Skip to main content
Log in

Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Fructose-1,6-bisphosphatase is a key enzyme in gluconeogenesis and the FBP1 gene is not transcribed during growth with glucose. Genetic analysis indicated a positive regulation of FBP1 expression after exhaustion of glucose. By linker-deletion analysis, two upstream activation sites (UAS1 and UAS2) were localized and the respective UAS-binding factors (DAP I and DAP II for derepression activating protein) were identified by gel retardation. UAS1 and UAS2 span about 30 bp each, and are separated by approximately 30 bp. Both UAS sites act synergistically. Although UAS1 showed some similarities to the DNA-binding consensus for the general yeast activator Rap1, competition experiments and DEAE-chromatography proved that DAP I and Rap1 correspond to different proteins. Gel retardation by DAP I depended on carbon sources and did not occur in cells growing logarithmically with glucose, whereas a strong retardation signal was obtained with ethanol-grown cells. The present results suggest that DAP I and DAP II are the final regulatory elements for glucose derepression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcangiolo B, Lescure B (1985) EMBO J 4:2627–2633

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds.) (1987–1989) Current protocols in molecular biology. John Wiley and Sons, New York

    Google Scholar 

  • Bailey RB, Woodward A (1984) Mol Gen Genet 193:507–512

    Google Scholar 

  • Barnett JA, Kornberg HL (1960) J Gen Microbiol 23:65–82

    Google Scholar 

  • Bartrons R, van Schaftingen E, Vissers S, Hers HG (1982) FEBS Lett 143:137–140

    Google Scholar 

  • Bradford M (1976) Anal Biochem 72:248–254

    Google Scholar 

  • Buchmann AR, Kimmerly WJ, Rine J, Kornberg RD (1988a) Mol Cell Biol 8:210–225

    Google Scholar 

  • Buchmann AR, Lue NF, Kornberg RD (1988b) Mol Cell Biol 8:5086–5099

    Google Scholar 

  • Burlini N, Morandi S, Pellegrini R, Tortora P, Guerritore A (1987) Biophys Acta 1014:153–161

    Google Scholar 

  • Carlson M (1987) J Bacteriol 169:4873–4877

    Google Scholar 

  • Carlson M, Osmond BC, Botstein D (1981) Genetics 98:25–40

    Google Scholar 

  • Carlson M, Osmond BC, Neigeborn L, Botstein D (1984) Genetics 107:19–32

    Google Scholar 

  • Celenza JL, Carlson M (1986) Science 233:1175–1180

    Google Scholar 

  • Celenza JL, Eng FJ, Carlson M (1989) Mol Cell Biol 9:5045–5054

    Google Scholar 

  • Ciriacy M (1975) Mutat Res 29:315–326

    Google Scholar 

  • Ciriacy M (1977) Mol Gen Genet 154:213–220

    Google Scholar 

  • Entian K-D (1980) Mol Gen Genet 178:633–637

    Google Scholar 

  • Entian K-D (1986) Microbiol Sci 3:366–371

    Google Scholar 

  • Entian K-D, Mecke D (1982) J Biol Chem 257:870–874

    Google Scholar 

  • Entian K-D, Zimmermann FK (1980) Mol Gen Genet 177:345–350

    Google Scholar 

  • Entian K-D, Zimmermann FK (1982) J Bacteriol 151:1123–1128

    Google Scholar 

  • Entian K-D, Zimmermann FK, Scheel I (1977) Mol Gen Genet 156:99–105

    Google Scholar 

  • Entian K-D, Vogel RF, Rose M, Hofmann L, Mecke D (1988) FEBS Lett 236:195–200

    Google Scholar 

  • Ephrussi B, Slominski PP, Yoshio Y, Tavlitzki J (1956) Compt Rend Lab Carlsberg Sér Physiol 26:87–102

    Google Scholar 

  • Fernandez E, Moreno F, Rodicio R (1992) Eur J Biochem 204:983–990

    Google Scholar 

  • Fields S, Song O (1989) Nature 340:245–246

    Google Scholar 

  • Fujita A, Matsumoto S, Kuhara S, Misumi Y, Kobayashi H (1990) Gene 89:93–99

    Google Scholar 

  • Gancedo C (1971) J Bacteriol 107:401–405

    Google Scholar 

  • Gancedo JM (1992) Eur J Biochem (in press)

  • Gancedo JM, Gancedo C (1986) FEMS Microbiol Rev 32:179–187

    Google Scholar 

  • Gancedo C, Schwerzmann K (1976) Arch Microbiol 109:221–225

    Google Scholar 

  • Gancedo C, Giner A, Salas ML, Sols A (1965) Biochem Biophys Res Commun 20:15–20

