ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Environment Pollution  (386)
  • 1995-1999  (386)
  • 1999  (233)
  • 1998  (153)
  • 1
    Publication Date: 2011-08-24
    Description: The Mayak Production Association was the first Russian site for the production and separation of plutonium. The extensive increase in plutonium production during 1948-1955, as well as the absence of reliable waste-management technology, resulted in significant releases of liquid radioactive effluent into the rather small Techa River. This resulted in chronic external and internal exposure of about 30,000 residents of riverside communities; these residents form the cohort of an epidemiologic investigation. Analysis of the available historical monitoring data indicates that the following reliable data sets can be used for reconstruction of doses received during the early periods of operation of the Mayak Production Association: Temporal pattern of specific beta activity of river water for several sites in the upper Techa region since July 1951; average annual values of specific beta activity of river water and bottom sediments as a function of downstream distance for the whole river since 1951; external gamma-exposure rates near the shoreline as a function of downstream distance for the whole Techa River since 1952; and external gamma-exposure rate as a function of distance from the shoreline for several sites in the upper and middle Techa since 1951.
    Keywords: Environment Pollution
    Type: Health physics (ISSN 0017-9078); Volume 76; 6; 605-18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room-temperature mid-IR materials and broadly tunable multisection devices is reviewed to suggest new sensor possibilities.
    Keywords: Environment Pollution
    Type: Measurement science & technology (ISSN 0957-0233); Volume 9; 4; 545-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The Techa River (Southern Urals, Russia) was contaminated in 1949-1956 by liquid radioactive wastes from the Mayak complex, the first Russian facility for the production of plutonium. The measurements of environmental contamination were started in 1951. A simple model describing radionuclide transport along the free-flowing river and the accumulation of radionuclides by bottom sediments is presented. This model successfully correlates the rates of radionuclide releases as reconstructed by the Mayak experts, hydrological data, and available environmental monitoring data for the early period of contamination (1949-1951). The model was developed to reconstruct doses for people who lived in the riverside communities during the period of the releases and who were chronically exposed to external and internal irradiation. The model fills the data gaps and permits reconstruction of external gamma-exposure rates in air on the river bank and radionuclide concentrations in river water used for drinking and other household needs in 1949-1951.
    Keywords: Environment Pollution
    Type: Health physics (ISSN 0017-9078); Volume 77; 2; 142-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.
    Keywords: Environment Pollution
    Type: Journal of chromatography. A; Volume 804; 1-2; 295-304
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This presentation discusses the problem of local air quality as it is affected by modern aircraft engine exhaust and the objective of this workshop. It begins with a discussion on the nature and sources of particulates and aerosols. The problems, and the technical considerations of how to regulate the aircraft emissions, are reviewed. There is no local (i.e., state or county) regulations of the aircraft operations. Amongst the conclusions are: (1) there is an inadequate database of information regarding the emittants from aircrafts. (2) That data which does exist represents older engines and aircraft, it is not representative of the advanced and future fleet.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 21-44; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 207-210; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; Part 2; 945-947; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: This paper will describe the planned 3-year Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission, its instrumentation and implementation. It will use LITE and other data, plus analyses, to show the feasibility of such a mission. PICASSO is being proposed for NASA's Earth System Science Pathfinder (ESSP) program with launch predicted in 2003.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; Part 2; 943-944; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The assignments and charges to the three workgroups are discussed. The three workgroups were: (1) Trace Chemistry, (2) Instrumentation, (3) Venues and procedures.