ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Environment Pollution  (233)
  • 1995-1999  (233)
  • 1999  (233)
  • 101
    Publication Date: 2019-07-17
    Description: A Regional Land-Atmosphere Climate Simulation System (RELACS) project is being developed at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the IndoChina/South China Sea (SCS) region. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. The original MM5 model (without PLACE) includes the option for either a simple slab soil model or a five-layer soil model (MRF) in which the soil moisture availability evolves over time. However, the MM5 soil models do not include the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are precluded. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. In addition, the Penn State/NCAR MM5 atmospheric modeling system has been: (1) coupled to the Goddard Ice Microphysical scheme; (2) coupled to a turbulent kinetic energy (TKE) scheme; (3) modified to ensure cloud budget balance; and (4) incorporated initialization with the Goddard EOS data sets at NASA/Goddard Laboratory for Atmospheres. The improved MM5 with two nested domains (60 and 20 km horizontal resolution) was used to simulate convective activity over IndoChina and the South China Sea, during the monsoon season, from May 6 to May 20, 1986. The model results captured several dominant observed features, such as twin cyclones, a depression system over the Bay of Bengal, strong south-westerly winds over IndoChina before and during the on-set of convection over the SCS, and a vortex over the SCS. Two additional MM5 runs with different land process models, Blackadar and MRF, were performed, and their results are compared to the run with PLACE. The preliminary results indicate that the MM5 results using PLACE and Blackadar are in very good agreement, but the results using MRF do not contain the south-westerly wind over IndoChina prior to the on-set of convection over the SCS.
    Keywords: Environment Pollution
    Type: South China Sea Monsoon Experiment (SCSMEX) 1997-1998; Jun 01, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2019-07-17
    Description: Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El Nino.
    Keywords: Environment Pollution
    Type: South China Sea Monsoon Experiment (SCSMEX) 1997-1998; May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2019-07-17
    Description: In this study, the NASA GEOS and NCEP/NCAR reanalyses and GPCP rainfall data have been used to study the variability of the East Asian westerly jet stream and its impact on the Asian-Pacific climate, with a focus on interannual time scales. Results indicate that external forcings such as sea surface temperature (SST) and land surface processes also play an important role in the variability of the jet although this variability is strongly governed by internal dynamics. There is a close link between the jet and Asian-Pacific climate including the Asian winter monsoon and tropical convection. The atmospheric teleconnection pattern associated with the jet is different from the ENSO-related pattern. The influence of the jet on eastern Pacific and North American climate is also discussed.
    Keywords: Environment Pollution
    Type: Aug 17, 1999; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-07-17
    Description: In order to analyze and share results of global change climate data sets, scientists require a venue in which to exchange their results. The perfect medium for these collaborative efforts is the world wide web. Intuitive and efficient user interfaces, and background processes were developed at the Global Hydrology and Climate Center to interactively view weather satellite, radar, global temperature anomaly, and model output data using the world wide web. These tools combine scripts, Java, and C code, which allows the end user to easily interact with data, to create high resolution sector images, and sectored animation sequences. This paper examines the architecture and interfaces which were designed at the Global Hydrology and Climate Center and how they are used for collaborative research.
    Keywords: Environment Pollution
    Type: Interactive Information and Processing System; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The Annual Report of the Climate Variability Program briefly describes research activities of 40 Principal Investigators who are funded by NASA's Earth Science Enterprise Research Division. The report is focused on the year 1998. Utilization of satellite observations is a singularity of research on climate science and technology at JPL. Research at JPL has two foci: generate new knowledge and develop new technology.
    Keywords: Environment Pollution
    Type: JPL-Publ-99-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?
    Keywords: Environment Pollution
    Type: CESS Symposium; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-07-17
    Description: After the last extreme El Nino in 1982-1983, an extensive in situ observing system was deployed in the tropical Pacific Ocean in support of monitoring and predicting El Nino. Within the past ten years a series of ocean and atmosphere remote sensing satellites have been launched that serve to supplement and enhance the observations being taken at the surface, and at depth, in the equatorial Pacific Ocean. The 1997-1998 "El Nino Event of the Century" has been the best monitored El Nino on record. The 1997-1998 El Nino will be the first time a major El Nino event and subsequent La Nina will have been observed from start to finish from a combination of remotely-sensed measurements of sea surface temperature, sea surface topography, sea surface wind, ocean color, and precipitation, Among some of the lessons learned to date from the 1997-1998 event have been the need for global observation in addition to just those in the equatorial Pacific Ocean. In this presentation the evolution of the 1997-1998 El Nino will be depicted from the unique vantage point provided by these space-based observations as analyzed separately, and together as a representation of the coupled system. Comparisons and contrasts with the evolution 1982-1983 El Nino and how the in situ and space-based observations complement each other will be discussed.
    Keywords: Environment Pollution
    Type: IAI Meeting; Jul 11, 1999 - Jul 14, 1999; FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-08-17
    Description: Global systems science is a new field of study about the interactions between Earth's natural systems and human activities. The people who study global systems science draw on methods and theories of many different fields from chemistry and biology to economics and politics-in order to predict how today's actions are likely to affect the world of tomorrow - our world and our children's world.
    Keywords: Environment Pollution
    Type: NASA/EP-1999-01-390-HQ , NAS 1.19:01-390-HQ
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-07-10
    Description: A significant increase in sulfuric acid aerosol concentration was detected above 10 km pressure altitude during a cross-corridor flight out of Shannon on October 23, 1997. The source of this aerosol is ascribed to commercial aircraft operations in flight corridors above 10 km, because (1) a stable atmosphere prevented vertical air mass exchanges and thus eliminated surface sources, (2) air mass back trajectories documented the absence of remote continental sources, and (3) temperature profiler data showed the tropopause at least one kilometers above flight altitude throughout the flight. Particle volatility identified 70% H2SO4, 20% (NH4)2SO4 and 10% nonvolatile aerosol in the proximity of flight corridors, and (10-30)% H2SO4, up to 50% (NH4)2SO4, and (40-60)% nonvolatile aerosols in air that was not affected by aircraft operations below 10 km. Only a very small fraction of the nonvolatile particles (determined with a condensation nucleus counter) could be morphologically identified as soot aerosol (validated by scanning electron microscopy of wire impactor samples). The newly formed H2SO4 particles did not measurably affect surface area and volume of the background aerosol due to their small size, hence did not affect radiative transfer directly.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-08-17
    Description: Over a decade ago, funding from this NASA grant supported the development of the Cane-Zebiak ENSO prediction model which remains in use to this day. It also supported our work developing schemes for modeling the air-sea heat flux in ocean models used for studying climate variability. We introduced a succession of simple boundary layer models that allow the fluxes to be computed internally in the model and avoid the need to specify the atmospheric thermodynamic state. These models have now reached a level of generality that allows modeling of the global, rather than just tropical, ocean, including sea ice cover. The most recent versions of these boundary layer models have been widely distributed around the world and are in use by many ocean modeling groups.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-08-17
    Description: An interactive model which couples a semi-spectral dynamical model, a radiative transfer code and a two-dimensional chemistry transport model (2-D CTM), is used to assess the atmospheric effects of the High-Speed Civil Transport (HSCT) engine emissions. The residual mean meridional circulation, the zonal-mean temperature and the eddy diffusion coefficients are calculated using zonal means and three longest zonal waves of dynamical variables integrated in the semi-spectral dynamical model. They are used in the 2-D CTM to simulate the distribution of trace gases in the atmosphere. The simulated ozone is sent to the radiative transfer code to calculate the heating rates, which drive the dynamics. This radiative coupling connects the dynamical and photochemical processes and creates feedback when the atmosphere is perturbed. It is found that in most areas the ozone depletion caused by HSCT emissions calculated using the 3-wave model has the features similar to, but with significantly larger magnitude than that calculated by the AER 2-D CTM with prescribed transport parameters and temperature. The difference is mostly due to the differences in the circulation in the two models. The radiative feedback effects are investigated by comparing the ozone depletion calculated with the baseline dynamics and with the dynamics perturbed by the HSCT emissions. The feedback through changes in the residual mean meridional circulation and the eddy diffusion coefficients has moderate effects on the simulated ozone depletion. It reduced the ozone depletion by 20-30% in northern mid and high-latitudes. However, the feedback through changes in the zonal- mean temperature is negligible.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-08-17
    Description: Extensive airborne measurements of the reactive nitrogen reservoir (NOY) and its component nitric oxide (NO) have been made in the lower stratosphere. Box model. simulations that are constrained by observations of radical and longlived species and which include heterogeneous chemistry systematically underpredict the NO(x) (= NO + NO2) to NOY ratio. The model agreement is substantially improved if newly measured rate coefficients for the OH + NO2 and OH + HNO3 reactions are used. When included in 2-D models, the new rate coefficients significantly increase the calculated ozone loss due to NO(x) and modestly change the calculated ozone abundances in the lower stratosphere. Ozone changes associated with the emissions of a fleet of supersonic aircraft are also altered. phase chemistry linking NO(x) and nitric acid (HNO3), which is generally the most abundant NOY species. Because the continuous daylight present at summer high latitudes limits the heterogeneous production of HNO3 by N2O5 hydrolysis, gas-phase reactions primarily control the balance between NO(x) and NO(y). Outside summer polar regions, the N2O5 hydrolysis reaction occurring on stratospheric sulfate aerosols is a more important sink of NO(x), particularly in the lower stratosphere during winter when heterogeneous pathways account for most of the HNO3 production.
    Keywords: Environment Pollution
    Type: Paper-1999GL900162 , Geophysical Research Letters (ISSN 0094-8276); 26; 8; 1153-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-08-17
    Description: We investigate the origins and the transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that occurred on November 24, 1996. Ions observed at Geotail were traced backward in time in time-dependent magnetic and electric fields to determine their origins and the acceleration mechanisms responsible for their energization. Results from this investigation indicate that, during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and had already entered the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase a higher proportion of the ions reaching Geotail had their origin in the plasma mantle. Indeed, during the expansion phase more than 90% of the ions seen by Geotail were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the ions' energy gain was achieved by non-adiabatic acceleration while crossing the equatorial current sheet just prior to their detection by Geotail. In general, the plasma mantle from both southern and northern hemispheres supplied non-adiabatic ions to Geotail, whereas the LLBL supplied mostly adiabatic ions to the distributions measured by the spacecraft. Distribution functions computed at the ion sources indicate that ionospheric ions reaching Geotail during the expansion phase were significantly heated. Plasma mantle source distributions indicated the presence of a high-latitude reconnection region that allowed ion entry into the magnetosphere when the IMF was northward. These ions reached Geotail during the expansion phase. Ions from the traditional plasma mantle had access to the spacecraft throughout the substorm.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-08-15
    Description: Observations inside the November 1994 Antarctic stratospheric vortex and inside the April 1993 remnant Arctic stratospheric vortex by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer are reported. In both instances, elevated volume mixing ratios (VMRS) of carbon monoxide (CO) were measured. A peak Antarctic CO VMR of 60 ppbv (where 1 ppbv = 10(exp -9) per unit Volume) was measured at a potential temperature of 710 K (about 27 km), about 1 km below the altitude of a pocket of elevated NO(y) (total reactive nitrogen) at a deep minimum in N2O (〈5 ppbv). The Arctic observations also show a region of elevated vortex CO with a peak VMR of 90 ppbv it 630-670 K (-25 km) but no corresponding enhancement in NO(sub y) perhaps because of stronger dynamical activity in the northern hemisphere polar winter and/or interannual variability in the production of mesospheric or lower thermospheric NO. By comparing vortex and extravortex observations of NO(y) obtained at the same N2O VMR, Arctic vortex denitrification of 5 +/- 2 ppbv at 470 K (at approximately 18 km) is inferred. We show that our conclusion of substantial Arctic winter 1992-1993 denitrification is robust by comparing our extravortex observations with previous polar measurements obtained over a wide range of winter conditions. Correlations of NO(y) with N2O measured at the same potential temperature by ATMOS in the Arctic vortex and at midlatitudes on board the ER-2 aircraft several weeks later lie along the same mixing line. The result demonstrates the consistency of the two data sets and confirms that the ER-2 sampled fragments of the denitrified Arctic vortex following its breakup. An analysis of the ATMOS Arctic measurements of total hydrogen shows no evidence for significant dehydration inside the vortex.
