGD1 gene, an allelism test, and meiotic mapping, revealed that the ogd1 and kgd1 mutations are allelic. The two mutations were differentiated by the cloned suppressor gene which was able to partially complement ogd1, but not kgd1. The molecular analysis of the suppressor gene revealed its identity with the natural tRNA CAG Gln gene found in the upstream region of URA10.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1432-0983
    Keywords: Cytochrome oxidase ; Revertant ; Mitochondria ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three respiratory-deficient mutants of cytochrome oxidase subunit I in the yeast mitochondrion have been sequenced. They are located in, or near, transmembrane segment VI, the catalytic core of the enzyme. Respiratory-competent revertants have been selected and studied. The mutant V244M was found to revert at the same site in valine (wild-type), isoleucine or threonine. The revertants of the mutant G251R were of three types: glycine (wild-type), serine and threonine at position 251. A search for second-site mutations was carried out but none were found. Among 60 revertants tested, the mutant K265M was found to revert only to the wild-type allele.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 7 (1983), S. 165-166 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Cephalosporium acremonium ; Mitochondrial hybrid vector ; Nuclear association
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The hybrid vector pCP2, consisting of the bacterial plasmid pBR325, the nuclear gene Leu-2 of Saccharomyces cerevisiae and a fragment of mitochondrial DNA from Cephalosporium acremonium, was found to associate with the nucleus in a transformed strain of Saccharomyces cerevisiae. This was inducted by (1) efficient expression of the Leu-2 gene as evidenced by a short generation time on selective medium; (2) independence of Leu-2 gene expression from mitochondrial protein synthesis, since pCP2 was shown to replicate and to be expressed in petite mutants; (3) association of pCP2 with isolated DNA from nuclei as proved by transformation experiments with E. coli.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 7 (1983), S. 393-397 
    ISSN: 1432-0983
    Keywords: Trehalose ; Glycogen ; Sporulation ; Germination ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mutants with specific lesions were used to differentiate between the functions of glycogen and trehalose in S. cerevisiae. Diploids which harbor the glc1/glc1 mutation depend upon the phosphorylated, less active form of glycogen synthase and show a more active, phosphorylated form, of the enzyme trehalase. These conditions are due to a lesion in the regulating subunit of the cAMP-dependent protein kinase. Such cells are unable to sporulate. Diploids which contain the sst1/sst1 mutation have normal glycogen metabolism but their trehalose-6-phosphate synthase is not active. Such strains sporulate but germination is poor and only one-spore tetrads are formed. These results confirm that glycogen is needed to trigger sporulation while trehalose plays a role in the germination process. Different systems, I and II, of trehalose accumulation were proposed. System I would require the UDPG-linked trehalose synthase, whereas system II would constitute an alternative pathway, specifically induced or activated by the expression of a MAL gene. The presence of system II in its constitutive form in the constructed diploids would favour trehalose synthesis during growth on glucose, however, it did not overcome the glycogen deficiency during sporulation nor the lack of trehalose for germination. It seems that only system I, namely trehalose 6-P-synthase, plays a role in the germination process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; 5-aminolevulinate synthase ; Cloned gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have cloned the structural gene HEM1 for 5-aminolevulinate (ALA) synthase from Saccharomyces cerevisiae by transformation and complementation of a yeast hem1–5 mutant which was previously shown to lack ALA synthase activity (Urban-Grimal and Labbe Bois 1981) and had no immunodetectable ALA synthase protein when tested with yeast ALA synthase antiserum. The gene was selected from a recombinant cosmid pool which contained wild-type yeast genomic DNA fragments of an average size of 40 kb. The cloned gene was identified by the restauration.of growth on a non fermentable carbon source without addition of exogenous ALA. Sub cloning of partial Sau3A digests and functional analysis by transformation allowed us to isolate three independent plasmids, each carrying a 6 kb yeast DNA fragment inserted in either orientation into the single BamHI site of the vector pHCG3 and able to complement hem1–5 mutation. Analysis of the three plasmids by restriction endonucleases showed that HEM1 is contained within a 2.9 kb fragment. The three corresponding yeast trans formants present a 1, 2.5 and 16 fold increase in ALA synthase activity as compared to the wild-type strain. The gene product immunodetected in the transformant yeast cells has identical size as the wild-type yeast ALA synthase and its amount correlates well with the increase in ALA synthase activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 7 (1983), S. 433-438 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Yeast transformation ; Yeast autonomously replicating sequences ; Ribosomal RNA genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have previously demonstrated that the loss of Rcp-CEN3, a centromeric plasmid containing yeast rDNA autonomously replicating