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 163-176; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: We presented results from the SASS Near-Field Interactions Flight (SNIF-III) Experiment which was conducted during May and June 1997 in collaboration with the Vermont and New Jersey Air National Guard Units. The project objectives were to quantify the fraction of fuel sulfur converted to S(VI) species by jet engines and to gain a better understanding of particle formation and growth processes within aircraft wakes. Size and volatility segregated aerosol measurements along with sulfur species measurements were recorded in the exhaust of F-16 aircraft equipped with F-100 engines burning fuels with a range of fuel S concentrations at different altitudes and engine power settings. A total of 10 missions were flown in which F-16 exhaust plumes were sampled by an instrumented T-39 Sabreliner aircraft. On six of the flights, measurements were obtained behind the same two aircraft, one burning standard JP-8 fuel and the other either approximately 28 ppm or 1100 ppm S fuel or an equal mixture of the two (approximately 560 ppm S). A pair of flights was conducted for each fuel mixture, one at 30,000 ft altitude and the other starting at 35,000 ft and climbing to higher altitudes if contrail conditions were not encountered at the initial flight level. In each flight, the F-16s were operated at two power settings, approx. 80% and full military power. Exhaust emissions were sampled behind both aircraft at each flight level, power setting, and fuel S concentration at an initial aircraft separation of 30 m, gradually widening to about 3 km. Analyses of the aerosol data in the cases where fuel S was varied suggest results were consistent with observations from project SUCCESS, i.e., a significant fraction of the fuel S was oxidized to form S(VI) species and volatile particle emission indices (EIs) in comparably aged plumes exhibited a nonlinear dependence upon the fuel S concentration. For the high sulfur fuel, volatile particle EIs in 10-second-old-plumes were 2 to 3 x 10 (exp 17) / kg of fuel burned and exhibited no obvious trend with engine power setting or flight altitude. In contrast, about 8-fold fewer particles were observed in similarly aged plumes from the same aircraft burning fuel with 560 ppm S content and EIs of 1 x 10(exp 15)/ kg of fuel burned were observed in the 28 ppm S fuel case. Moreover, data recorded as a function of plume age indicates that formation and growth of the volatile particles proceeds more slowly as the fuel S level is reduced. For example, ultrafine particle concentrations appear to stabilize within 5 seconds after emission in the 1100 ppm S cases but are still increasing in 20-second old plumes produced from burning the 560 ppm S fuel.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 83-100; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: The overall focus of our research is to document long-term elevation change of the Greenland ice sheet using satellite altimeter data. In addition, we are investigating seasonal and interannual variations in the ice-sheet elevations to place the long-term measurements in context. Specific objectives of this research include: 1) Developing new techniques to significantly improve the accuracy of elevation-change estimates derived from satellite altimetry. 2) Measuring the elevation change of the Greenland ice sheet over a 10-year time period using Seasat (1978) and Geosat GM (1985-86) and Geosat ERM (1986-88) altimeter data. 3) Quantifying seasonal/interannual variations in the elevation-change estimates using the continuous time series of surface elevations from the Geosat GM and ERM datasets. 4) Extending the long-term elevation change analysis to two decades by incorporating data from the ERS-1/2 missions (1991-99) and, if available, the Geosat-Follow On (GFO) mission (1998-??).
    Keywords: Environment Pollution
    Type: Program for Arctic Regional Climate Assessment (PARCA); 6-11; NASA/TM-1999-209205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: The effect of clouds and aerosol on the atmospheric energy balance is a key global change problem. Full knowledge of aerosol distributions is difficult to obtain by passive sensing alone. Aerosol and cloud retrievals in several important areas can be significantly improved with active remote sensing by lidar. Micro Pulse Lidar (MPL) is an aerosol and cloud profilometer that provides a detailed picture of the vertical structure of boundary layer and elevated dust or smoke plume aerosols. MPL is a compact, fully eyesafe, ground-based, zenith pointing instrument capable of full-time, long-term unattended operation at 523 nm. In October of 1993, MPL began taking full-time measurements for the Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) site and has since expanded to ARM sites in the Tropical West Pacific (TWP) and the North Slope of Alaska (NSA). Other MPL's are moving out to some of the 60 world-wide Aerosol Robotic Network (AERONET) sites which are already equipped with automatic sun-sky scanning spectral radiometers providing total column optical depth measurements. Twelve additional MPL's have been purchased by NASA to add to the aerosol and cloud database of the EOS ground validation network. The original MPL vertical resolution was 300 meters but the newer versions have a vertical resolution of 30 meters. These expanding data sets offer a significant