    Keywords: Environment Pollution
    Type: Paper-1998JD100034 , Journal of Geophysical Research (ISSN 0148-0227); 104; D1; 1847-1861
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-07-10
    Description: The Intergovernmental Panel on Climate Change (IPCC) has reported that in the southeastern US and eastern China, the general greenhouse warming due to anthropogenic gaseous emissions is dominated by the cooling effect of anthropogenic aerosols. To verify this model prediction in eastern China and southeastern US, we analyzed regional patterns of climate changes at 72 stations in eastern China during 1951- 94 (44 years), and at 52 stations in the southeastern US during 1949-94 (46 years) to detect the fingerprint of aerosol radiative forcing. It was found that the mean rates of change of annual mean daily, maximum, minimum temperatures and diurnal temperature range (DTR) in eastern China were 0.8, -0.2, 1.8, and -2.0 C/100 years respectively, while the mean rates of change of annual mean daily, maximum, minimum temperatures and DTR in the southeastern US were -0.2, -0.6, 0.2, and -0.8 C/100 years, respectively. This indicates that the high rate of increase in annual mean minimum temperature in eastern China results in a slightly warming trend of daily temperature, while the high rate of decrease in annual mean maximum temperature and low rate of increase in annual mean minimum temperature lead to the cooling trend of daily temperature in the southeastern US. We found that the warming from the longwave forcing due to both greenhouse gases and aerosols was completely counteracted by the shortwave aerosol forcing in the southeastern US in the past 46 years. A slightly overall warming trend in eastern China is evident; winters have become milder. This finding is explained by hypothesizing that increasing energy usage during the past 44 years has resulted in more coal and biomass burning, thus increasing the emission of absorbing soot and organic aerosols in eastern China. Such emissions, in addition to well-known Asia dust and greenhouse gases, may be responsible for the winter warming trend in eastern China that we have reported here. The sensitivity of aerosol radiative properties to aerosol composition, size distribution, relative humidity (RH) is examined for the following aerosol systems: inorganic and organic ions (Cl-, Br-, NO3 -, SO4 2-, Na+, NH4 +, K+, Ca2+, Mg2+, HCOO-, CH3COO-, CH3CH2COO-, CH3COCOO-, OOCCOO2-, MSA-1); water-insoluble inorganic and organic compounds (elemental carbon, n-alkanes, SiO2, Al2O3, Fe2O3 and other organic compounds). The partial molar refraction method was used to calculate the real part of the refractive index. It was found that the asymmetry factor increased by approximately 48% with the real part varying from 1.40 to 1.65, and the single scattering albedo decreased by 24% with the imaginary part varying from -0.005 to -0.1. The asymmetry factor increased by 5.4 times with the geometric standard deviation varying from 1.2 to 3.0. The radiation transmission is very sensitive to the change in size distribution; other factors are not as significant. To determine the aerosol direct radiative forcing (ADRF), the aerosol optical depth (AOD) values at the three operational wavelengths (415, 500 and 673 nm) were determined at a regionally representative site, namely, Mt. Gibbs (35.78 deg N, 82.29 deg W, elevation 2006 m) in Mt. Mitchell State Park, NC, and a site located in an adjacent valley (Black Mountain, 35.66 deg N, 82.38 deg W, elevation 951 m) in the southeastern US. The two sites are separated horizontally by 10 km and vertically by 1 km. It was found that the representative total AOD values at 500 nm at the valley site for highly polluted (HP), marine (M) and continental (C) air masses were 0.68 +/- 0.33, 0.29 +/- 0.19 and 0.10 +/- 0.04, respectively. A search-graph method was used to retrieve the columnar size distribution (number concentration N, effective radius reff and geometric standard deviation=?g) from the optical depth observations at three operational wavelengths. The ground albedo, single scattering albedo and imaginary part of the refractive index were calculated using a mathematically unique procedure involving a Mie code and a radiative transfer code in conjunction with the retrieved aerosol size distribution, AOD, and diffuse-direct irradiance ratio. It was found that N, r(eff) and sigma(g) were in the ranges of 10 to 1.7 x 10(exp 4)/cubic cm, 0.09 to 0.68 micrometers and 1.12 to 2.95, respectively. The asymmetry factor and single scattering albedo were in the ranges of 0.63 to 0.75 and 0.74 to 0.97 respectively. The ground albedo for the forested terrain and imaginary part of refractive index were found to be in the ranges of 0.06 to 0.29 and 0.005 to 0.051 respectively. On the basis of these aerosol radiative properties obtained at the research sites and computations using the Column Radiation Model (CRM) of National Center of Atmospheric Research (NCAR) Community Climate Model (CCM3), it was found that the average cloud-free 24-hour ADRF values were -13 +/- 8, -8 +/- 3, -33 +/- 16 W/square m for marine, continental, and polluted air masses, respectively. On the assumption that the fractional coverage of clouds is 0.61, it was estimated that the annual mean ADRF was 7 +/- 2 W/square m in the southeastern US. The review with respect to the current knowledge of organic acids shows that aerosol formate and acetate concentrations range from 0.02 to 5.3 nmol/cubic m and from 0.03 to 12.4 nmol/cubic m respectively, and that between 34% to 77% of formate and between 21% to 66% of acetate are present in the fine fraction of aerosols. It was found that although most (98-99%) of these volatile organic acids were present in the gas phase, their concentrations in the aerosol particles were sufficient to make them a good candidate for cloud condensation nuclei (CCN). It is hypothesized that organic acids are at least one of the primary sources of CCN in the atmosphere due to their ubiquitous presence in the troposphere, especially over the continental forested areas. The results of our measurements at Palmer Station, Antarctica show that the daily average CCN concentrations at 0.3% and 1% supersaturations ranged from 0.3 to 160/cubic cm and from 4 to 168/cubic cm, respectively, during the period from 17 January to 26 February, 1994. New evidence for substantial and definitive CCN enhancement near and within cloud has been observed at Mt. Mitchell, North Carolina. The results show that the average monthly CCN concentrations were 460 +/- 217, 386 +/- 286, 429 +/- 228 and 238 +/- 134/cubic cm for in-cloud, overcast, clear and rainy conditions, respectively. The typical CCN spectra show that there were a lot of small CCN produced and the ion concentrations (especially H+ and SO4 2-) were very high during the CCN enhancement period. The significantly positive correlation between black carbon (BC) and CCN at 1% supersaturation indicates that a percentage of the BC measured at the site may be in the form of an internal mixture and participated in the formation of CCN.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2019-07-13
    Description: The first Clouds and the Earth's Radiant Energy System (CERES) instrument has been returning useful data on Earth's radiation budget from the Tropical Rainfall Measuring Mission (TRMM) spacecraft since late 1997. Validation of the initial data is now intensively underway. As one component of this validation, the CERES Students Cloud Observations On-Line (S'COOL) project has been operational since April 1998 - the 2nd CERES validation month. S'COOL involves school children in over 140 schools in 15 countries on 5 continents in making and reporting observations and measurements which they and CERES scientists can then compare to the satellite retrievals. The project is planned to continue through the life of the CERES Project (nominally 15 years), and new participants are invited to join on a continuous basis. This paper will report on the first year of the operational phase of the project, during which a number of exciting events occurred (a demonstration of the project to First Lady Hillary Rodham Clinton, and visits by CERES personnel to participating schools, among others). It will further report on some of the noteworthy observations and comparisons which have been made possible by this project. We have found that schools are often located in interesting places, in terms of the clouds found there and the satellite's ability to observe these clouds. The paper will also report on the learning opportunities delivered by this project, and on new questions about the planet and its climate which arise in the students minds as a result of their active participation.
    Keywords: Environment Pollution
    Type: Eighth Education Symposium of the 79th Annual Meeting of the American Meteorological Society; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States|Proceedings of the Eighth Education Symposium of the 79th Annual Meeting of the American Meteorological Society; 176-179
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-07-13
    Description: The MIT group participated in seven publications in the 1999 issues of JGR with sections devoted in PEM-Tropics A, and had two papers which may be considered offshoots of these studies combined with commercial aircraft trace constituents data, one in Nature and one in EOS. In the meteorological overview we contributed a set of 1000 hPa divergent wind maps which we calculated from ECMWF data, meridional wind cross-sections, velocity potential and divergent wind maps, maps of stream function and rotational wind components, and vertical velocity profiles computed from mass balance, these all constituting part of the overall climatology. We also contributed material for the "stalactite" case observed from the DC-8 on September 3, 1996. This included a map of potential vorticity on 350 K, a cross-section of lidaro O3 a cross-section of potential vorticity along 140 deg W, and a map of specific humidity showing extreme dryness accompanying the high potential vorticity values and the high ozone values, all suggesting subsidence from the local stratosphere. In the paper on chemical characteristics we contributed 12 hour values of the 1000 hPa divergent wind component for the full period of PEM Tropics A; these were used by David Westberg to establish the air mass boundaries and in turn used by Gerry Gregory to set up a table of quantitative values of trace constituents and their ratios both sides of the boundaries.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-07-13
    Description: Results from a numerical model of the global emissions, transport, chemistry, and deposition of mercury (Hg) in the atmosphere are presented. Hg (in the form of Hg(O) and Hg(II)) is emitted into the atmosphere from natural and anthropogenic sources (estimated to be 4000 and 2100 Mg/ yr, respectively). It is distributed between gaseous, aqueous and particulate phases. Removal of Hg from the atmosphere occurs via dry deposition and wet deposition, which are calculated by the model to be 3300 and 2800 Mg/ yr, respectively. Deposition on land surfaces accounts for 47% of total global deposition. The simulated Hg ambient surface concentrations and deposition fluxes to the Earth's surface are consistent with available observations. Observed spatial and seasonal trends are reproduced by the model, although larger spatial variations are observed in Hg(O) surface concentrations than are predicted by the model. The calculated atmospheric residence time of Hg is -1.7 years. Chemical transformations between Hg(O) and HG(II) have a strong influence on Hg deposition patterns because HG(II) is removed faster than Hg(O). Oxidation of Hg(O) to HG(II) occurs primarily in the gas phase, whereas HG(II) reduction to Hg(O) occurs solely in the aqueous phase. Our model results indicated that in the absence of the aqueous reactions the atmospheric residence time of Hg is reduced to 1.2 from 1.7 years and the Hg surface concentration is -25% lower because of the absence of the HG(II) reduction pathway. This result suggests that aqueous chemistry is an essential component of the atmospheric cycling of Hg.
    Keywords: Environment Pollution
    Type: Paper-1999JD900354 , Journal of Geophysical Research (ISSN 0148-0227); 104; D19; 23,747-23,760
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-07-13
    Description: We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include N2O, HNO3, and ClONO2 from the cryogenic limb array etalon spectrometer (CLAES), version 7 (v.7), and temperature, methane, ozone, H2O, HCl, NO and NO2 from the halogen occultation experiment (HALOE), version 18. The analysis is carried out for the UARS data obtained between January 1992 and September 1994 in the 100- to 1-mbar (approx. 17-47 km) altitude range and over 10 deg latitude bins from 70 deg S to 70 deg N. The spatiotemporal evolution of aerosol surface area density (SAD) is adopted from analysis of the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD, and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOY) is obtained by three different methods: (1) as a sum of the UARS-measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NOY correlation; and (3) from the CH4-NOY correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated monthly averaged NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared with the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years, such as recovery of NO(x) after the eruption, their seasonal variability and vertical profiles. However, the model underestimates the NO2 content, particularly in the 30- to 7-mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground-based measurements at 45 deg S and 45 deg N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at midlatitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 deg S, suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.