sequences (ARS) is as high as around 50% per generation for most yeast strains. In this study we have attempted to elucidate mechanisms underlying the high mitotic instability of Rcp-CEN3. For this purpose a tandem duplication of a rDNA ARS was constructed in Rcp-CEN3. The new plasmid having two ARSs possesses a markedly higher mitotic stability as compared to a monoARS Rcp-CEN3. The mitotic stability of this centromere-containing plasmid which has two replicators corresponds to the calculated value for the mitotic stability of two monoARS plasmids Rcp-CEN3 in given cells. Genetic analysis has demonstrated that both plasmids having one or two ARSs are maintained in the single copy state. These results demonstrate that the mitotic instability of centromeric plasmid Rcp-CEN3 carrying a rDNA ARS is associated with the absence of stringent control of replication from the rDNA ARS. A possible mechanism of replication of the chromosomal rDNA repeats in yeast is discussed in the light of this data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    ISSN: 1432-0983
    Keywords: Iso-1-cytochrome c ; Saccharomyces cerevisiae ; Heme ; Transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A Saccharomyces cerevisiae mutant (hem1 cycl-1) was transformed with plasmids bearing a chromosomal centromer (CEN3) and a 2 μm DNA replication origin. In one of the plasmids a functional CYC1 gene was present, in a second plasmid an XhoI fragment located between bases -245 and -678 upstream from the translation initiation codon had been deleted, in a third plasmid this region had been inverted. Results of hybridization experiments carried out with mRNA isolated from heme-deficient and heme-containing transformants indicated that heme controls transcription of the CYC1 gene and that DNA sequences located within the upstream XhoI fragment are involved in activation of the gene by heme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; TRP3 gene ; Sequence analysis ; Enzyme function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The structure and function of the TRP3 gene of Saccharomyces cerevisiae were analyzed. Subcloning of an original 4.8 kb BamHI DNA fragment, carrying the yeast TRP3 gene, allowed for a localization of the gene on a 2.5 kb ClaI/BamHI fragment. Transcription was found to proceed from the ClaI site towards the BamHI site. Three major transcription start sites were determined at positions −92, −87, and −81 by S1-mapping. The synthesis of the TRP3 gene is regulated by the general control, and was found to take place- at the transcriptional level. The sequence of the 5′-noncoding region up to position −400 and part of the coding region to position 840 were determined. The 5′-noncoding region contains sequences common to most amino acid biosynthetic genes known so far, namely a presumptive ribosome binding site, “Goldberg-Hogness boxes”, and a consensus sequence, possibly involved in the general control. For the coding region a single open reading frame was found. The deduced amino acid sequence was aligned with homologous amino acid sequences of Neurospora crassa, Pseudomonas putida and Escherichia coli. The exceptionally high homology (40–60%) between these sequences led us to postulate that the TRP3 gene product is of the structure NH2-glutamine amidotransferase-indole-3-glycerol-phosphate synthase-COOH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Cloning ; Suppressor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A plasmid, pYsup1-1, containing a DNA fragment able to suppress the recessive mutant phenotype of the suppressor locus sup1 (allele sup1-ts36) of Saccharomyces cerevisiae was isolated from a bank of yeast chromosomal DNA cloned in cosmid p3030. The complementing gene was localized on a 2.6 kb DNA fragment by further subcloning. Evidence is presented that the cloned DNA segment codes for the sup1 structural gene (chromosome IIR).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 8 (1984), S. 575-580 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Candida utilis ; Protoplast fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Auxotrophic mutants of Saccharomyces cerevisiae and Candida utilis were hybridized through protoplast fusion. Spontaneous, UV- and FPA-induced mitotic segregation indicated that after cell fusion, exclusion of the S. cerevisiae nucleus or nuclear fusion followed by preferential loss of S. cerevisiae chromosomes can take place. Some of the hybrids were stable. One of them, expressed mating and sporulation functions of the S. cerevisiae parent. Thus, markers from both parents could be recovered as mitotic and meiotic segregants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Yeast vectors ; Cosmids ; nif genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two vectors, termed pG63.11 (7.6 Kb) and pHCG3 (9.6 Kb), suitable for yeast transformation have been constructed. The pHCG3 vector has cosmid properties. Both vectors contain a single 3.3 Kb EcoRI-HindIII fragment of yeast origin which carries the yeast URA3 gene (1.1 Kb) and the origin of replication of the 2 µm plasmid (2.2 Kb). They confer ampicillin resistance and they contain 5 unique EcoRI,HpaI,HindIII,BamHI and SalI restriction sites. Cosmid pHCG3 was used to clone the nitrogen fixation (nif) gene cluster of Klebsiella pneumoniae carried by twoHindIII fragments of 17 and 26 Kb, respectively. The resulting cosmid, termed pGPC875 (53 Kb) which conferred a Nif+ phenotype to Escherichia coli, was introduced in yeast by transformation. No acetylene reduction activity was detectable in the transformants. However it was shown that the entire information for nitrogen fixation can be replicated and maintained intact in yeast for more than 50 generations of growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 1432-0983