new resource for atmospheric radiation analysis. Under the direction of Jim Spinhirne, the MPL analysis team at NASA/GSFC has developed instrument correction and backscatter analysis techniques for ARM to detect cloud boundaries and analyze vertical aerosol structures. A summary of MPL applications is found in Hlavka (1997). With the aid of independent total column optical depth instruments such as the Multifilter Rotating Shadowband Radiometer (MFRSR) at the ARM sites or sun photometers at the AERONET sites, the MPL data can be calibrated, and time-resolved vertical profiles of aerosol optical depth as well as aerosol extinction can be calculated. The techniques used to calibrate the lidar, calculate the aerosol extinction-to-backscatter ratio, and produce profiles of aerosol extinction and aerosol optical depths, will be described. Results using these techniques will be presented for case studies at the ARM site in the Tropical West Pacific and later in the Southern Great Plains.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 155-158; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: An intercomparison campaign for Lidar measurements of stratospheric ozone and aerosol has been conducted at the Primary Station of the Network for the Detection of Stratospheric Change (NDSC) in Ny-Alesund/Spitsbergen during January-February 1998. In addition to local instrumentation, the NDSC mobile ozone lidar from NASA/GSFC and the mobile aerosol lidar from Alfred Wegener Institute (AWI) participated. The aim is the validation of stratospheric ozone and aerosol profile measurements according to NDSC guidelines. This paper briefly presents the employed instruments and outlines the campaign. Results of the blind intercomparison of ozone profiles are given in a companion paper and temperature measurements are described in this issue.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 517-520; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: Lidar Atmospheric Sensing Experiment (LASE) is the first fully engineered, autonomous airborne DIAL (Differentials Absorption Lidar) system to measure water vapor, aerosols, and clouds throughout the troposphere. This system uses a double-pulsed Ti:sapphire laser, which is pumped by a frequency-doubled flashlamp-pumped Nd: YAG laser, to transmit light in the 815 mn absorption band of water vapor. LASE operates by locking to a strong water vapor line and electronically tuning to any spectral position on the absorption line to choose the suitable absorption cross-section for optimum measurements over a range of concentrations in the atmosphere. During the LASE Validation Experiment, which was conducted over Wallops Island during September, 1995, LASE operated on either the strong water line for measurements in middle to upper troposphere, or on the weak water line for measurements made in the middle to lower troposphere including the boundary layer. Comparisons with water vapor measurements made by airborne dew point and frost point hygrometers, NASA/GSFC (Goddard Space Flight Center) Raman Lidar, and radiosondes showed the LASE water vapor mixing ratio measurements to have an accuracy of better than 6% or 0.01 g/kg, whichever is larger, throughout the troposphere. In addition to measuring water vapor mixing ratio profiles, LASE simultaneously measures aerosol backscattering profiles at the off-line wavelength near 815 nm from which atmospheric scattering ratio (ASR) profiles are calculated. ASR is defined as the ratio of total (aerosol + molecular) atmospheric scattering to molecular scattering. Assuming a region with very low aerosol loading can be identified, such as that typically found just below the tropopause, then the ASR can be determined. The ASR profiles are calculated by normalizing the scattering in the region containing enhanced aerosols to the expected scattering by the "clean" atmosphere at that altitude. Images of the total ASR clearly depict cloud regions, including multiple cloud layers, thin upper level cirrus, etc., throughout the troposphere. New data products that are being derived from the LASE aerosol and water measurements include: 1) aerosol extinction coefficient, 2) aerosol optical thickness, 3) precipitable water vapor, and 4) relative humidity (RH). These products can be compared with airborne in-situ, and ground and satellite remote sensing measurements,. This paper presents a preliminary examination of RH profiles in the middle to upper troposphere that are generated from LASE measured water vapor mixing ratio profiles coupled with rawinsonde profiles of temperature and pressure.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 465-468; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: During January and February, 1998, a measurements campaign was held at the Network for the Detection of Stratospheric Change (NDSC) Arctic site at Ny-Alesund (78.9N). Lidar measurements of ozone, temperature and aerosol parameters were made along with balloon sonde and microwave measurements of ozone. Atmospheric temperatures were measured between 10 and 70 km. During the time of the campaign an strong warming occurred at the stratopause, elevating the measured temperature by as much as 80 K. The height of the stratopause descended at this time to below 40 km.