    Keywords: Environment Pollution
    Type: Paper-1999JD900024 , Journal of Geophysical Research (ISSN 0148-0227); 104; D7; 8247-8262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-07-13
    Description: The Earth's modem climate change has been characterized by interlinked changes in temperature, CO2, ice sheets and sea level. Global sea level change is a critical indicator for study of contemporary climate change. Sea level rise appears to have accelerated since the ice sheet retreats have stopped some 5000 years ago and it is estimated that the sea level rise has been approx. 15 cm over the last century. Contemporary radar altimeters represent the only technique capable of monitoring global sea level change with accuracy approaching 1 mm/yr and with a temporal scale of days and a spatial scale of 100 km or longer. This report highlights the major accomplishments of the TOPEX/POSEIDON (T/P) Extended Mission and Jason-1 science investigation. The primary objectives of the investigation include the calibration and improvement of T/P and Jason-1 altimeter data for global sea level change and coastal tide and circulation studies. The scientific objectives of the investigation include: (1) the calibration and improvement of T/P and Jason-1 data as a reference measurement system for the accurate cross-linking with other altimeter systems (Seasat, Geosat, ERS-1, ERS-2, GFO-1, and Envisat), (2) the improved determination and the associated uncertainties of the long-term (15-year) global mean sea level change using multiple altimeters, (3) the characterization of the sea level change by analyses of independent data, including tide gauges, sea surface temperature, and (4) the improvement coastal radar altimetry for studies including coastal ocean tide modeling and coastal circulation. Major accomplishments of the investigation include the development of techniques for low-cost radar altimeter absolute calibration (including the associated GPS-buoy technology), coastal ocean tide modeling, and the linking of multiple altimeter systems and the resulting determination of the 15-year (1985-1999) global mean sea level variations. The current rate of 15-year sea level rise observed by multiple satellite altimetry is +2.3 +/- 1.2 mm/yr, which is in general agreement with the analysis of sparsely distributed tide gauge measurements for the same data span, and represents the first such determination of sea level change in its kind.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The Principal Investigator participated in two field experiments and developed a global data set on cirrus cloud frequency and optical depth to aid the development of numerical models of climate. Four papers were published under this grant. The accomplishments are summarized: (1) In SUCCESS (SUbsonic aircraft: Contrail & Cloud Effects Special Study) the Principal Investigator aided weather forecasters in the start of the field program. A paper also was published on the clouds studied in SUCCESS and the use of the satellite stereographic technique to distinguish cloud forms and heights of clouds. (2) In SHEBA (Surface Heat Budget in the Arctic) FIRE/ACE (Arctic Cloud Experiment) the Principal Investigator provided daily weather and cloud forecasts for four research aircraft crews, NASA's ER-2, UCAR's C-130, University of Washington's Convert 580, and the Canadian Atmospheric Environment Service's Convert 580. Approximately 105 forecasts were written. The Principal Investigator also made daily weather summaries with calculations of air trajectories for 54 flight days in the experiment. The trajectories show where the air sampled during the flights came from and will be used in future publications to discuss the origin and history of the air and clouds sampled by the aircraft. A paper discussing how well the FIRE/ACE data represent normal climatic conditions in the arctic is being prepared. (3) The Principal Investigator's web page became the source of information for weather forecasting by the scientists on the SHEBA ship. (4) Global Cirrus frequency and optical depth is a continuing analysis of global cloud cover and frequency distribution are being made from the NOAA polar orbiting weather satellites. This analysis is sensitive to cirrus clouds because of the radiative channels used. During this grant three papers were published which describe cloud frequencies, their optical properties and compare the Wisconsin FM Cloud Analysis to other global cloud data such as the International Satellite Cloud Climatology Program (ISCCP) and the Stratospheric Aerosol and Gas Experiment (SAGE). A summary of eight years of HIRS data will be published in late 1998. Important information from this study are: 1) cirrus clouds cover most of the earth, 2) they are found about 40% of the time globally, 3) in the tropics cirrus cloud frequencies are even higher, from 80-100%, 4) there is slight evidence that cirnis cloud cover is increasing in the northern hemisphere at about 0.5% per year, and 5) cirrus clouds have an average infrared transmittance of about 40% of the terrestrial radiation. (5) Global Cloud Frequency Statistics published on the Principal Investigator's web page have been used in the planning of the future CRYSTAL experiment and have been used for refinements of a global numerical model operated at the Colorado State University.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-07-13
    Description: This Joint Research Interchange was originally Proposed concurrent with the launch in the fall of 1996 of a revolutionary new satellite sensor which offered great promise to significantly advance atmospheric, oceanographic and land surface studies, i.e., ADEOS POLDER (Advanced Earth Observation Satellite / POLarization and Directionality of the Earth's Reflectance). Unfortunately, the ADEOS mission ended on June 30, 1997 due to a loss of power. As a consequence, this NASA-UVM collaboration was redirected to focus on analyses of airborne-POLDER data acquired in support of the joint U.S.-Canada Boreal Ecosystem Atmosphere Study (BOREAS) in the summer of 1994. We present here a brief summary of results of that effort; details are provided in the manuscripts referenced below.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-07-13
    Description: Using observations from balloon-borne instruments and aircraft-borne instruments the investigation arrived at the following developments.: (1) Determination of the dominant catalytic cycles that destroy ozone in the lower stratosphere; (2) The partial derivatives of the rate limiting steps are observables in the lower stratosphere; (3) Recognition that the "Low NOx" condition is the regime that holds the greatest potential for misjudgement of Ozone loss rates; (4) Mapping of the Bromine radical contribution to the ozone destruction rate in the lower stratosphere; (5) Observation of OH, HO2 and ClO in the plume of the Concorde SST in the stratosphere; (6) Determination of the diurnal behavior of OH in the lower stratosphere; (7) Observed OH and H02 in the Troposphere and the interrelationship between Ozone and OH, HO2, CO and NO; (8) Analysis of the Catalytic Production of Ozone and Reactions that Couple OH and H02 in the Troposphere; (9) The continuing development of the understanding of the Tropopause temperatures, water vapor mixing ratios, and vertical advection and the mixing in of mid-latitude air; (10) Performed Multiple Tracer Analyses as a diagnostic of water vapor intrusion into the "Middle World" (i.e., the lowermost stratsophere); (11) Flight testing of a new instrument for the In Situ detection of ClON02 from the ER-2; (12) Laser induced fluorescence detection of NO2. There is included an in depth discussion of each of these developments and observations.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-07-13
    Description: The archived ozone profiles from the Halogen Occultation Experiment (HALOE) have already been corrected for the effects of the spectrally varying, interfering absorption due to aerosols composed of aqueous sulfuric acid, and agreement with correlative measurements in the stratosphere is generally excellent. However, comparisons of sets of coincident HALOE and ozonesonde profiles indicate occasional large differences at the lowest levels of the stratosphere. Most of those instances occur at altitudes just below a well-defined minimum in the 5.26 microns channel aerosol extinction profile, whose wavelength dependence is not represented by a sulfuric acid aerosol model. Further, when the aerosol extinction exceeds about 10(exp 3)/ km, the aerosol correction to the ozone channel transmittances is both large and uncertain. After screening out the HALOE ozone profile segments whose corresponding aerosol/cirrus corrections are likely uncertain and after averaging lie ozonesonde profiles into 2.5 km thick layers, we find that the HALOE ozone areas, on average, to within 10% of their coincident ozonesonde measurements down to 100 hPa at tropical/subtropical latitudes and to 200 hPa at extratropical latitudes. A tightening of the coincidence criteria for the comparisons does not improve the mean differences for the sets nearly as much. Part of the variance of the paired differences was also accounted for when the ozonesonde profile values were integrated into those 2.5 km layers, prior to taking differences. This improvement is due mainly to the vertical averaging of the local, higher-resolution ozonesonde data, matching the lower resolution for HALOE ozone in the lower stratosphere. It is concluded that HALOE is providing accurate ozone profiles throughout the lower stratosphere, when its correction for interfering aerosols has been well characterized and when cirrus layers are not indicated.
    Keywords: Environment Pollution
    Type: Paper-1999JD900055 , Journal of Geophysical Research (ISSN 0148-0227); 104; D8; 9261-9275
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-07-13
    Description: The objective of the research supported by this grant was the development of a new instrument to both further the technology of small, lightweight instruments for robotic aircraft and to achieve the ability to detect ClONO2, NO2, ClO and BrO from the NASA ER-2 aircraft. All of these objectives were accomplished.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-07-13
    Description: A survey of the photography taken by cosmonauts and astronauts from the Mir station during the NASA-Mir mission was undertaken in order to understand the global spatial patterns of biomass burning events and their associated smoke palls. These NASA-Mir photographs provided spatial and temporal profiles of these dynamic and vital environmental phenomena. The information extracted from the photographic data has the potential to be integrated into the current atmospheric and environmental models to refine their predictive capabilities. In this photo-essay, we provide the results of survey of the NASA-Mir documentation of biomass burning and smoke palls.
    Keywords: Environment Pollution
    Type: National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1998; 1; 8-1 - 8-15; NASA/CR-1999-208923/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-07-13
    Description: ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.
    Keywords: Environment Pollution
    Type: Optical System Contamination; Jul 18, 1999 - Jul 23, 1999; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-07-13
    Description: This report describes the work done with funding from NASA Grant during the past three years. Funding commenced in June, 1996 and had a planned duration of three years. This report covers the time period June 1996 to June 1999. Here we present a short description of the projects carried out and documentation of the work done in terms of publications, papers presented, and conferences attended: microphysical modeling consist of two related tasks (1) development of a simple microphysical model for modeling the Pinatubo plume and (2) carrying out a study of sulfate particle formation in volcanic plume.Also analysis of sun photometer measurements are presented.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-13
    Description: Structure and kinematics of carbon monoxide in the upper stratosphere and lower mesosphere (10-0.03 hPa) are studied for the early northern winter 1991/92 using the Upper Atmosphere Research Satellite Improved Stratospheric and Mesospheric Sounder (ISAMS) measurements. The study is aided by data from a 6-week parameterized-chemistry run of the Goddard Space Flight Center 3D Chemistry and Transport Model (CTM), initialized on 8 December 1991. Generally, CO mixing ratios increase with height due to the increasing source contribution from CO, photolysis. In the tropical upper stratosphere. however, a local maximum in CO mixing ratio occurs. A simple photochemical model is used to show that this feature results largely from methane oxidation. In the extratropics the photochemical lifetime of CO is long, and therefore its evolution is dictated by large-scale motion of air. evidenced by strong correlation with Ertel potential vorticity. This makes CO one of the few useful observable tracers at the stratopause level and above. Thus CO maps are used to study the synoptic evolution of the polar vortex in early January 1992. Modified Lagrangian mean mixing diagnostics are applied to ISAMS and CTM data to examine the strength of the mixing barrier at the polar vortex edge. It is demonstrated that planetary wave activity weakens the barrier. promoting vortex erosion. The vortex erosion first appears in the lower mesosphere and subsequently descends through the upper stratosphere. and is attributed to effects of planetary wave dissipation. Agreement between ISAMS and CTM is good in the horizontal distribution of CO throughout the examined period, but vertical CO gradients in the CTM weaken with time relative to the ISAMS observations.
    Keywords: Environment Pollution
    Type: Journal of the Atmospheric Sciences; 56; 563-583
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-07-13
    Description: This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.