    Keywords: Suppressors-tRNA ; Saccharomyces cerevisiae ; Nucleotide modification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have examined the tRNAs of two related strains of Saccharomyces cerevisiae, ψ + and ψ −, which differ with respect to an extrachromosomal genetic element that modulates the expression of genotypic and phenotypic suppression. Both the pattern of tRNAs synthesized and the level of nucleotide modification of several selected tRNA species were found to be the same in the ψ + and ψ − strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1432-0983
    Keywords: tRNA processing ; Saccharomyces cerevisiae ; Mitochondria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We used a genetic approach to study the nuclear factors involved in the biogenesis of mitochondrial tRNAs. A point mutation in the mitochondrial tRNAAsp gene of Saccharomyces cerevisiae had previously been shown to result in a temperature-sensitive respiratory-deficient phenotype as a result of the absence of 3′ end-processing of the tRNAAsp. Analysis of mitochondrial revertants has shown that all revertants sequenced have a G-A compensatory change at position 53, which restores the hydrogen-bond with the mutated nucleotide. We then searched for nuclear suppressors to identify the nuclear gene(s) involved in mitochondrial tRNA 3′ end-processing. One such suppressor mutation was further characterized: it restores tRNAAsp maturation and growth at 36°C on glycerol medium in heterozygous diploids, but leads to a defective growth phenotype in haploids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 15-20 
    ISSN: 1432-0983
    Keywords: Cell-division cycle ; Mitochondrial genome ; Nuclear mutation ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In former studies it was found that the ERV1 gene is essential for cell viability and for the biogenesis of functional mitochondria. A temperature-sensitive nuclear mutant exhibits a severe reduction in all the mitochondrial transcripts. Elimination of the gene leads to growth arrest after a few cell divisions. The putative gene product bears the characteristics of a regulatory factor since it has low expression rate and a high content of charged amino acids. In this study it is further verified that the ERV1 gene alone is responsible for the observed cellular and mitochondrial defects. The 5′ region of the gene is analysed by DNA deletions and complementation studies. Expression of the gene under the control of the GAL1-10 promoter in a disruption strain of ERV1 allows a more detailed specification of its influence on mitochondrial and cellular functions. Immediate and complete loss of mitochondrial genomes is observed after the promoter has been shut off, whereas the yeast cells are still able to grow for a limited time under these conditions. Analysis of the cells by in-vivo DNA flurorescence demonstrates a specific arrest in the cell-division cycle as the terminal phenotype. To further characterize the temperature-sensitive allele of ERV1 the mutated gene has been isolated and sequenced. A single point mutation which leads to the exchange of a single amino acid is found in the reading frame.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Nuclear gene ; Mitochondria ; Mitochondrial ribosomal protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nuclear gene MRP-L13 of Saccharomyces cerevisiae, which codes for the mitochondrial ribosomal protein YmL13, has been cloned and characterized. It is a single-copy gene residing on chromosome XI. Its nucleotide sequence was found to be identical to that of the previously reported ORF YK105. A comparison of the predicted protein sequence of the MRP-L13 gene product and the actual N-terminal amino-acid sequence of the isolated YmL13 protein indicated that the mature protein is preceded by a mitochondrial signal peptide of 86 amino-acid residues, which is the longest among all known mitochondrial ribosomal proteins of S. cerevisiae. No sequence similarity was found to any other ribosomal protein in the current databases. The transcription of MRP-L13 was found to be repressed in the presence of glucose. Its protein product is not strictly essential for mitochondrial functions, but disruption of the gene by insertion of LEU2 noticeably affected cellular growth on non-fermentable carbon sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1432-0983
    Keywords: Cephalosporium acremonium ; Mitochondrial DNA ; Autonomous replication sequence ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A fragment of DNA which functions as an autonomous replication sequence in yeast was cloned from Cephalosporium acremonium. Mitochondrial DNA (mtDNA) was isolated from an industrial strain of C. acremonium (08G-250-21) highly developed for the production of the antibiotic, cephalosporin C. Size, 27 kb, and restriction pattern indicated this DNA was identical to mtDNA previously isolated (Minuth et al. 1982) from an ancestral strain (ATTC 14553) which produces very low amounts of cephalosporin C. A 1.9 kb Pst1 fragment of the Cephalosporium mtDNA was inserted into a Pst1 site of the yeast integrative plasmid, Ylp5, to produce a 7.5 kb plasmid, designated pPS1. The structure of pPS1 was verified by restriction analysis and hybridization. PS1 transformed Saccharomyces cerevisiae (DBY-746) to uracil prototrophy at a frequency of 272 