    Google Scholar 

  • Gancedo C, Gancedo JM, Sols A (1967) Biochem Biophys Res Commun 26:528–531

    Google Scholar 

  • Gascón S, Neumann NP, Lampen JO (1968) J Biol Chem 243:1573–1577

    Google Scholar 

  • Guarente L (1983) Methods Enzymol 101:181–191

    Google Scholar 

  • Haarasilta S, Oura E (1975) Eur J Biochem 52:1–7

    Google Scholar 

  • Harashima S, Miller AM, Tanada K, Kusumoto K, Tanaka K, Mukai Y, Nasmyth K, Oshima Y (1989) Mol Cell Biol 9:4523–4530

    Google Scholar 

  • Ito H, Fukuda Y, Marata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Lederer B, Vissers S, van Schaftingen E, Hers H-G (1981) Biochem Biophys Res Commun 103:1281–1287

    Google Scholar 

  • Lenz AG, Holzer H (1980) FEBS Lett 109:271–274

    Google Scholar 

  • Matsumoto K, Yoshimatsu T, Oshima Y (1983) J Bacteriol 153:1405–1414

    Google Scholar 

  • Mazòn MJ, Gancedo JM, Gancedo C (1982) J Biol Chem 257:1128–1130

    Google Scholar 

  • Melcher K, Entian K-D (1992) Curr Genet 21:295–300

    Google Scholar 

  • Mercado JJ, Vincent O, Gancedo JM (1991) FEBS Lett 291:97–100

    Google Scholar 

  • Michels C, Hahnenberger AKM, Sylvestre Y (1983) J Bacteriol 153:574–578

    Google Scholar 

  • Müller D, Holzer H (1981) Biochem Biophys Res Commun 103:926–933

    Google Scholar 

  • Myers AM, Tzagaloff A, Kinney DM, Lusty CJ (1986) Gene 45:299–310

    Google Scholar 

  • Nehlin JO, Ronne H (1990) EMBO J 9:2891–2898

    Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1991) EMBO J 10:3373–3378

    Google Scholar 

  • Neigeborn L, Carlson M (1984) Genetics 108:845–858

    Google Scholar 

  • Neigeborn L, Carlson M (1987) Genetics 115:247–253

    Google Scholar 

  • Niederacher D, Entian K-D (1987) Mol Gen Genet 206:505–509

    Google Scholar 

  • Polakis ES, Bartley W (1965) Biochem J 97:284–297

    Google Scholar 

  • Rose M, Entian K-D, Hofmann L, Vogel RF, Mecke D (1988) FEBS Lett 241:55–59

    Google Scholar 

  • Rothstein RJ, Sherman F (1980) Genetics 94:871–889

    Google Scholar 

  • Sambrock J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schamhart DHJ, ten Berge AMA, van de Poll KW (1975) J Bacteriol 121:747–752

    Google Scholar 

  • Schüller H-J, Entian K-D (1988) Gene 67:247–257

    Google Scholar 

  • Schüller H-J, Entian K-D (1991) J Bacteriol 173:2045–2052

    Google Scholar 

  • Sedivy JM, Fraenkel DG (1985) J Mol Biol 186:307–319

    Google Scholar 

  • Shuster J, Yu J, Cox D, Chan RVL, Smith M, Young ET (1986) Mol Cell Biol 6:1894–1902

    Google Scholar 

  • Spiegelman S, Dunn R (1947) J Gen Physiol 31:153–173

    Google Scholar 

  • Strittmatter CF (1957) J Gen Microbiol 16:169–183

    Google Scholar 

  • Swanson WH, Clifton CB (1948) J Bacteriol 56:115–124

    Google Scholar 

  • Tautz D, Renz M (1983) Anal Biochem 132:14–19

    Google Scholar 

  • Thrash-Bingham C, Fangman WL (1989) Mol Cell Biol 9:809–816

    Google Scholar 

  • Wickner RB (1974) J Bacteriol 117:252–260

    Google Scholar 

  • Wijk R van, Ouwehand J, van den Bos T, Koningsberger VV (1969) Biochim Biophys Acta 186:178–191

    Google Scholar 

  • Witt I, Kronau R, Holzer H (1966) Biochim Biophys Acta 118:522–537

    Google Scholar 

  • Zamenhoff S (1957) Methods Enzymol 3:696–704

    Google Scholar 

  • Zhang M, Rosenblum-Vos LS, Lowry C, Boake KA, Zitomer RS (1991) Gene 97:153–161

    Google Scholar 

  • Zimmermann FK, Eaton N (1974) Mol Gen Genet 134:261–272

    Google Scholar 

  • Zimmermann FK, Scheel I (1977) Mol Gen Genet 154:75–82

    Google Scholar 

  • Zimmermann FK, Kaufmann I, Rasenberger H, Haußmann P (1977) Mol Gen Genet 151:95–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. K. Zimmermann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niederacher, D., Schüller, H.J., Grzesitza, D. et al. Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase. Curr Genet 22, 363–370 (1992). https://doi.org/10.1007/BF00352437

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352437

Key words

Navigation