    Keywords: Environment Pollution
    Type: Leo Missions; Mar 09, 1999 - Mar 11, 1999; Potsdam; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-07-13
    Description: A primary goal of the NASA Tropospheric Chemistry Program (TCP) is to "contribute substantially to scientific understanding of human impacts on the global troposphere". In order to analyze global or regional trends and factors of the troposphere chemistry, for example, its oxidation capacity or composition, a continuous global/regional data coverage as well as model simulations are needed. The Global Tropospheric Experiment (GTE), a major component of the TCP, provides data vital to these questions via aircraft measurement of key trace chemical species in various remote regions of the world. Another component in NASA's effort are satellite projects for exploration of tropospheric chemistry and dynamics. A unique data product is the Tropospheric Ozone Residual (TOR) utilizing global tropospheric ozone data. Another key research tool are simulation studies of atmospheric chemistry and dynamics for the theoretical understanding of the atmosphere, the extrapolation of observed trends, and for sensitivity studies assessing a changing anthropogenic impact to air chemistry and climate. In the context with model simulations, field data derived from satellites or (airborne) field missions are needed for two purposes: 1. To initialize and validate model simulations, and 2., to interpret field data by comparison to model simulation results in order to analyze global or regional trends and deviations from standard tropospheric chemistry and transport conditions as defined by the simulations. Currently, there is neither a sufficient global data coverage available nor are existing well established global circulation models. The NASA LARC CTM model is currently not yet in a state to accomplish a sufficient tropospheric chemistry simulation, so that the current research under this cooperative agreement focuses on utilizing field data products for direct interpretation. They will be also available for model testing and a later interpretation with a finally utilized model.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-07-13
    Description: Aerosol and cloud impacts on the earth's climate become a recent hot topic in climate studies. Having near future earth observing satellites, EOS-AM1 (Earth Observing System-AM1), ENVISAT (Environmental Satellites) and ADEOS-2 (Advanced Earth Observation Satellite-2), it will be a good timing to discuss how to obtain and use the microphysical parameters of aerosols and clouds for studying their climate impacts. Center for Climate System Research (CCSR) of the University of Tokyo invites you to 'Symposium on synergy between satellite-remote sensing and climate modeling in aerosol and cloud issues.' Here, we like to discuss the current and future issues in the remote sensing of aerosol and cloud microphysical parameters and their climate modeling studies. This workshop is also one of workshop series on aerosol remote sensing held in 1996, Washington D. C., and Meribel, France in 1999. It should be reminded that NASDA/ADEOS-1 & -2 (National Space Development Agency of Japan/Advanced Earth Observation Satellite-1 & -2) Workshop will be held in the following week (Dec. 6-10, 1999), so that this opportunity will be a perfect period for you to attend two meetings for satellite remote sensing in Japan. A weekend in Kyoto, the old capital of Japan, will add a nice memory to your visiting Japan. *Issues in the symposium: 1) most recent topics in aerosol and cloud remot sensing, and 2) utility of satellite products on climate modeling of cloud-aerosol effects.
    Keywords: Environment Pollution
    Type: Aerosol-Cloud; Dec 01, 1999 - Dec 03, 1999; Kyoto; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Increased droughts are to be expected in a warmer world, and so are increased floods. A warmer atmosphere can hold more moisture, and evaporate more water from the surface. Thus, when it is not raining, available soil water should be reduced. When it is raining, it could very well rain harder. Most researchers agree then that a warmer world will have greater hydrologic extremes. In addition, there is a basic imbalance that develops as climate warms, between the loss of moisture from the soil by evaporation and replenishment via precipitation. The land has a smaller heat capacity than the ocean, so it should warm faster. Evaporation from the land proceeds at the rate of its warming, while precipitation derives primarily from evaporation at the ocean surface. As the latter is increasing more slowly, in a warmer world, precipitation will not increase as rapidly as evaporation due to the fact that the oceans warm more slowly than the land surface (evaporation over the ocean is slower than over the land). Hence, more droughts are anticipated in a warmer world, but the specific location of such droughts is somewhat uncertain. To address the question of where droughts are likely to occur, one first needs to have a reasonable sense of what the future magnitude of warming will be, and what the latitudinal distribution of warming will be. For example, the greater the warming at high latitudes relative to low latitudes, the more likely there will be increased drought over the U.S. in summer. In contrast, substantial tropical warming could give us El Nino-like precipitation, with intensified flooding along the southern tier of the U.S. All of these conditions are likely to intensify as the global temperature rises.
    Keywords: Environment Pollution
    Type: Jan 25, 1999; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-13
    Description: Land surface processes are known to have a profound impact on the overlying atmosphere over a wide range of spatial and temporal scales. Many atmospheric numerical models include special parameterizations to improve the specification and partitioning of surface fluxes which are critical to the accurate prediction of warm season boundary layer behavior, organized mesoscale circulations, and convective precipitation. However, the added degrees of freedom resulting from the inclusion of vegetation and soil schemes require the specification of additional surface parameters such as vegetative resistances, green vegetation fraction, leaf area index, soil physical and hydraulic characteristics, and the vertical distribution of soil moisture. As satellite data have become more readily available in recent years, many investigations have attempted to use these new measurements to infer missing components of the surface energy budget. Sensitivity studies have shown land-skin temperature (LST) tendencies during the mid-morning hours are strongly sensitive to the surface moisture availability (a function of soil wetness and vegetation) and less sensitive to other parameters such as surface roughness. Based upon results from these and other studies, developed a simple technique that dynamically assimilates Geostationary Operational Environmental Satellite (GOES) derived land-surface products into the surface energy budget of a mesoscale model. The purpose of this paper is to demonstrate that assimilating the GOES satellite data has the potential to improve the representation of land surface characteristics within the model without prior knowledge of the land surface characteristics. The assimilation technique is presented in Section 2 and the numerical experiments are detailed in Section 3. Preliminary results and conclusions are presented in Sections 4 and 5, respectively.
    Keywords: Environment Pollution
    Type: Land Surface Modeling; Jun 21, 1999 - Jun 25, 1999; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.
    Keywords: Environment Pollution
    Type: Jul 14, 1999; Greenbelt, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-07-13
    Description: AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings.
    Keywords: Environment Pollution
    Type: Jan 17, 1999 - Jan 23, 1999; Meribel; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-13
    Description: The launch of the first Advanced Microwave Sounding Unit (AMSU) on the NOAA-15 spacecraft on 13 May 1998 marked a significant advance in our ability to monitor global temperatures. Compared to the Microwave Sounding Units (MSU) flying since 1978 on the TIROS-N series of NOAA polar orbiters, the AMSU offers better horizontal, vertical, and radiometric resolutions. It will allow routine monitoring of 1 1 (mostly) separate layers, compared to 2 or 3 with the MSU, including layers in the middle and upper stratosphere (2.5 hPa) where increasing carbon dioxide concentrations should be causing a cooling rate of about 1 deg. C per decade. More precise limb corrections combined with low noise will allow identification of subtle spatial temperature patterns associated with global cyclone activity.
    Keywords: Environment Pollution
    Type: Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-07-13
    Description: In order to analyze and share results of global change data sets, scientists require a venue in which to exchange their results. One appropriate medium for these collaborative efforts is the world wide web. Intuitive and efficient user interfaces, and background processes have been developed at the Global Hydrology and Climate Center to interactively view weather satellite, radar, global temperature anomaly, and model output data using the world wide web. These tools combine scripts, Java and C code which allows the user to easily interact with data, to create high resolution sector images, and sectored animation sequences. This paper examines the architecture and interfaces and how they are used for collaborative research.
    Keywords: Environment Pollution
    Type: IIPS for Meteorology, Oceanography and Hydrology; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2019-07-13
    Description: In this study, we have developed time series of global temperature from 1980-97 based on the Microwave Sounding Unit (MSU) Ch 2 (53.74 GHz) observations taken from polar-orbiting NOAA operational satellites. In order to create these time series, systematic errors (approx. 0.1 K) in the Ch 2 data arising from inter-satellite differences are removed objectively. On the other hand, smaller systematic errors (approx. 0.03 K) in the data due to orbital drift of each satellite cannot be removed objectively. Such errors are expected to remain in the time series and leave an uncertainty in the inferred global temperature trend. With the help of a statistical method, the error in the MSU inferred global temperature trend resulting from orbital drifts and residual inter-satellite differences of all satellites is estimated to be 0.06 K decade. Incorporating this error, our analysis shows that the global temperature increased at a rate of 0.13 +/- 0.06 K decade during 1980-97.
    Keywords: Environment Pollution
    Type: Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019-07-10
    Description: This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of NOAA's Office of Global Programs and NASA's AEAP and measures particle size distributions in the 4-100 nm range.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-07-10
    Description: Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1995-1998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for greater than 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally- listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitant resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycteria americana) and several state-listed species of special concern including the Snowy Egret (Egretta thula thula), Reddish Egret (Egretta rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egretta tricolor ruficolis), and Little Blue Heron (Egretta caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active launch complexes, remains important habitat for a variety of native plants and animals including threatened and endangered species. Direct negative effects of current launch systems appear limited. Additional monitoring of these populations and habitats is required to determine if subtle, long-term changes are occurring, to determine if new launch systems and facilities cause other effects, and to determine the effects of habitat restoration and management.
    Keywords: Environment Pollution
    Type: NASA/TM-1999-208553 , NAS 1.15:208553
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-07-10
    Description: This paper presents abstracts that briefly explain the findings of dynamics and transport investigations using UARS data.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2019-07-10
    Description: The impact of NO(x) from aircraft emissions, lightning and surface contributions on atmospheric nitrogen oxides and ozone has been investigated with the three-dimensional global chemistry transport model TM3 by partitioning the nitrogen oxides and ozone according to source category. The results have been compared with POLINAT II and SONEX airborne measurements in the North Atlantic flight corridor in 1997. Various cases have been investigated: measurements during a stagnant anti-cyclone and an almost cut-off low, both with expected high aircraft contributions, a southward bound flight with an expected strong flight corridor gradient and lightning contributions in the South, and a transatlantic flight with expected boundary layer pollution near the U.S. coast. The agreement between modeled results and measurements is reasonably good for NO and ozone. Also, the calculated impact of the three defined sources were consistent with the estimated exposure of the sampled air to these sources, obtained by specialized back-trajectory model products.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2019-07-10
    Description: Pollen, plant macrofossil, LOI and radiocarbon analyses of a 1.4-m section from Faddeyevskiy Island, Novosibirskie Ostrova archipelago (75 deg 20 min N, 143 deg 50 min E, 30m elevation) provide new information on the Late Pleistocene interstadial environmental history of this high Arctic region. Bulk radiocarbon dates of 25,700 +/- 1000, 32,780 +/- 500, 35,200 +/- 650 and two AMS dates of 29,950 +/- 660 and 42,990 +/- 1280 indicate that the deposits accumulated during the Kargian (Boutellier) interval. Numerous mammoth (Mammuthus primigenius) remains collected in the vicinity of the site were radiocarbon dated to 36,700-18,500 yr. BP. Rare bison (Bison priscus) bones were dated to 32,200 +/- 600 and 33,100 +/- 320. Poaceae, Cyperaceae, and Artemisia pollen dominate the pollen spectra with some Ranunculaceae, Caryophyllaceae, Rosaceae, and Compositae. These pollen spectra reflect a tundra-steppe vegetation which probably was dominant on the exposed shelf of the Arctic Ocean. The presence of Carex macrofossils infer a summer climate two degrees warmer than today. The productivity of this local vegetation during the Kargian interstadial was apparently high enough to feed the grass-eater herds.
    Keywords: Environment Pollution
    Type: GNC-99-57
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-10
    Description: The current effort addresses two issues important to the research conducted by the Thermal Radiation Group at Virginia Tech. The first research topic involves the development of a method which can properly model the diffraction of radiation as it enters an instrument aperture. The second topic involves the study of a potential next-generation space-borne radiometric instrument concept. Presented are multiple modeling efforts to describe the diffraction of monochromatic radiant energy passing through an aperture for use in the Monte-Carlo ray-trace environment. Described in detail is a deterministic model based upon Heisenberg's uncertainty principle and the particle theory of light. This method is applicable to either Fraunhofer or Fresnel diffraction situations, but is incapable of predicting the secondary fringes in a diffraction pattern. Also presented is a second diffraction model, based on the Huygens-Fresnel principle with a correcting obliquity factor. This model is useful for predicting Fraunhofer diffraction, and can predict the secondary fringes because it keeps track of phase. NASA is planning for the next-generation of instruments to follow CERES (Clouds and the Earth's Radiant Energy System), an instrument which measures components of the Earth's radiant energy budget in three spectral bands. A potential next-generation concept involves modification of the current CERES instrument to measure in a larger number of wavelength bands. This increased spectral partitioning would be achieved by the addition of filters and detectors to the current CERES geometry. The capacity of the CERES telescope to serve for this purpose is addressed in this thesis.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-07-10
    Description: This report assesses the potential atmospheric impacts of a proposed fleet of high-speed civil transport (HSCT) aircraft. The purpose of the report is to assess the effects of HSCT's on atmospheric composition and climate in order to provide a scientific basis for making technical, commercial, and environmental policy decisions regarding the HSCT fleet. The work summarized here was carried out as part of NASA's Atmospheric Effects of Aviation Project (a component of the High-Speed Research Program) as well as other NASA, U.S., and international research programs. The principal focus is on change in stratospheric ozone concentrations. The impact on climate change is also a concern. The report describes progress in understanding atmospheric processes, the current state of understanding of HSCT emissions, numerical model predictions of HSCT impacts, the principal uncertainties in atmospheric predictions, and the associated sensitivities in predicted effects of HSCT's.