transformants/μg DNA. Transformation frequencies of 715 transformants/μg DNA and zero were obtained for the replicative plasmid, YRp7, and the integrative plasmid YIp5, respectively. Southern hybridization and transformation of E. coli by DNA from yeast transformed by pPS1 verified that pPS1 replicates autonomously in yeast. The uracil-independent pPS1-yeast transformants were mitotically unstable. The average retention of pPS1 after three days growth in selective and non-selective medium was 4.5% and 0.4%, respectively, compared to retentions of 4.6% and 0.5% for YRp7. The properties of pPS1 were compared to those of a related plasmid, pCP2. pCP2 was constructed (Tudzynski et al. 1982) by inserting the C. acremonium 1.9 kb Pst1 fragment into the yeast integrative plasmid, pDAM1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; TRP3 gene ; Deletion analysis ; Enzyme function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two sets of deletions, entering the TRP3 gene of Saccharomyces cerevisiae from the 3′- and the 5′-end were constructed. Complementation analysis with chromosomal trp3A, trp3B and trp3C mutations was done by introducing the 3′- and 5′-truncated gene on a multicopy 2 μm-vector. The N-terminal glutamine amido transferase function is encoded by a DNA fragment of 600–700 bp, and the C-terminal indole-3-glycerol-phosphate synthase function by a DNA fragment of about 900 bp, whereas both functions together are encoded by a contiguous DNA fragment of about 1,500 bp. The bi functional TRP3-peptide thus could be dissected into two catalytically independent peptides in vivo. For the indole-3-glycerol-phosphate synthase activity, independent catalytic activity was also demonstrated in vitro: deletions entering the TRP3 gene from the 5′-end, and lacking large parts of the sequence coding for the glutamine amidotransferase function, still are able to ex press a peptide exhibiting functional indole-3-glycerol phosphate synthase activity in vitro. Deletion plasmids pME505·De1C102·2μm and DelC10·2μm exhibited shorter TRP3 transcripts according to the deleted DNA-fragments (150 and 426 by respectively) but yielded peptides of invariable Mr of 35,000 d. Transcription and translation of these peptides, which probably represent the independently folding indole-3-glycerol-phosphate synthase core are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 7 (1983), S. 427-431 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; DNA ; Alkaline elution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The method of analysis of DNA in mammalian cells by alkaline elution from filters (Kohn et al. 1974) was adapted for studies on yeast DNA. By this technique spheroplasts obtained from yeast cells are lysed on filters and single-stranded DNA fragments selectively eluted by alkaline solutions. The procedure was applied to monitor the occurrence of replication intermediates and production of DNA single-strand breakage by MMS, and its repair in growth medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 4 (1981), S. 135-143 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondria ; Gene cloning ; Transfer RNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have studied the organization and expression of a group of tRNA genes located on a 2,700 base pair portion of the yeast mitochondrial genome between the genetic markers cap (chloramphenicol resistance) and oxil (cytochrome oxidase subunit II). This region is spanned by mitochondrial DNA inserts of two recombinant plasmids, pYm162 and pYm267, which have been extensively mapped and sequenced. This tRNA group is composed of six tRNA genes, coding for tRNA AAR Lys , tRNA AGR Arg , tRNA GGN Gly , tRNA GAY Asp , tRNA AGY Ser , and tRNA CGN Arg . We report the sequence for the majority of the 2,700 base pair region including the genes for all six tRNAs. All six genes are oriented in the same direction and are, therefore, transcribed from the same DNA strand. Further, a comparison of the organization of this region with the analogous region of a related wild type strain shows that the tRNA gene order in the two strains is the same. Five of the six tRNA genes have corresponding transcripts in wild type RNA. Although a potential structural gene for tRNA CGN Arg is present, we do not detect a tRNA CGN Arg gene transcript.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1432-0983
    Keywords: 2-oxoglutarate dehydrogenase ; Saccharomyces cerevisiae ; rad52-mediated chromosome loss
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ogd1 mutants of Saccharomyces cerevisiae are deficient in mitochondrial 2-oxoglutarate dehydrogenase activity; they cannot grow on glycerol and produce an increased amount of organic acids during growth on glucose as substrate. Using gamma ray-induced rad52-mediated chromosome loss the ogd1 mutation can be assigned to chromosome IX. Tetrad analysis of crosses between ogd1 and other markers on chromosome IX revealed that the OGD1 gene maps on the left arm of this chromosome 1.9 cM from his5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Orotate phosphoribosyl transferase ; Nucleotide sequence-5-phosphoribosyl 1-pyrophosphate (5PRPP)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Orotate phosphoribosyl transferase (OPRTase) catalyses the transformation of orotate to OMP in the pyrimidine pathway. In the yeast Saccharomyces cerevisiae, the URA5 gene is known to encode this enzyme activity. In this paper we present the cloning and sequencing of a yeast gene, named URA10, encoding a second OPRTase enzyme. Comparison of the predicted amino acid