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 343-345; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: The temperature structure of the middle atmosphere has been studied for several decades using a variety of techniques. However, temperature profiles derived from lidar measurements can provide improved vertical resolution and accuracy. Lidars can also provide long-term data series relatively absent of instrumental drift, and integration of the measurements over several hours removes most of the gravity wave-like short-scale disturbances. This paper describes a seasonal climatology of the middle atmosphere temperature derived from lidar measurements obtained at several mid- and low-latitude locations. Results from the following lidars, which have all obtained a long-term measurement record, were used in this study: the two Rayleigh lidars of the Service d'Aeronomie du CNRS, France, located at the Observatoire de Haute Provence (OHP, 44.0 deg N) and at the Centre d'Essais des Landes (CEL, 44.0 deg N), the two Rayleigh/Raman lidars of the Jet Propulsion Laboratory, USA, located at Table Mountain, California (TMF, 34.4 deg N) and at Mauna Loa, Hawaii (MLO, 19.5 deg N), and the Colorado State University, USA, sodium lidar located at Fort Collins, Colorado (CSU, 40.6 deg N). The overall data set extends from 1978 to 1997 with different periods of measurements depending on the instrument. Three of the instruments are located at primary or complementary stations (OHP, TMF, MLO) within the Network for Detection of Stratospheric Change (NDSC). Several aspects of the temperature climatology obtained by lidar in the middle atmosphere are presented, including the climatological temperature average through the year; the annual and semi-annual components, and the differences compared to the CIRA-86 climatological model.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 339-342; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: During early August 1997, the ozone column density measured over Lauder was unusually low, with a minimum value of 222 Dobson Units (DU) at August 10. These observations are striking since in August, during the Austral winter, the ozone column density should be heading towards its yearly maximum; The August mean ozone column density measured over Lauder between 1987 and 1996 was 348(+/-28) DU, the lowest monthly average in these ten years was 255 DU. Regular altitude profile measurements of ozone, performed at Network for the Detection of Stratospheric Change (NDSC) station Lauder, make it possible to do a detailed, altitude-resolved, study of the low ozone observations. The measurements show ozone poor air in two altitude regions of the stratosphere: A 'high region', extending from the 600 K to the 1050 K isentrope (25 to 34 km), and a 'low region', below about 550 K (22 km). High resolution reverse trajectory maps of potential vorticity (PV) and ozone mixing ratio, based on the assumption of passive advection by the large-scale three-dimensional winds, show that in the 'high region' the ozone poor air was part of the polar vortex, which was centered off the pole and extended over Lauder for several days, while in the 'low region' the ozone poor air was mixed in from low latitudes. A rapid recovery of the ozone column density, by more than 110 DU within 24 hours, was observed when in the low region an ozone rich filament of the polar vortex moved over Lauder, while in the high region the (ozone poor) high part of the vortex moved away.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 319-322; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 269-271; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: A Kalman filter for the assimilation of long-lived atmospheric chemical constituents has been developed for two-dimensional transport models on isentropic surfaces over the globe. An important attribute of the Kalman filter is that it calculates error covariances of the constituent fields using the tracer dynamics. Consequently, the current Kalman-filter assimilation is a five-dimensional problem (coordinates of two points and time), and it can only be handled on computers with large memory and high floating point speed. In this paper, an implementation of the Kalman filter for distributed-memory, message-passing parallel computers is discussed. Two approaches were studied: an operator decomposition and a covariance decomposition. The latter was found to be more scalable than the former, and it possesses the property that the dynamical model does not need to be parallelized, which is of considerable practical advantage. This code is currently used to assimilate constituent data retrieved by limb sounders on the Upper Atmosphere Research Satellite. Tests of the code examined the variance transport and observability properties. Aspects of the parallel implementation, some timing results, and a brief discussion of the physical results will be presented.