    Keywords: Environment Pollution
    Type: NASA/TP-1999-209237 , NAS 1.60:209237 , Rept-99B00055
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019-07-10
    Description: We measured gas phase H2O2, CH3OOH, and CH2O on board the NASA DC-8 during the SONEX field mission, presented preliminary results at three scientific meetings, participated in two data workshops and contributed to joint publications of final results. The observations of peroxides and formaldehyde were instrumental in assessing odd-hydrogen radical chemistry, ozone chemistry, and in tracing meteorological transport paths.
    Keywords: Environment Pollution
    Type: URI-5-35840
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-07-10
    Description: Over the time period of this NASA grant the PI has helped plan and execute in the PEM-Tropics A field program. He has also helped organize and co-chair three data workshops which have focused on the detailed analysis of PEM-Tropics A data. His direct participation in these analyses has led to his major involvement in 10 manuscripts, 5 of which are in print, 3 in press, and 2 submitted. A complete list of papers is included in the report.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2019-07-10
    Description: This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-07-10
    Description: An immense global plume of CO meanders widely around the world in the Southern Hemisphere. It arises over Southern America and Africa and flows eastward. The first emissions are in tropical Brazil, and the plume circulates around the world to South America again. The plume was largely unexpected until there were aircraft studies made in NASA's Pacific Exploratory Mission - Tropics (Part A). This paper describes the meteorology of the Global Plume, as our simulation, with a synoptic model adapted to global transport, reveals it with a tracer-CO simulation. The observations and their simulation require a particular set of conditions of pollutant accumulation, cumulonimbus venting with required strengths at a narrow range of altitude. Additionally, a particular subtropical conduction region, over the Indian Ocean, Australia, and the westeRNmost South Pacific, relatively free of storms, appears to be a key part of the mechanism. These conclusions are the results of a synoptic reconstruction of the PEMT-A period, September- October, 1996.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-07-10
    Description: A global aerosol climatology is needed in the study of decadal temperature change due to natural and anthropogenic forcing of global climate change. A preliminary aerosol climatology has been developed from global transport models for a mixture of sulfate and carbonaceous aerosols from fossil fuel burning, including also contributions from other major aerosol types such as soil dust and sea salt. The aerosol distributions change for the period of 1950 to 1990 due to changes in emissions of SO2 and carbon particles from fossil fuel burning. The optical thickness of fossil fuel derived aerosols increased by nearly a factor of 3 during this period, with particularly strong increase in eastern Asia over the whole time period. In countries where environmental laws came into effect since the early 1980s (e.g. US and western Europe), emissions and consequently aerosol optical thicknesses did not increase considerably after 1980, resulting in a shift in the global distribution pattern over this period. In addition to the optical thickness, aerosol single scattering albedos may have changed during this period due to different trends in absorbing black carbon and reflecting sulfate aerosols. However, due to the uncertainties in the emission trends, this change cannot be determined with any confidence. Radiative forcing of this aerosol distribution is calculated for several scenarios, resulting in a wide range of uncertainties for top-of-atmosphere (TOA) forcings. Uncertainties in the contribution of the strongly absorbing black carbon aerosol leads to a range in TOA forcings of ca. -0.5 to + 0.1 Wm (exp. -2), while the change in aerosol distributions between 1950 to 1990 leads to a change of -0.1 to -0.3 Wm (exp. -2), for fossil fuel derived aerosol with a "moderate" contribution of black carbon aerosol.
    Keywords: Environment Pollution
    Type: GCN-99-58
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-07-10
    Description: Methane emissions from natural wetlands constitutes the largest methane source at present and depends highly on the climate. In order to investigate the response of methane emissions from natural wetlands to climate variations, a 1-dimensional process-based climate-sensitive model to derive methane emissions from natural wetlands is developed. In the model the processes leading to methane emission are simulated within a 1-dimensional soil column and the three different transport mechanisms diffusion, plant-mediated transport and ebullition are modeled explicitly. The model forcing consists of daily values of soil temperature, water table and Net Primary Productivity, and at permafrost sites the thaw depth is included. The methane model is tested using observational data obtained at 5 wetland sites located in North America, Europe and Central America, representing a large variety of environmental conditions. It can be shown that in most cases seasonal variations in methane emissions can be explained by the combined effect of changes in soil temperature and the position of the water table. Our results also show that a process-based approach is needed, because there is no simple relationship between these controlling factors and methane emissions that applies to a variety of wetland sites. The sensitivity of the model to the choice of key model parameters is tested and further sensitivity tests are performed to demonstrate how methane emissions from wetlands respond to climate variations.
    Keywords: Environment Pollution
    Type: GCN-99-62
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2019-07-10
    Description: The University of Denver Aerosol Group proposed to adapt an impactor system for the collection of particles emitted by aircraft. The collection substrates were electron microscope grids which were analyzed by Dr. Pat Sheridan using a transmission electron microscope. The impactor was flown in the SNIFF behind aircraft and engine emissions were sampled. This report details the results of that work.
    Keywords: Environment Pollution
    Type: Rept-5-34884
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2019-07-10
    Description: Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types: At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.50 C lower limit for the equilibrium global climate sensitivity to a doubling of CO2, which is based on models with near-adiabatic liquid water behavior and constant physical thickness, should be revised upward.
    Keywords: Environment Pollution
    Type: GNC-99-41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2019-07-10
    Description: The key issue in retrieving aerosol optical thickness over land from shortwave satellite radiances is to identify and separate the signal due to scattering by a largely transparent aerosol layer from the noise due to reflection by the background surface, where the signal is relatively uniform compared to the highly inhomogeneous surface contribution. Sensitivity studies in aerosol optical thickness retrievals reveal that the apparent reflectance at the top of the atmosphere is very susceptible to the surface reflectance, especially when aerosol optical thickness is small. Uncertainties associated with surface reflectance estimation can greatly amplify the error of the aerosol optical thickness retrieval. To reduce these uncertainties, we have developed a "path radiance" method to retrieve aerosol optical thickness over land by extending the traditional technique that uses the "dark object" approach to extract the aerosol signal. This method uses the signature of the correlation of visible and mid-IR reflectance at the surface, and couples the correlation with the atmospheric effect. We have applied this method to a TM (Landsat Thematic Mapper) image acquired over the Oklahoma Southern Great Plains (SGP) site of DoE's ARM (Atmospheric Radiation Measurement) program on September 27, 1997, a very clear day during the first Landsat IOP (Intensive Observation Period). The retrieved mean aerosol optical thickness for TM band 1 at 0.49 micrometers and band 3 at 0.66 micrometers agree very well with the ground-based sun-photometer measurements at the ARM site. The ability to retrieve small aerosol optical thickness (such as 0.07 at 0.5 micrometers as in the example considered here) makes this path radiance technique promising. More importantly, the path radiance is relatively insensitive to surface inhomogeneity. The retrieved mean path radiances in reflectance units have very small standard deviations for both TM blue and red bands. This small variability of path radiance further supports the current aerosol retrieval method.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-07-10
    Description: The relative importance of various odd nitrogen (NOy) sources including lightning, aircraft, and surface emissions on upper tropospheric total odd nitrogen is illustrated as a first application of the three-dimensional Stretched-Grid University of Maryland/Goddard Chemical-Transport Model (SG-GCTM). The SG-GCTM has been developed to look at the effect of localized sources and/or small scale mixing processes on the large-scale or global chemical balance. For this simulation, the stretched-arid was chosen so that its maximum resolution is located over eastern North America and the North Atlantic; a region that includes most of the SONEX (the SASS (Subsonic Assessment) Ozone and Nitrogen Oxides Experiment) flight paths. The SONEX period (October-November 1997) is simulated by driving the SG-GCTM with assimilated data from the GEOS-STRAT DAS (Goddard Earth Observing System-STRAT Data Assimilation System). A new algorithm is used to parameterize the lightning, flash rates that are needed to calculate emissions of NOy by lightning. Model-calculated upper tropospheric NOy and NOy measurements from the NASA DC-8 aircraft are compared. Spatial variations in NOy were well captured especially with the stretched-grid run; however, model-calculated concentrations were often too high in the upper troposphere, particularly during the first several flights. The lightning algorithm does a reasonably good job; however, the use of emissions from observed lightning, flashes significantly improves the simulation on a few occasions, especially November 3, 1997, indicating that significant uncertainty remains in parameterizing lightning in CTMS. Aircraft emissions play a relatively minor role (about 12%) in the upper tropospheric NOY budget averaged along SONEX flight paths; however, the contribution of such emmissions is as large as about 30% during portions of some flights.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019-07-10
    Description: Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).
    Keywords: Environment Pollution
    Type: NASA/TM-1999-209102 , L-17804 , NAS 1.15:209102
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019-07-12
    Description: Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1 995-1 998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for 〉 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally-listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitat resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycferia americana) and several state-listed species of special concern including the Snowy Egret (Egretfa thula fhula), Reddish Egret (Egreffa rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egreffa tricolor ruficolis), and Little Blue Heron (Egreffa caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active launch colexes, remains important habitat for a variety of native plants and animals including threatened and endangered species. Direct negative effects of current launch systems appear limited. Additional monitoring of these populations and habitats is required to determine if subtle, long-term changes are occurring, to determine if new launch systems and facilities cause other effects, and to determine the effects of habitat restoration and management.
    Keywords: Environment Pollution
    Type: NASA/TM-1999-208553
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-07-10
    Description: Airborne, in-situ measurements from PEM-Tropics-A (September/October 1996) are analyzed to show the presence of distinct pollution plumes in the middle-tropical troposphere of the remote South Pacific (10-30degS). These elevated plumes cause a relative maximum at about 5-7km attitude in the vertical distribution of primary and secondary species characteristic of fuel combustion and biomass burning (CO, C2H2, C2H6, CH3Cl, PAN, O3). Similar plumes were also observed at mid-latitudes in the middle troposphere during three flights east of New Zealand (40-45degS). In all, pollution plumes with CO larger than 100 ppb were observed 24 times on 7 separate flight days south of the equator. The observed plumes were generally embedded in very dry air. Ten-day back trajectory analysis supports the view that these originated from the biomass burning regions of South Africa (and South America) and were transported to the South Pacific along long-distance subsiding trajectories. The chemical composition of the southern Pacific troposphere analyzed from the PEM-Tropics-A data is compared with data from the tropical regions of the northern Pacific (PEM-West-A) and southern Atlantic (TRACE-A) during the same Sept/Oct time period. Sizable perturbations in the abundance of ozone and its key precursors, resulting from the transport of pollution originating from biomass burning sources, are observed in much of the Southern Hemispheric troposphere.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019-07-10
    Description: Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-07-10
    Description: The (GISS) Goddard Institute for Space Studies coupled atmosphere-ocean model is used to investigate the effect of increased atmospheric CO2 by comparing a compounded 1 percent CO2 increase experiment with a control simulation. After 70 years of integration, the global surface air temperature in the 1 percent CO2 experiment is 1.43 C warmer. In spite of this global warming, there are two distinct regions, the northern Atlantic Ocean and the southern Pacific Ocean, where the surface air temperature is up to 4 C cooler. This situation is maintained by two positive feedbacks: a local effect on convection in the South Pacific and a non-local impact on the meridional circulation in the North Atlantic. The poleward transport of latent energy and dry static energy by the atmosphere is greater in the 1 percent CO2 experiment, caused by warming and therefore increased water vapor and greater greenhouse capacity at lower latitudes. The larger atmospheric transports tend to reduce upward vertical fluxes of heat and moisture from the ocean surface at high latitudes, which has the effect of stabilizing the ocean, reducing both convection and the thermohaline circulation. With less convection, less warm water is brought up from below, and with a reduced North Atlantic thermohaline circulation (by 30 percent at time of CO2 doubling), the poleward energy transport by the oceans decreases. The colder water then leads to further reductions in evaporation, decreases of salinity at high latitudes, continued stabilization of the ocean, and maintenance of reduced convection and meridional overturning. Although sea ice decreases globally, it increases in the cooling regions which reduces the overall climate sensitivity; its effect is most pronounced in the Southern Hemisphere. Tropical warming has been observed over the past several decades; if modeling studies such as this and others which have produced similar effects are valid, these processes may already be beginning.