sequences between URA5 and URA10 genes shows more than 75% similarity. These sequences have also been compared to those of Escherichia coli, Podospora anserina, Sordaria macrospora and Dictyostelium discoideum. Remarkable similarities in the primary structure of these proteins have been found. Gene disruption experiments revealed that URA10 gene expression is responsible for the leaky phenotype of a ura5 mutant. Assays of OPRTase activity in extracts from ura5 and ura10 mutants indicate that the URA10 product contributes only 20% of the total activity found in wild type cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Episomal plasmid ; Copy number control ; Plasmid maintenance ; Glycolytic enzyme levels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This study demonstrates how varying the promoter strength of an essential gene on a yeast 2μORI-STB YEp multicopy vector can influence vector copy levels. A phosphoglycerate kinase gene (PGK) on this plasmid was made essential for fermentative growth by transformation into a pgk - yeast strain. When in these PGK- transformants the requirement for PGK expression was the sole selective criterion for plasmid maintenance, PGK promoter activity was inversely related to vector copy levels. Plasmids with an efficiently-transcribed PGK gene were maintained at approximately one copy per cell, whereas those lacking the UAS that normally directs high basal PGK transcription levels were present at up to 10–15 copies. All cultures of these PGK+ transformants contained only a low proportion of pgk - cells. Since mitotic loss of the plasmid arrests growth through loss of a functional PGK allele, PGK confers high stability to the YEp vector in such a pgk - genetic background. In this system YEp vector levels are probably influenced by PGK transcription because high expression of PGK is needed in rapid fermentative growth. Remarkably, low plasmid PGK promoter activity caused PGK mRNA levels slightly higher than those found in yeast with normal PGK regulation. A higher plasmid copy number is therefore not the only factor counteracting the effects of low PGK transcription, and it is possible that PGK mRNA becomes more stable in response to inefficient PGK transcription.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mutants ; Farnesyl diphosphate synthetase ; Ergosterol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two yeast mutant strains auxotrophic for ergosterol and blocked in farnesyl diphosphate synthetase (EC 2.5.1.1) were isolated. Genetic analysis has shown that these mutant strains carry additional mutations in the ergosterol pathway besides erg20-1 and erg20-2 which affect FPP synthetase. The novel feature of these mutants is their ability to excrete prenyl alcohols (farnesol and geraniol). As geraniol is toxic for yeast cells, the above leaky mutations in FPP synthetase have to be associated with others in the sterol pathway, in order to slow down geraniol synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    ISSN: 1432-0983
    Keywords: Glucose oxidase ; Aspergillus ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We report the cloning of the Aspergillus niger glucose oxidase gene and its use to elevate glucose oxidase productivity in A. niger by increasing the gene dosage. In addition, the gene has been introduced into A. nidulans where it provides the novel capacity to produce glucose oxidase. A plasmid, in which DNA encoding the mature form of glucose oxidase was preceded by a Saccharomyces cerevisiae secretion signal, effected high-level production of extracellular glucose oxidase in this yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    ISSN: 1432-0983
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; Argininosuccinate lyase ; Sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The complete nucleotide sequence of the ARG7 gene, coding for argininosuccinate lyase (EC 4.3.2.1), in the fission yeast (Schizosaccharomyces pombe) has been determined. It consists of an open reading frame of 461 codons. The deduced protein has a molecular weight of 51 200 Da. The gene is devoid of introns which is confirmed by the fact that it is expressed in Escherichia coli after spontaneous insertion of a bacterial sequence probably bearing a prokaryotic promoter. A perfect “TATA” box is found at-72 and the major transcription initiation site in Saccharomyces cerevisiae is located at-11 as shown by primer extension experiments. Comparison of the S. pombe lyase with related proteins from other organisms reveals an important degree of conservation except in the carboxyterminal part of the polypeptide. Additionally, a deletion removing 66 amino acids of the carboxy terminus yields an enzyme exhibiting some biological activity. A unique 1500 b transcript was found in S. cerevisiae when the intact gene was present, but the deleted version of the gene gave rise to at least three transcripts of 1800, 2800 and 3900 b.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 18 (1990), S. 23-27 
    ISSN: 1432-0983
    Keywords: Protein translocation ; Saccharomyces cerevisiae ; Peroxisomes ; Overexpression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Import of proteins into organelles usually requires a cis-acting targeting signal. Analysis of various hybrid proteins, consisting of mouse DHFR and parts of catalase A from Saccharomyces cerevisiae, revealed that fusion proteins containing the N-terminal 126 amino acids, or less, of catalase A remain in the cytosol whereas fusion proteins containing 140, or more, N-terminal amino acids of catalase A form large aggregates inside the cell. These protein bodies, which lack a surrounding membrane, copurified with peroxisomes on cell fractionation. The peroxisomal targeting signal of catalase A does not reside at the C-terminus or at the N-terminus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    ISSN: 1432-0983