    Keywords: Environment Pollution
    Type: Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications; 165-181; NASA/CP-1998-206860
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.
    Keywords: Environment Pollution
    Type: Models and Measurements Intercomparison 2; 10-109; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: Solid (soot) and liquid (presumed sulfate) particle emissions from aircraft engines may have serious impacts on the atmosphere. While the direct radiative impact of these particles is expected to be small relative to those from natural sources (Atmospheric Effects of Subsonic Aircraft: Interim Assessment of the Advanced Subsonic Technology Program, NASA Ref. Pub. 1400, 1997), their indirect effects on atmospheric chemistry and cloud formation may have a significant impact. The potential impacts of primary concern are the increase of sulfate surface area and accelerated heterogeneous chemical reactions, and the potential for either modified soot or sulfate particles to serve as cloud nuclei which would change the frequency or radiative characteristics of clouds. Volatile (sulfate) particle concentrations measured behind the Concorde aircraft in flight in the stratosphere were much higher than expected from near-field model calculations of particle formation and growth. Global model calculations constrained by these data calculate a greater level of stratospheric ozone depletion from the proposed High speed Civil Transport (HSCT) fleet than those without particle emission. Soot particles have also been proposed as important in heterogeneous chemistry but this remains to be substantiated. Aircraft volatile particle production in the troposphere has been shown by measurements to depend strongly on fuel sulfur content. Sulfate particles of sufficient size are known to provide a good nucleating surface for cloud growth. Although pure carbon soot is hydrophobic, the solid particle surface may incorporate more suitable nucleating sites. The non-volatile (soot) particles also tend to occupy the large end of aircraft particle size spectra. Quantitative connection between aircraft particle emissions and cloud modification has not been established yet, however, even small changes in cloud amount or properties could have a significant effect on the radiative balance of the atmosphere.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 55-60; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.
    Keywords: Environment Pollution
    Type: Program for Arctic Regional Climate Assessment (PARCA); 12-15; NASA/TM-1999-209205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The Urban Environment Initiative (UEI), has been established as part of a Cooperative Agreement with the National Aeronautics and Space Administration (NASA). The UEI is part of NASA's overall High Performance Computing and Communications (HPCC) and the Information Infrastructure Technology Applications (IITA) programs. The goal of the UEI is to provide public access to Earth Science information and promote its use with a focus on the environment of urban areas. This goal will be accomplished through collaborative efforts of the UEI team with both community-based and local/regional governmental organizations. The UEI team is comprised of four organizations representing private industry, NASA, and universities: Prime Technologies Service Corporation, NASA's Minority University Space Interdisciplinary Network (MU-SPIN) California State University, at Los Angeles, and Central State University (Wilberforce, OH). "Urban Environment" refers to the web of environmental, economic, and social factors that combine to create the urban world in which we live. Examples of these factors are population distribution, neighborhood demographic profiles, economic resources, business activities, location and concentration of environmental hazards and various pollutants, proximity and level of urban services, which form the basis of the urban environment and ultimately affect our lives and experiences. The use of Geographic Information Systems (GIS) and remote sensing allows data to be visualized in the forms of maps and spatial images. The use of these tools allow analysis of information about urban environments. Also included are descriptions of the four query types which will assist in understanding the maps.