    Keywords: Environment Pollution
    Type: GCN-99-49
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-07-10
    Description: The 6-year wind archives from the Goddard Institute for Space Studies/Global Climate-Middle Atmosphere Model (GISS/GCMAM) were in- put to the GISS/Harvard/Irvine Chemical Transport Model (G/H/I CTM) to study the seasonal and interannual variability of the budgets and distributions of nitrous oxide (N2O) and trichlorofluoromethane (CCl3F), with the corresponding chemical loss frequencies recycled and boundary conditions kept unchanged from year to year. The effects of ozone feedback and quasi-biennial oscillation (QBO) were not included. However, the role of circulation variation in driving the lifetime variability is investigated. It was found that the global loss rates of these tracers are related to the extratropical planetary wave activity, which drives the tropical upward mass flux. For N2O, a semiannual signal in the loss rate variation is associated with the interhemispheric asymmetry in the upper stratospheric wave activity. For CCl3F, the semiannual signal is weaker, associated with the comparatively uniform wave episodes in the lower stratosphere. The loss rates lag behind the wave activity by about 1-2 months. The interannual variation of the GCM generated winds drives the interannual variation of the annually averaged lifetime. The year-to-year variations of the annually averaged lifetimes can be about 3% for N2O and 4% for CCl3F.
    Keywords: Environment Pollution
    Type: GCN-99-59
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019-07-10
    Description: The sensitivity of global and regional climate to changes in vegetation density is investigated using a coupled biosphere-atmosphere model. The magnitude of the vegetation changes and their spatial distribution are based on natural decadal variability of the normalized difference vegetation index (ndvi). Different scenarios using maximum and minimum vegetation cover were derived from satellite records spanning the period 1982-1990. Albedo decreased in the northern latitudes and increased in the tropics with increased ndvi. The increase in vegetation density revealed that the vegetation's physiological response was constrained by the limits of the available water resources. The difference between the maximum and minimum vegetation scenarios resulted in a 46% increase in absorbed visible solar radiation and a similar increase in gross photosynthetic C02 uptake on a global annual basis. This caused the canopy transpiration and interception fluxes to increase, and reduced those from the soil. The redistribution of the surface energy fluxes substantially reduced the Bowen ratio during the growing season, resulting in cooler and moister near-surface climate, except when soil moisture was limiting. Important effects of increased vegetation on climate are : (1) A cooling of about 1.8 K in the northern latitudes during the growing season and a slight warming during the winter, which is primarily due to the masking of high albedo of snow by a denser canopy. and (2) A year round cooling of 0.8 K in the tropics. These results suggest that increases in vegetation density could partially compensate for parallel increases in greenhouse warming . Increasing vegetation density globally caused both evapotranspiration and precipitation to increase. Evapotranspiration, however increased more than precipitation resulting in a global soil-water deficit of about 15 %. A spectral analysis on the simulated results showed that changes in the state of vegetation could affect the low-frequency modes of the precipitation distribution and might reduce its low frequency variability in the tropics while increasing it in northern latitudes.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019-07-10
    Description: This paper outlines the methodology of interpreting channel 1 and 2 AVHRR radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. We show that two-channel algorithms can be expected to provide significantly more accurate and less biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.
    Keywords: Environment Pollution
    Type: GCN-99-60
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019-07-10
    Description: Sources and transports of CO as measured by the Measurement of Air Pollution from Space (MAPS) over a substantial sector of the southern hemisphere between South America and southern Africa are described by air parcel trajectories based upon European Center for Medium Range Weather Forecasts (ECMWF) model data fields. Observations, made by NASA Shuttle astronauts during the October 1994 mission, of vegetation fires suggest a direct relationship between in situ biomass burning, at least over South America and southern Africa, and coincident tropospheric measurements of CO. Results of this paper indicate that the transport of CO from the surface to the levels of maximum MAPS sensitivity (about 450 hPa) over these regions is not of a direct nature due largely to the well stratified atmospheric environment. The atmospheric transport of CO from biomass burning within this region is found to occur over intercontinental scales over numbers of days to more than a week. Three distinct synoptic circulation and transport classes are found to have occurred over southern Africa during the October 1994 MAPS experiment: (1) transport from South America and Africa to southern Africa associated with elevated MAPS measured CO (〉 150 ppbv); (2) weakening anticyclonic transport from South America associated with moderate CO (〈 150 ppbv and 〉 105 ppbv); and (3) transport from the high southern latitudes associated with low CO (〈105 ppbv).
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-07-10
    Description: The historical archives of in situ (National Oceanographic Data Center) and satellite (Coastal Zone Color Scanner) chlorophyll data were combined using the blended analysis method of Reynolds [1988] in an attempt to construct an improved climatological seasonal representation of global chlorophyll distributions. The results of the blended analysis differed dramatically from the CZCS representation: global chlorophyll estimates increased 8-35% in the blended analysis depending upon season. Regional differences were even larger, up to 140% in the equatorial Indian Ocean in summer (during the southwest monsoon). Tropical Pacific chlorophyll values increased 25-41%. The results suggested that the CZCS generally underestimates chlorophyll. Regional and seasonal differences in the blended analysis were sufficiently large as to produce a different representation of global chlorophyll distributions than otherwise inferred from CZCS data alone. Analyses of primary production and biogeochemical cycles may be substantially impacted by these results.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019-07-10
    Description: The University of Denver agreed to develop and fabricate two instruments for the characterization of submicron aerosol. The instruments were to be light weight for use on remotely-piloted aircraft or balloons. The instruments were to provide accurate size measurements of size distributions in the size range from 0.07 to 2 micrometers in diameter and concentration measurements in the size range approximately 0.01 to 2 micrometers in diameter. The instruments constructed under this cooperative agreement respond quite nearly as expected and meet the objective of being light and compact. One has been used for ground based and low altitude studies and the other will be deployed in high altitude studies this winter.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019-07-10
    Description: Mixing ratios of nonmethane hydrocarbons (NMHCS) were not enhanced in whole air samples collected within the North Atlantic Flight Corridor (NAFC) during the fall of 1997. The investigation was conducted aboard NASA's DC-8 research aircraft, as part of the Subsonic Assessment-Ozone and Nitrogen Experiment (SONEX). NMHC enhancements were not detected within the general Organized Tracking System (OTS) of the NAFC, nor during two tail-chases of the DC-8's own exhaust. Because positive evidence of aircraft emissions was demonstrated by enhancements in both nitrogen oxides and condensation nuclei during SONEX, the NMHC results suggest that the commercial air traffic fleet operating in the North Atlantic region does not contribute significantly to NMHCs in the NAFC.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-07-10
    Description: Somewhere in the tropics, a volcano exploded violently during the year 1258, producing a massive stratospheric aerosol veil that eventually blanketed the globe. Arctic and Antarctic ice cores suggest that this was the world's largest volcanic eruption of the past millennium. According to contemporary chronicles, the stratospheric dry fog possibly manifested itself in Europe as a persistently cloudy aspect of the sky and also through an apparently total darkening of the eclipsed Moon. Based on a sudden temperature drop for several months in England, the eruption's initiation date can be inferred to have been probably January 1258. The frequent cold and rain that year led to severe crop damage and famine throughout much of Europe. Pestilence repeatedly broke out in 1258 and 1259; it occurred also in the Middle East, reportedly there as plague. Another very cold winter followed in 1260-1261. The troubled period's wars, famines, pestilences, and earthquakes appear to have contributed in part to the rise of the European flagellant movement of 1260, one of the most bizarre social phenomena of the Middle Ages. Analogies can be drawn with the climatic aftereffects and European social unrest following another great tropical eruption, Tambora in 1815. Some generalizations about the climatic impacts of tropical eruptions are made from these and other data.
    Keywords: Environment Pollution
    Type: GCN-99-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2019-07-10
    Description: Understanding tropical sensitivity is perhaps the major concern confronting researchers, for both past and future climate change issues. Tropical data has been beset by contradictions, and many techniques applicable to the extratropics are either unavailable or fraught with uncertainty when applied at low latitudes. Paleoclimate data, if interpreted within the context of the latitudinal temperature gradient data they imply, can be used to estimate what happened to tropical temperatures in the past, and provide a first guess for what might happen in the future. The approach is made possible by the modeling result that atmospheric dynamical changes, and the climate impacts they produce, respond primarily to temperature gradient changes. Here we review some "rules" obtained from GCM (General Circulation Model) experiments with different sea surface temperature gradients and different forcing, that can be used to relate paleoclimate reconstructions to the likely temperature gradient changes they suggest.
    Keywords: Environment Pollution
    Type: GCN-99-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019-07-10
    Description: We describe the current GISS analysis of surface temperature change for the period 1880-1999 based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change was higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 was too large and pervasive to be fully accounted for by the recent El Nino. Despite cooling in the first half of 1999, we suggest that the mean global temperature, averaged over 2-3 years, has moved to a higher level, analogous to the increase that occurred in the late 1970s. Warming in the United States over the past 50 years has been smaller than in most of the world, and over that period there was a slight cooling trend in the Eastern United States and the neighboring Atlantic Ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism was involved in this regional cooling. The cooling trend in the United States, which began after the 1930s and is associated with ocean temperature change patterns, began to reverse after 1979. We suggest that further warming in the United States to a level rivaling the 1930s is likely in the next decade, but reliable prediction requires better understanding of decadal oscillations of ocean temperature.
    Keywords: Environment Pollution
    Type: GCN-99-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019-07-10
    Description: This report assesses the potential atmospheric impacts of a proposed fleet of high-speed civil transport (HSCT) aircraft. The purpose of the report is to assess the effects of HSCT's on atmospheric composition and climate in order to provide a scientific basis for making technical, commercial, and environmental policy decisions regarding the HSCT fleet. The work summarized here was carried out as part of NASA's Atmospheric Effects of Aviation Project (a component of the High-Speed Research Program) as well as other NASA, U.S., and international research programs. The principal focus is on change in stratospheric ozone concentrations. The impact on climate change is also a concern. The report describes progress in understanding atmospheric processes, the current state of understanding of HSCT emissions, numerical model predictions of HSCT impacts, the principal uncertainties in atmospheric predictions, and the associated sensitivities in predicted effects of HSCT'S.
    Keywords: Environment Pollution
    Type: NASA/TP-1999-209237 , Rept-99B00055 , NAS 1.60:209237
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019-07-17
    Description: Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational reproducibility is well known in the parallel computing community. It is a requirement that the parallel code perform calculations in a fashion that will yield identical results on different configurations of processing elements on the same platform. In some cases this problem can be solved by sacrificing performance. Meeting this requirement and still achieving high performance is very difficult. Topics to be discussed include: current PSAS design and parallelization strategy; reproducibility issues; load balance vs. database memory demands, possible solutions to these problems.