    Keywords: Xylitol dehydrogenase gene ; Pichia stipitis ; Saccharomyces cerevisiae ; Xylose utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A P. stipitis cDNA library in λgt11 was screened using antisera against P. stipitis xylose reductase and xylitol dehydrogenase, respectively. The resulting cDNA clones served as probes for screening a P. stipitis genomic library. The genomic XYL2 gene was isolated and the nucleotide sequence of the 1089 bp structural gene, and of adjacent non-coding regions, was determined. The XYL2 open-reading frame codes for a protein of 363 amino acids with a predicted molecular mass of 38.5 kDa. The XYL2 gene is actively expressed in S. cerevisiae transformants. S. cerevisiae cells transformed with a plasmid, pRD1, containing both the xylose reductase gene (XYL1) and the xylitol dehydrogenase gene (XYL2), were able to grow on xylose as a sole carbon source. In contrast to aerobic glucose metabolism, S. cerevisiae XYL1-XYL2 transformants utilize xylose almost entirely oxidatively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Centromere flanking sequences ; tRNA modification enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Transcriptional analysis of the region flanking the left boundary of the centromere of chromosome VI revealed the presence of a gene immediately adjacent to CEN6. The transcription of the gene is directed toward the centromere, and nucleotide sequence analysis showed that the coding region terminates only 50 bp away from CEN6. Our results extend to chromosome VI the observation that centromere-flanking regions of S. cerevisiae are transcriptionally active. Disruption of the coding region of the gene showed that its product, whilst not essential for cell viability, is important for normal cell growth. The gene has been termed DEG1 (DEpressed Growth rate). Comparison of the deduced amino acid sequence of DEG1 with a protein sequence databank revealed homology with the enzyme tRNA pseudouridine synthase I of E. coli.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 2 (1980), S. 223-228 
    ISSN: 1432-0983
    Keywords: Transcriptional Units ; GAL Genes ; Saccharomyces cerevisiae ; UV mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The size of the transcriptional unit of the structural genes for three galactose-metabolizing enzymes which form a cluster on chromosome II in Saccharomyces cerevisiae was studied by the ultraviolet light (UV)-mapping technique. Thus the size of the primary transcripts of GAL7 for galactose-1-phosphate uridylyl transferase, GAL10 for uridine diphosphoglucose 4-epimerase, or GAL1 for galactokinase were estimated to be 0.81 x 106, 1.1 x 106, or 1.3 x 106 respectively. In the light of these data together with the known directions of transcription of the genes, we concluded that each of three genes was transcribed from its own promoter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 20 (1991), S. 167-171 
    ISSN: 1432-0983
    Keywords: Glycolysis ; Repetitive elements τ/δ ; Promoter ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In this study we report on the complete nucleotide sequence of the yeast phosphoglycerate mutase gene (GPM1) and its essential 5′ and 3′ non-coding regions. The transcriptional start points were determined by S1-mapping and sequencing of a cDNA clone. Several sequences identified as important for transcriptional regulation in yeast promoters are present upstream of the transcription start point. 3′ to the coding region we sequenced a composite repetitive element which, apparently, originated from a recombination between a delta-and a tau-element. Finally, we mapped the GPM1 gene 13 cM distal to fas1 on chomosome XI.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 20 (1991), S. 189-194 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Bakers' and lager yeast ; Chromosomal and 2 μm DNA polymorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Seven strains of bakers' yeast were obtained as a representative sample of the Spanish baking industry. The nuclear genome was monitored for polymorphism by transverse alternating field electrophoresis (TAFE) and restriction maps of 2 μm DNA were produced. All seven strains were uniquely different when evaluated by their total chromosomal lengths whereas only two 2 μm variants were defined. There was no apparent correlation between chromosomal and plasmid polymorphism. The extensive chromosomal polymorphism within one 2 μm DNA type indicates the rapid and relatively recent evolution of the nuclear genome. The hybrid origin (S. cerevisiae-S.monacensis) of lager yeast was critically evaluated by TAFE analysis of S. cerevisiae and S. carlsbergensis chromosomes. The absence of corresponding S. cerevisiae chromosomes III and XIII in S. carlsbergensis argued against the hybrid origin of lager strains. We discuss limitations of the hybrid origin hypothesis of industrial yeasts and propose that the molecular coevolution observed in 2 μm DNA serves as a useful additional mechanism for rationalization of some of the structural polymorphism of the nuclear genome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 20 (1991), S. 437-439 
    ISSN: 1432-0983
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; β-glucuronidase ; Colony colour assay ; Fluorometric assay