    Keywords: Environment Pollution
    Type: Minority University-Space Interdisciplinary Network Conference Proceedings of the Seventh Annual Users' Conference; 233-238; NASA/CP-1998-206859
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-12-03
    Description: The Smoke, Clouds, Aerosol, and Radiation Brazil(SCAR-B) field campaign was conducted to study the effects that widespread and persistent biomass burning have upon radiative and chemical processes in the atmosphere. The radiative transfer characteristics of the atmosphere are altered by the introduction of particulate and gaseous materials which are the products of the combustion of vegetative material at ground level. These substances are transported and distributed horizontally and vertically by atmospheric dynamical processes which may be perturbed by the heat energy from the fires. As the pollutants disperse, their physical and chemical properties change substantially. A complete description of the effects of smoke requires that the evolution back to the natural situation be fully examined. A most important component of smoke haze investigation is finding its vertical and horizontal distribution in relation to the driving factors of dynamics and the related horizontal transport. In this presentation, we employ data from the Cloud Lidar System(CLS), carried aboard the NASA ER-2 aircraft, to provide a unique view of the particulate or aerosol loading produced by fires, especially with regard to the geometrical distribution of the aerosols in the vertical plane. The lidar has the ability to measure aerosol optical properties in a continuous fashion at quite fine vertical and horizontal resolution. The results from the lidar provide measurements that are largely independent of influences that corrupt passive instruments and thus it can serve to corroborate their results. The extended horizontal and vertical range of lidar results can also augment ground based and airborne in situ measurements which have limited horizontal and vertical scope. We present the results of our analysis of CLS observations taken during the SCAR-B field campaign. Observations of the the aerosol optical thickness from the Aerosol Robotic Network(AERONET) of solar photometers are employed in conjunction with CLS data to derive extinction to backscatter ratio values which are used to convert the lidar backscatter coefficient into extinction coefficient. The extinction coefficient is integrated vertically to find aerosol optical thickness along ER-2 flight tracks. We use images of the CLS derived extinction coefficient to depict its horizontal and vertical distribution. Multispectral photometer optical thickness is used to compute the Angstrom exponent. With these, we examine the hypothesis that the values of extinction to backscatter ratio can be related to the Anstrom coefficient since both of these would be a function of the refractive index and size distribution of the aerosols.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 87-90; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: Signal-induced noise (SIN) is a common effect resulting when a photomultiplier tube (PMT) is saturated, for a brief moment, with a high intensity light pulse. After the laser pulse is sent into the atmosphere a very large light return, from either the near-field or a cloud, causes the PMT to momentarily saturate. The PMT is gated off at this time so no signal is seen at the anode. When the PMT gate is turned on, the far-field light return from the atmosphere is observed. This signal is distorted, however because of the addition of SIN to the received light signal causing a slower than expected decay of the atmospheric signal return. We have characterized SIN responses to varying parameters of the incident light on the PMT. These varied parameters included incident wavelength, PMT voltage, incident intensity, and tube type. We found that only the amplitude of the SIN was effected by varying PMT voltages and light intensities. The amplitude increased linearly as input light intensity increased. Different incident wavelengths at the same intensity did not effect the amplitude or the temporal behavior of the SIN response. Finally, different PMT tubes with similar physical structures exhibited similar SIN responses although with different amplitudes. The different amplitudes can be attributed to the different gains and operating voltages of each tube. These results suggest that SIN is caused by photocathode electron dynamics such as charge accumulation on internal PMT surfaces. These surfaces then emit the electrons slowly resulting in a long decay noise signal. With the SIN responses characterized we can now try to develop a method to reduce or eliminate SIN in DIAL systems.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; Part 2; 849-852; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The primary role of models in the assessment process is to predict changes to ozone. It is crucial therefore that the ability of the models to reproduce the actual distribution of ozone be tested. Historically, maps of the ozone column (latitude by month) have been used for this purpose. In MM I a climatology was developed for the vertical distribution of ozone for 15-60 km, based on SBUV data for 1979-80. SBUV profiles are reported with vertical resolution of approx. 5 km, but the true resolution is lower, approx. 8 km above the ozone maximum and approx. 15 km for 10-25 km. The climatology was considered valid to about 20-30% at 20 km and to 50% at 15 km. Comparisons were made with models in mixing ratio (ppm), which emphasizes the middle and upper stratosphere. A new ozone climatology was developed for the vertical distribution of ozone for MM II. Our goal was to develop a product that could be used to evaluate models in the lower stratosphere, the region where most of the ozone column resides and where most of the ozone loss is occurring, as well as the middle and upper stratosphere.