    Keywords: Environment Pollution
    Type: HPCCP/CAS Workshop Proceedings 1998; 93; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The icehouse effect is a hypothesized polar climate trend toward cooling (or lack of warming) in response to greenhouse warming of adjacent lower latitudes. When greenhouse warmed air from lower latitudes moves over ice and snow, it generates a stronger, more stable, cappino, inversion than in a parallel case without greenhouse warming. Because the degree of decoupling between vertically adjacent air masses is directly dependent on the strength of the inversion, the capping inversion acts somewhat analogously to the walls and roof of the icehouse of generations past. What is inside the icehouse, namely the cold polar atmospheric boundary layer (ABL) air, is preserved by the "insulation" or decoupling, provided by the warm air aloft. Observations over the Arctic Ocean have shown an unexpected lack of any detectable surface warming trend over the past 40 years. This finding strongly contradicts climate model predictions that polar regions should show the strongest effect of greenhouse warming. It also stands in contrast to the consensus reached by the Intergovernmental Panel on Climate Change (IPCC), that human caused greenhouse warming is now detectable globally. One might ask: Are these Arctic observations wrong? Or, if right, is there a plausible physical explanation for them? The published observations mentioned above used about 50,000 soundings over the Arctic Ocean. Here I present a novel analysis of ALL available Arctic rawinsonde data north of 65N--a total of more than 1.1 million soundings. The analysis confirms the previously published result: There is indeed a slight climate-cooling trend in the vast majority of the data. Importantly, there are also select conditions (very strong and very weak stability of the ABL) which show a consistent, strong Arctic warming trend. It is the juxtaposition of these warming and cooling trends which defines a unique "icehouse signature" for which an explanation can be sought.
    Keywords: Environment Pollution
    Type: Hurricanes; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2019-07-17
    Description: A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approximately equals 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approximately equals 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels. The comparisons were made for the northern winter (Nov.-Feb.), the equinox (Mar., Apr., Sept., Oct.), the northern summer (May-Aug.), and the whole year.
    Keywords: Environment Pollution
    Type: Atmospheric Electricity; Jun 07, 1999 - Jun 11, 1999; Guntersville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2019-07-17
    Description: During the interval of 1950-mid 1998, some 16 El Nino and 10 La Nina have been identified on the basis of sea surface temperature in the Nino 3.4 region, these 26 events representing the extremes of the quasi-periodic ENSO cycle. Statistical aspects of these events are examined. Surprisingly, the durations of El Nino and La Nina appear to be strongly bifurcated into shorter and longer duration classes, as do the recurrence periods of El Nino. Moreover, the duration of an El Nino appears to provide a statistically meaningful indication as to when to expect the next onset of El Nino. Because the last El Nino had its onset in April 1997 and was of longer duration, onset of the next El Nino, probably, will not occur until after February 2000.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2019-07-17
    Description: Observations of sea-surface heights from satellite altimeters have been a major contributor to monitoring the evolution of the recent major El Nino event. Assimilating altimeter data directly into numerical models only takes advantage of the surface signature provided by the data. However, that surface signature is usually indicative of processes occurring at depth, especially in the equatorial Pacific. In order for assimilation schemes to make maximum use of surface data, it is helpful to have knowledge of how to best extend that data in the vertical to account for that variability. Toward that end, the vertical correlation structure between satellite-observed sea-surface heights and in situ temperature measurements is examined using TOPEX altimeter and TOGA TAO profile data for the period 1993-1998. This time period includes several states of the tropical Pacific, including a perturbed state from 1993-1994, a quiescent state encompassing 1995-1996, and the major ENSO event of 1997-1998. Analyses for each of these periods, as well as the total period will be presented. In addition to analyses at specific depth levels, analyses for particular density surfaces will also be presented.
    Keywords: Environment Pollution
    Type: 79th; Jan 12, 1999 - Jan 14, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Glaciers are important indicators of global climate. Glacier recession, as observed from space and in the field, has been occurring for about 100 years. The present extent of glaciers and glaciers in the last Ice Age will be discussed. I will show slides of field work on glaciers and show instruments used to measure ice and snow. I will discuss reasons for studying glaciers and why remote sensing is important for glacier studies.
    Keywords: Environment Pollution
    Type: Mar 16, 1999; Bethesda, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-07-17
    Description: This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1 deg x 1 deg latitude/longitude monthly scale based on multiple satellite sources and raingauge analysis. The procedure used to produce the GPCP data set is a stepwise approach which first combines the satellite low-orbit microwave and geosynchronous IR observations into a "multi-satellite" product and than merges that result with the raingauge analysis. Preliminary results produced with the still-stabilizing TRMM algorithms indicate that TRMM shows tighter spatial gradients in tropical rain maxima with higher peaks in the center of the maxima. The TRMM analyses will be used to evaluate the evolution of the 1998 ENSO variations, again in comparison with the GPCP analyses.
    Keywords: Environment Pollution
    Type: Global Change Studies; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2019-07-17
    Description: Atmospheric data assimilation is a method of combining actual observations with model simulations to produce a more accurate description of the earth system than the observations alone provide. The output of data assimilation, sometimes called "the analysis", are accurate regular, gridded datasets of observed and unobserved variables. This is used not only for weather forecasting but is becoming increasingly important for climate research. For example, these datasets may be used to assess retrospectively energy budgets or the effects of trace gases such as ozone. This allows researchers to understand processes driving weather and climate, which have important scientific and policy implications. The primary goal of the NASA's Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. This presentation will: (1) describe ongoing work on the advanced Kalman/Lagrangian filter parallel algorithm for the assimilation of trace gases in the stratosphere; and (2) discuss the Kalman filter in relation to other presentations from the DAO on Four Dimensional Data Assimilation at this meeting. Although the designation "Kalman filter" is often used to describe the overarching work, the series of talks will show that the scientific software and the kind of parallelization techniques that are being developed at the DAO are very different depending on the type of problem being considered, the extent to which the problem is mission critical, and the degree of Software Engineering that has to be applied.
    Keywords: Environment Pollution
    Type: HPCCP/CAS Workshop Proceedings 1998; 29; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Glaciers are important indicators of global climate. Glacier recession, as observed from space and in the field, has been occurring for about 100 years. The present extent of glaciers and glaciers in the last Ice Age will be discussed. I will show slides of field work on glaciers and show instruments used to measure ice and snow. I will discuss reasons for studying glaciers and why remote sensing is important for glacier studies.
    Keywords: Environment Pollution
    Type: Dec 13, 1999; Rockville, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-07-17
    Description: In order to reduce current uncertainties in the evaluation of the direct and indirect effects of tropospheric aerosols on climate on the global scale, it has been suggested to apply multi-channel retrieval algorithms to the full period of existing satellite data. This talk will outline the methodology of interpreting two-channel satellite radiance data over the ocean and describe a detailed analysis of the sensitivity of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. We will specifically address the calibration and cloud screening issues, consider the suitability of existing satellite data sets to detecting short- and long-term regional and global changes, compare preliminary results obtained by several research groups, and discuss the prospects of creating an advanced retroactive climatology of aerosol optical thickness and size over the oceans.
    Keywords: Environment Pollution
    Type: Dec 13, 1999 - Dec 17, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019-07-17
    Description: The late-glacial interval provided rapid shifts in climate which are mirrored by dramatic vegetational changes in North America. Through a transect of lake and mire sites from Connecticut to Virginia on the east coast and Kodiak Island on the western coast, we trace the warming following the LGM with the response of forests and tundra. A brief cold reversal in Virginia is seen from 12,260 to 12,200. The subsequent longer and extreme Younger Dryas event is marked in the southern New England - New Jersey region by dramatic boreal and deciduous forest changes. In the southeastern US, forests also change rapidly, with hemlock forest expansion suggesting increased moisture. In Kodiak Island, the warm, moist tundra of the Bolling/Allerod is replaced by colder, windswept Empetrum-dominated tundra during the Younger Dryas. The Pleistocene/Holocene shift in vegetation is remarkably pronounced in eastern North America as well as the Alaskan coastline. Response time of vegetation to climate change appears to be on the order of decades throughout these coastal locations, probably because of the proximity of sites to important ecotonal boundaries, and the magnitude of the events. Even in Virginia's Holocene record, a cold reversal inferred from increases in spruce and fir is noted at 7500 C14 yr BP. This response of the forests to a short-lived cooling shows the sensitivity of the biosphere to a rapid climate shifts.
    Keywords: Environment Pollution
    Type: Dec 13, 1999 - Dec 17, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-07-17
    Description: Today, El Nino refers to the extreme warming episodes of the globally effective, coupled ocean-atmospheric interaction commonly known as ENSO (i.e., "El Nino-Southern Oscillation"). Concerning its observed decadal frequency and severity, El Nino during the 1990s has often been regarded as being anomalous. Results of analysis reported herein, however, appear to mitigate this belief. For example, regarding the frequency and severity of El Nino, the decade of the 1990s is found to compare quite favorably with that of preceding decades. Hence, the 1990s probably should not be regarded as being anomalous. On the other hand, the number of El Nino-related months per decade has sharply increased during the 1990s, as compared to the preceding four decades, hinting of a marginally significant upward trend. Perhaps, this is an indication that the Earth is now experiencing an ongoing global climatic change. Continued vigilance during the new millennium, therefore, is of paramount importance for determining whether or not this "hint" of a global change is real or if it merely reflects a normal fluctuation of climate.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-17
    Description: The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville, Alabama were performed in September 1994 and over Atlanta, Georgia in May 1997. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., 〈15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace, what the benefits are of the urban forest in both mitigating the urban heat island effect, in making cities more aesthetically pleasing and more habitable environments, and in overall cooling of the community. In this presentation we will examine the techniques of analyzing remotely sensed data for measuring the effect of various urban surfaces on their contribution to the urban heat island effect.
    Keywords: Environment Pollution
    Type: Mar 23, 1999; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-17
    Description: The GSFC 2D interactive chemistry-radiation-dynamics model has been used to study the effects on stratospheric trace gases of past and future CO2 increases coupled with changes in CFC'S, methane, and nitrous oxide. Previous simulations with the GSFC model showed that the stratospheric cooling calculated to result from doubling atmospheric CO2 would lead, in the absence of a growth of other anthropogenic gases, to a decrease in upper stratospheric NO(y) of roughly 15%. This work has been extended to simulate changes in stratospheric chemistry and dynamics occurring between the years 1960 and 2050. The simulations have been carried out with and without changes in CO2. In the low latitude upper stratosphere ozone is predicted to be 10% greater in 2050 than in 1990 when increased CO2 is included, compared with an increase of only 2% without the inclusion of CO2. In the low latitude lower stratosphere, ozone is predicted to decrease by about 1% between 1990 and 2050 when CO2 changes are taken into account, in contrast to an approximate 3% increase when they are not. The simulated behavior of water vapor is another example of the coupled responses. Between 1990 and 2050 low latitude water vapor is predicted to increase by 4% and 2% in the upper and lower stratosphere, respectively, without the inclusion of CO2 increases. with the inclusion of CO2 changes, the water vapor increases are predicted to be roughly 12% and 8%, for the upper and lower stratosphere, respectively.
    Keywords: Environment Pollution
    Type: May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-07-17
    Description: The GSFC two-dimensional transport and chemistry model has been used for a wide variety of scientific and assessment studies of stratospheric ozone. Transport is a key element in the ozone simulations, and we have recently upgraded our model transport formulation to include much of the information about atmospheric transport processes available from existing data sets. To properly evaluate the model transport, it is desirable to examine the effects of transport and photochemistry separately. Recently, high quality observations of several long lived stratospheric tracers have become available from aircraft, balloon, and satellite measurement systems. This data provides a means to do a detailed model transport evaluation, as has been done in the recent Models and Measurements Intercomparison Project II. In this paper, we will discuss the GSFC 2D model simulations of ozone together with model-data comparisons of long lived tracers such as methane and the age of air transport diagnostic. We will show that the model can reproduce many of the transport-sensitive features observed in the stratosphere, and can compare reasonably well with measurements of both total ozone and long lived tracers simultaneously. We will also discuss the model deficiencies in simulating some of the detailed aspects of the observations.