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Expression of the β-galactosidase gene in yeast has served as a screening marker for many purposes. Here it is shown that in two yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, the β-glucuronidase (GUS) gene can be used as an alternative marker. Since the histochemical substrate can not be taken up by yeast cells, direct colony screening of plates was found to be impossible. However, by a replica plating technique, GUS expression became visibly detectable within 10 min when the GUS gene was strongly expressed. The staining method could still be performed for expression at a 100-fold lower level, but incubation times of several hours were needed. Furthermore, specific GUS expression levels of yeast protein extracts could be quantified by a fluorometric assay which is both very simple to perform and highly sensitive. Since the GUS gene can also tolerate large N-terminal fusions, this method should be particularly attractive for studying such diverse problems as transcriptional and translational regulation or subcellular localization in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 1432-0983
    Keywords: DNA repair ; Incoming DNA ; Saccharomyces cerevisiae ; Ultraviolet light
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Purified double- and single-stranded DNAs of the autonomously replicating vector M13RK9-T were irradiated with ultraviolet light (UV) in vitro and introduced into competent whole cells of Saccharomyces cerevisiae. Incoming double-stranded DNA was more sensitive to UV in excision repair-deficient rad2-1 cells than in proficient repair RAD + cells, while single-stranded DNA exhibited high sensitivity in both host cells. The results indicate that in yeast there is no effective rescue of UV-incoming single-stranded DNA by excision repair or other constitutive dark repair processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondria ; Cytochrome c oxidase subunit 1 ; RNA processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Eighteen nuclear mutants of the yeast Saccharomyces cerevisiae, each disturbed in the biosynthesis of the mitochondrially encoded cytochrome c oxidase subunit 1 (cox 1) and each representing a distinct complementation group, have been examined to identify the level at which COX1 expression is affected. RNA blotting revealed that most have a defect in the processing of COX1 precursor-mRNA; only a few are defective in COX1 transcription and/or pre-mRNA stability. In most RNA-processing mutants, the absence of the COX1 messenger results from a defect in the splicing of one or more COX1 introns. In turn, this defect can be ascribed to a mutation in a nuclear gene which is either directly involved in splicing or else acts indirectly by impairing COX1 translation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Aminoacyl-tRNA synthetase mutant ; PGK overexpression ; In vivo misreading
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The hts1.1 temperature-sensitive histidinyl-tRNA synthetase mutation enables Saccharomyces cerevisiae to be starved for His-tRNAHis by upshift to the non-permissive temperature of 38°C. If yeast behaves similarly to bacterial and mammalian cells, this lack of His-tRNAHis should greatly enhance misreading at histidine codons (CAU/CAC) by Gln-tRNAGln, resulting in substitution of the neutral amino acid glutamine in place of histidine, a basic amino acid. Such misreading causes the isoelectric point (pI) of proteins to shift to lower values, and is readily detectable as “stuttering” on two-dimensional (2D) protein gels. By gel analysis of pulse-labelled proteins of hts1.1 yeast cells that were overexpressing phosphoglycerate kinase (PGK), our study sought to detect this specific translational error in PGK protein. It was not detected by this relatively sensitive technique, indicating that missense errors due to glutamine insertion at histidine codons do not occur in yeast at the readily-detectable level found in bacterial and mammalian cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    ISSN: 1432-0983
    Keywords: Mismatch correction ; Saccharomyces cerevisiae ; Excision repair ; DNA methylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The efficiency and direction of mismatch correction in the Saccharomyces cerevisiae SUP4-o gene were not altered by an excision-repair defect (rad1). Although excision-repair functions remove methylated adenine from yeast, adenine methylation at a GATC sequence in SUP4-o did not direct the correction of mismatches via excision repair.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Cysteine biosynthetic ; CYS4 ; Mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A DNA fragment containing the CYS4 gene of Saccharomyces cerevisiae was isolated from a genomic library. The cloned fragment hybridized to the transverse-alternating-field-electrophoresis band corresponding to chromosomes VII and XV. According to the 2 μm DNA chromosome-loss procedure, the cys2 and cys4 mutations, which are linked together and co-operatively confer cysteine dependence, were assigned to chromosome VII. By further mapping involving tetrad analysis, the cys2-cys4 pair was localized between SUP77 (SUP166) and ade3 on the right arm of chromosome VII.