    Keywords: Environment Pollution
    Type: Models and Measurements Intercomparison 2; 307-362; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-12-03
    Description: The Sampling Procedures and Venues Workgroup discussed the potential venues available and issues associated with obtaining measurements. Some of the issues included Incoming Air Quality, Sampling Locations, Probes and Sample Systems. The following is a summary of the discussion of the issues and venues. The influence of inlet air to the measurement of exhaust species, especially trace chemical species, must be considered. Analysis procedures for current engine exhaust emissions regulatory measurements require adjustments for air inlet humidity. As a matter of course in scientific investigations, it is recommended that "background" measurements for any species, particulate or chemical, be performed during inlet air flow before initiation of combustion, if possible, and during the engine test period as feasible and practical. For current regulatory measurements, this would be equivalent to setting the "zero" level for conventional gas analyzers. As a minimum, it is recommended that measurements of the humidity and particulates in the incoming air be taken at the start and end of each test run. Additional measurement points taken during the run are desirable if they can be practically obtained. It was felt that the presence of trace gases in the incoming air is not a significant problem. However, investigators should consider the ambient levels and influences of local air pollution for species of interest. Desired measurement locations depend upon the investigation requirements. A complete investigation of phenomenology of particulate formation and growth requires measurements at a number of locations both within the engine and in the exhaust field downstream of the nozzle exit plane. Desirable locations for both extractive and in situ measurements include: (1) Combustion Zone (Multiple axial locations); (2) Combustor Exit (Multiple radial locations for annular combustors); (3) Turbine Stage (Inlet and exit of the stage); (4) Exit Nozzle (Multiple axial locations downstream of the nozzle). Actual locations with potential for extractive or non-intrusive measurements depend upon the test article and test configuration. Committee members expressed the importance of making investigators aware of various ports that could allow access to various stages of the existing engines. Port locations are engine si)ecific and might allow extractive sampling or innovative hybrid optical-probe access. The turbine stage region was one the most desirable locations for obtaining samples and might be accessed through boroscope ports available in some engine designs. Discussions of probes and sampling systems quickly identified issues dependent on particular measurement quantities. With general consensus, the group recommends SAE procedures for measurements and data analyses of currently regulated exhaust species (CO2, CO, THC, NO(x),) using conventional gas sampling techniques. Special procedures following sound scientific practices must be developed as required for species and/or measurement conditions not covered by SAE standards. Several issues arose concerning short lived radicals and highly reactive species. For conventional sampling, there are concerns of perturbing the sample during extraction, line losses, line-wall reactions, and chemical reactions during the sample transport to the analyzers. Sample lines coated with quartz.or other materials should be investigated for minimization of such effects. The group advocates the development of innovative probe techniques and non-intrusive optical techniques for measurement of short lived radicals and highly reactive species that cannot be sampled accurately otherwise. Two innovative probe concepts were discussed. One concept uses specially designed probes to transfer optical beams to and from a region of flow inaccessible by traditional ports or windows. The probe can perturb the flow field but must have a negligible impact on the region to be optically sampled. Such probes are referred to as hybrid probes and are under development at AEDC for measurement in the high pressure, high temperature of a combustor under development for power generation. The other concept consists of coupling an instrument directly to the probe. The probe would isolate a representative sample stream, freeze chemical reactions and direct the sample into the analyzer portion of the probe. Thus, the measurement would be performed in situ without sample line losses due either to reactions or binding at the wall surfaces. This concept was used to develop a fast, in situ, time-of-flight mass spectrometer measurement system for temporal quantification of NO in the IMPULSE facility at AEDC. Additional work is required in this area to determine the best probe and sampling technique for each species measurement requirement identified by the Trace Chemistry Working Group. A partial list of Venues was used as a baseline for discussion. Additional venues were added to the list and the list was broken out into the following categories: (1)Engines (a) Sea Level Test Stands (b) Altitude Chambers; (2) Annular Combustor Test Stands, (3) Sector Flametube Test Stands, (4) Fundamentals Rigs/Experiments.