    Keywords: Environment Pollution
    Type: May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019-08-15
    Description: Expanding cities are transforming periurban environments such as agricultural land, natural grasslands, forests, wetlands, and and land, into urban surfaces, such as asphalt and concrete. This transformation is part of a process defined as "urban heat island". The urban surfaces get much hotter during the daylight hours in the summer than the natural or vegetated environment. The heat builds up creating a dome effect over the city making it many degrees hotter than it's surrounding area. The impacts from this, which include higher usage of air conditioners, water, etc., are numerous and costly. As cities expand, this problem is exacerbated. It is necessary to incorporate better quality data into urban analysis and for establishing methods that systematically and objectively monitor growth and change due to increased urbanization. NASA initiated Project Atlanta in 1997 "as an interdisciplinary remote sensing study to observe and measure the growth and development of the urban heat island effect over Atlanta, and its associated impacts". This project has recently included Salt Lake City, among others, in the study of the development and effects of "urban heat islands". NASA has made available to Salt Lake City, high resolution, 10 meter, multispectral thermal data collected in June 1998. The data collection was part of a special NASA over-flight, a mission supported by the U.S. EPA in conjunction with their Urban Heat Island (UHI) Mitigation Initiative. Salt Lake City is one of three pilot cities selected to participate in this unique initiative. Hence, this project constitutes a rare opportunity to capitalize upon state-of-the-art NASA technology and link it to an urban community very concerned about rapid growth and development. This data will enhance existing data and be used for improving technical tools used to plan for Utah's future.
    Keywords: Environment Pollution
    Type: 1999 NASA/ASEE Summer Faculty Fellowship Program; D-17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019-08-15
    Description: Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.
    Keywords: Environment Pollution
    Type: Nature; 402; 399-401
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019-08-15
    Description: Volume mixing ratio profiles of HCl, HOCl, ClNO3, CH3Cl, CFC-12, CFC-11, CCl4, HCFC-22, and CFC-113 were measured simultaneously from 9 to 38 km by the Jet Propulsion Laboratory MkIV Fourier Transform Infrared solar absorption spectrometer during two balloon flights from Fairbanks, Alaska (64.8 N), on May 8 and July 8, 1997. The altitude variation of total organic chlorine (CCly) total inorganic chlorine (Cly), and the nearly constant value (3.7 +/- 0.2 ppbv) of their sum (Cl(sub TOT)) demonstrates that the stratospheric chlorine species available to react with O3 are supplied by the decomposition of organic chlorinated compounds whose abundances are well quantified. Measured profiles of HCl and ClNO3 agree well with profiles found by photochemical model (differences 〈 10% for altitudes below 35 km) constrained by various other constituents measured by MkIV. The production of HCl by ClO + OH plays a relatively small role in the partitioning of HCl and ClNO3 for the sampled air masses. However, better agreement with the measured profiles of HCl and ClNO3 is obtained when this source of HCl is included in the model. Both the measured and calculated [ClNO3]/[HCl] ratios exhibit the expected near linear variation with [O3]2/[CH4] over a broad range of altitudes. MkIV measurements of HCl, ClNO3, and CC1y agree well with ER-2 in situ observations of these quantities for directly comparable air masses. These results demonstrate good understanding of the budget of stratospheric chlorine and that the partitioning of inorganic chlorine is accurately described by photochemical models that employ JPL97 reaction rates and production of HCl from ClO + OH for the environmental conditions encountered: relatively warm temperatures, long periods of solar illumination, and relatively low aerosol surface areas.
    Keywords: Environment Pollution
    Type: Paper-1999JD900245 , Journal of Geophysical Research (ISSN 0148-0227); 104; D21; 26,653-26,665
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019-08-15
    Description: High spectral resolution (0.003/ cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5 deg N, 155.6 deg W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4 - 16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first two years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4 - 16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32 deg N and 45 deg S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4 - 16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during 3 the strong El Nino warm phase of 1997-1998 are the likely source of the elevated emission products.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-08-16
    Description: Climatological maps of monthly mean aerosol radiance levels derived from the coastal zone color scanner (CZCS) were constructed for the world's ocean basins. This is the first study to use the 7.5.-year CZCS data set to examine the distribution and seasonality of aerosols over the open ocean on a global scale. Examination of our satellite images found the most prominent large-scale patch of elevated aerosol radiances in each month off the coast of northwest Africa. The well-known, large-scale plumes of elevated aerosol levels in the Arabian Sea, the northwest Pacific, and off the east coast of North America were also successfully captured. Radiance data were extracted from 13 major open-ocean zones, ranging from the subpolar to equatorial regions. Results from these extractions revealed the aerosol load in both subpolar and subtropical zones to be higher in the Northern Hemisphere than in the Southern Hemisphere. Aerosol radiances in the subtropics of both hemispheres were about 2 times higher in summer than in winter. In subpolar regions, aerosol radiances in late spring/early summer were almost 3 times that observed in winter. In general, the aerosol signal was higher during the warmer months and lower during the cooler months, irrespective of location. A comparison between our mean monthly aerosol radiance maps with mean monthly chlorophyll maps (also from CZCS) showed similar seasonality between aerosol and chlorophyll levels in the subpolar zones of both hemispheres, i.e., high levels in summer, low levels in winter. In the subtropics of both hemispheres, however, chlorophyll levels were higher in winter months which coincided with a depressed aerosol signal. Our results indicate that the near-IR channel on ocean color sensors can be used to successfully capture well-known, large-scale aerosol plumes on a global scale and that future ocean color sensors may provide a platform for long-term synoptic studies of combined aerosol-phytoplankton productivity interactions.
    Keywords: Environment Pollution
    Type: Paper-1999GB900011 , Global Biogeochemical Cycles (ISSN 0886-6236); 13; 2; 383-397
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-08-16
    Description: Two NASA/MSFC continuous wave (CW) focused Doppler lidars obtained in-situ high resolution calibrated backscatter measurements in the upper levels of Hurricane Juliette as part of the 1995 NASA/Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on board NASA's DC8 aircraft. These were also intercompared with in-situ cloud particle size distributions obtained from NASA/Ames Research Center's forward scattering spectrometer probe (FSSP), the DC8 aircraft infrared (IR) surface temperature radiometer data, and the Geostationary Operational Environmental Satellites (GOES-7) 11 micrometer IR emission images with their corresponding estimates of cloud top temperature and height. Two traverses of Hurricane Juliette's eye were made off the west coast of Mexico at altitude approx. 11.7 km on 21 September 1995. During this DC8 flight, late stages of eyewall decay-replacement cycles were observed, giving the appearance of an annular eye with clouds in the central region.
    Keywords: Environment Pollution
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 160-162; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019-07-17
    Description: This talk will summarize our recent research in tropical tropospheric ozone studies in the field and from space. New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument will be highlighted (Hudson and Thompson, 1998; Thompson and Hudson, 1999). These are suitable for studying processes like ozone pollution resulting from biomass fires, seasonal and interannual variations and trends. Archived maps of tropospheric ozone over the tropics, from the Nimbus 7 observing period (1979-1992) are available in digital form at our website. Real-time processing of TOMS data has produced images of tropical tropospheric ozone (TTO) since early 1997, using Earth-Probe TOMS; these maps are also available on the homepage.
    Keywords: Environment Pollution
    Type: Nov 11, 1999; Charlottesville, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Using GCM (General Circulation Model) simulations of the troposphere-stratosphere circulation in different climate regimes, the sensitivity of the Brewer-Dobson Circulation to climate change will be discussed. Included will be simulations of the stratosphere with increasing/doubled CO2 as done with different versions of the GISS (Goddard Institute for Space Studies) Global Climate Middle Atmosphere Model, with and without ozone response. To put the results in a broader perspective, stratospheric circulation changes from several paleoclimate simulations will also be presented, including the Last Glacial Maximum and the Paleocene, each with several different (plausible) latitudinal sea surface temperature gradients. Hence the climate changes investigated will include strong variations in baroclinic and topographic tropospheric planetary wave and gravity wave forcing, as well as global mean temperature and atmospheric CO2 levels. Results will be analyzed in terms of wave driving via E-P flux convergences and gravity wave effects, and will be shown to be strongly dependent on wave propagation characteristics.
    Keywords: Environment Pollution
    Type: Brewer-Dobson Stratospheric/Modelling; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: This paper outlines the methodology of interpreting channe1 1 and 2 AVHRR (Advanced Very High Resolution Radiometer) radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmospheric-ocean system. We show that two-channel algorithms can be expected tp provide significantly more biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.
    Keywords: Environment Pollution
    Type: Aerosol-Cloud; Dec 01, 1999 - Dec 03, 1999; Kyoto; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019-07-17
    Description: The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well-measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. We will focus on the role of aerosols as a climate forcing mechanism and the contribution that aerosols might make to the so- called "anomalous" atmospheric absorption that has been inferred from some atmospheric measurements.
    Keywords: Environment Pollution
    Type: Aerosol-Cloud; Dec 01, 1999 - Dec 03, 1999; Kyoto; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Agricultural applications of El Nino forecasts are already underway in some countries and need to be evaluated or re-evaluated. For example, in Peru, El Nino forecasts have been incorporated into national planning for the agricultural sector, and areas planted with rice and cotton (cotton being the more drought-tolerant crop) are adjusted accordingly. How well are this and other such programs working? Such evaluations will contribute to the governmental and intergovernmental institutions, including the Inter-American Institute for Global Change Research and the US National Ocean and Atmospheric Agency that are fostering programs to aid the effective use of forecasts. This research involves expanding, deepening, and applying the understanding of physical climate to the fields of agronomy and social science; and the reciprocal understanding of crop growth and farm economics to climatology. Delivery of a regional climate forecast with no information about how the climate forecast was derived limits its effectiveness. Explanation of a region's major climate driving forces helps to place a seasonal forecast in context. Then, a useful approach is to show historical responses to previous El Nino events, and projections, with uncertainty intervals, of crop response from dynamic process crop growth models. Regional forecasts should be updated with real-time weather conditions. Since every El Nino event is different, it is important to track, report and advise on each new event as it unfolds.
    Keywords: Environment Pollution
    Type: Canberra; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-07-17
    Description: This study uses information on mineral aerosol from a transport model to calculate global radiative forcing values. The transport model is driven by assimilated meteorology and outputs three-dimensional dust spatial information for various size ranges. The dust fields are input to an off-line radiative transfer calculation to obtain the direct radiative forcing due to the dust fields. During June, July and August of 1988 presence of dust 1) reduces the global net incoming radiation at the top of atmosphere (TOA) by 0.3 to 0.7 W/sq m and 2) reduces net incoming radiation at the earth's surface by 1.3 to 2.0 W/sq m. Over Africa our estimates of the reduction of radiation at the top of atmosphere compare well with TOA reductions derived from ERBE and TOMS satellite data. However, our heating rates are not consistent with analysis temperature increments produced by the assimilation system over regions of high aerosol loading. These increments are based on differences between temperature observations and temperatures from the assimilation general circulation model. One explanation is that the lower tropospheric temperatures retrieved by TOVS are being contaminated by mineral aerosol.
    Keywords: Environment Pollution
    Type: Dec 13, 1999 - Dec 17, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019-07-17
    Description: Properties of atmospheric aerosols over all land and water surfaces are retrieved from TOMS measurements of backscattered radiances. The TOMS technique, uses observations at two wavelengths. In the near ultraviolet (330-380 nm) range, where the effects of gaseous absorption are negligible. The retrieved properties are optical depth and a measure of aerosol absorptivity, generally expressed as single scattering albedo. The main sources of error of the TOMS aerosol products are sub-pixel cloud contamination and uncertainty on the height above the surface of UV-absorbing aerosol layers. The first error source is related to the large footprint (50 x 50 km at nadir) of the sensor, and the lack of detection capability of sub-pixel size clouds. The uncertainty associated with the height of the absorbing aerosol layers, on the other hand, is related to the pressure dependence of the molecular scattering process, which is the basis of the near-UV method of absorbing aerosol detection. The detection of non-absorbing aerosols is not sensitive to aerosol layer height. We will report on the ongoing work to overcome both of these difficulties. Coincident measurements of high spatial resolution thermal infrared radiances are used to address the cloud contamination issue. Mostly clear scenes for aerosol retrieval are selected by examining the spatial homogeneity of the IR radiance measurements within a TOMS pixel. The approach to reduce the uncertainty associated with the height of the aerosol layer by making use of a chemical transport model will also be discussed.
    Keywords: Environment Pollution
    Type: Dec 13, 1999 - Dec 17, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...