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 21 (1992), S. 295-300 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Serine biosynthesis ; Mutant isolation ; Glucose repression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Serine and glycine biosynthesis in yeast proceed by two pathways; a “glycolytic” pathway, using 3-phosphoglycerate, and a “gluconeogenic” pathway, using glyoxylate. We used a mutation in the cat1 gene to abolish the glucose-repressible “gluconeogenic” pathway and re-isolated two mutants, ser1 and ser2, in the “glycolytic” pathway. The ser1 mutation corresponded to phosphoserine transaminase and ser2 to that of phosphoserine phosphatase. Mutagenesis of a ser1 ser2 cat1 triple mutant facilitated the isolation of a mutation in a new gene, SER10. SER10 appears to be part of a pathway which, under normal growth conditions, is less important in serine biosynthesis. The ser1 ser2 ser10 triple mutants were totally serine auxotrophic on glucose media but serine prototrophic during growth on non-fermentable carbon sources. This phenotype was used to select for possible regulatory mutants that synthesize serine by the gluconeogenic pathway even in the presence of glucose, e.g., with a non-glucose repressible glyoxylate cycle. In an alternative approach to isolate such mutants URA3 and TRP1 expression were placed under the control of the glucose-repressible FBP1 (fructose-1,6-bisphosphatase) promoter. Although both systems resulted in strong selection pressure we could not isolate constitutively derepressed mutants. These results indicate that transcription of glucose-repressible gluconeogenic enzymes is mainly dependent on positive regulatory elements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Lysis mutants ; Plasmid stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The autonomously replicating plasmid YEpSS1, containing the S. cerevisiae SOD1 and SRB1 genes, was highly unstable in a wild-type strain. When transformed into a fragile srb1-1 mutant host, the same plasmid displayed different characteristics depending on the growth medium used. Both batch and continuous culture experiments demonstrated that the plasmid was very unstable when the transformed strain SLU15 was grown in the presence of an osmotic stabiliser (10% w/v sorbitol). However, in the absence of the osmoticum, nearly 100% of the cells retained the plasmid and produced the Sod1 protein after 80 generations of growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Wine yeasts ; Chromosome length polymorphism ; TAFE ; Probe hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Wine yeast strains are characterized by a high chromosomal DNA polymorphism. This can be explained partly by a size difference of different variants of specific chromosomes. This difference can reach up to 45% of the size of the chromosome in question. Two strains, SB1 and Eg8, have a very complex chromosomal pattern and show one band hybridizing with probes from two different chromosomes derived from a reference strain. This is an indication of the presence of “hybrid” chromosomes in these wine strains. The most astonishing result concerns chromosome VIII, frequently present in wine strains in two variant forms. The first normal form has a size of about 580 kb while the second is around 1000 kb. These two forms segregate at meiosis and recombine with a normal chromosome VIII from a laboratory strain. Wine yeasts are thus very different from haploid laboratory strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 22 (1992), S. 9-11 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; IMP dehydrogenase ; 6-azauracil ; GTP level
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The addition of 6-azauracil to the growth medium causes a strong reduction of the GTP level in the nucleotide pool of Saccharomyces cerevisiae. In-vitro experiments show a strong inhibition of IMP dehydrogenase activity by 6-azaUMP explaining the preceeding effect. PPR2 mutants, previously characterized by an increased sensitivity to 6-azauracil compared to the wildtype, are specifically susceptible to the lowering of the GTP pool, and are able to grow in presence of 6-azauracil when guanine is added to the medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 181-183 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; c-myc epitope ; Fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to facilitate the process of epitope-tagging of yeast proteins, we have constructed two Saccharomyces cerevisiae-Escherichia coli shuttle vectors that allow fusion of a sequence encoding an epitope of the human c-myc protein at the 3′ end of any gene. An example of the use of this technique is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 295-304 
    ISSN: 1432-0983
    Keywords: Meiosis ; Meiotic recombination ; Saccharomyces cerevisiae ; REC114
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four new meiotic recombination genes were previously isolated by selecting for mutations that rescue the meiotic lethality of rad52 spo13 strains. One of these genes, REC114, is described here, and the data confirm that REC114 is a meiosis-specific recombination gene with no detectable function in mitosis. REC114 is located on chromosome XIII approximately 4,9 cM from CIN4. The nucleotide sequence reveals an open reading frame of 1262 bp, consensus intron splice sites close to the 3′ end, and indicates that the second exon codes for only seven amino acids. In the promoter region, a URS1 consensus sequence (TGGGCGGCTA), identical to the URS1 found in the promoter of SPO16, is present 93 bp upstream of the translation start site. Northern-blot hybridization demonstrates that REC114 is transcribed only during meiosis and that it is not expressed in the absence of the IME1 gene product, even when IME2 is constitutively expressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...