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 187-237; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 123-134; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and, in addition, of the pressure, temperature, and velocity. A near term goal of the experimental program should be to confirm the nonlinear effects of sulfur speciation, and if present, to provide an explanation for them. It is also desirable to examine if the particulate matter retains any sulfur. The recommendation is to examine the effects on SOx production of variations in fuel-bound sulfur and aromatic content (which may affect the amount of particulates formed). These experiments should help us to understand if there is a coupling between particulate formation and SO, concentration. Similarly, any coupling with NOx can be examined either by introducing NOx into the combustion air or by using fuel-bound nitrogen. Also of immediate urgency is the need to establish and validate a detailed mechanism for sulfur oxidation/aerosol formation, whose chemistry is concluded to be homogeneous, because there is not enough surface area for heterogeneous effects. It is envisaged that this work will involve both experimental and theoretical programs. The experimental work will require, in addition to the measurements described above, fundamental studies in devices such as flow reactors and shock tubes. Complementing this effort should be modeling and theoretical activities. One impediment to the successful modeling of sulfur oxidation is the lack of reliable data for thermodynamic and transport properties for several species, such as aqueous nitric acid, sulfur oxides, and sulfuric acid. Quantum mechanical calculations are recommended as a convenient means of deriving values for these properties. Such calculations would also help establish rate constants for several important reactions for which experimental measurements are inherently fraught with uncertainty. Efforts to implement sufficiently detailed chemistry into computational fluid dynamic codes should be continued. Zero- and one-dimensional flow models are also useful vehicles for elucidating the minimal set of species and reactions that must be included in two- and three-dimensional modeling studies.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 177-178; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-12-03
    Description: This paper reviews the relationships of the programs and projects and reviews the purpose of the Engine Exhaust Trace Chemistry (EETC) Committee. The charges of the Committee are: (1) to prioritize the engine trace constituents for assessing impacts of aircraft; (2) Assess both extractive and insitu measurement techniques; and (3) Determine the best venues for performing the necessary measurements. A synopsis of evidence supporting and questions concerning the role(s) of aerosol/particulates was presented. The presentation also reviewed how sulfur oxidation kinetics interactions in the hot-section and nozzle play a role in the formation of aerosol precursors. The objective of the workshop, and its organization is reviewed.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 5-19; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Ozone (O3) is one of the most important trace gases in the troposphere, and it is responsible for influencing many critical chemical and radiative processes. Ozone contributes to the formation of the hydroxyl radical (OH), which is central to most chemical reactions in the lower atmosphere, and it absorbs UV, visible, and infrared radiation which affects the energy budget and atmospheric temperatures. In addition, O3 can be used as a tracer of atmospheric pollution and stratosphere troposphere exchange. At elevated concentrations, O3 can also produce detrimental biological and human health effects. The US National Research Council (NRC) Board on Sustainable Development reviewed the US Global Change Research Program (USGCRP) [NRC, 1995], and it identified tropospheric chemistry as one of the high priority areas for the USGCRP in the next decade. The NRC identified the following specific challenges in tropospheric chemistry. Although we understand the reason for the high levels of 03 over several regions of the world, we need to better establish the distribution of O3 in the troposphere in order to document and understand the changes in the abundance of global tropospheric O3. This information is needed to quantify the contribution of O3 to the Earth' s radiative balance and to understand potential impacts on the health of the biosphere. Having recognized the importance of particles in the chemistry of the stratosphere, we must determine how aerosols and clouds affect the chemical processes in the troposphere. This understanding is essential to predict the chemical composition of the atmosphere and to assess the resulting forcing effects in the climate system. We must determine if the self-cleansing chemistry of the atmosphere is changing as a result of human activities. This information is required to predict the rate at which pollutants are removed from the atmosphere. Over nearly two decades, airborne Differential Absorption Lidar (DIAL) systems have been used in over fifteen major field experiments conducted all over the world to address important atmospheric processes affecting the amount and distribution of 03 and aerosols across the troposphere. This paper discusses some of these wide-ranging field experiments and their results and presents a direction for future global studies of O3 and aerosols from space.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 257-260; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: The potential of thermoluminescence measurements of bricks from the contaminated area of the Techa river valley, Southern Urals, Russia, for reconstructing external exposures of affected population groups has been studied. Thermoluminescence dating of background samples was used to evaluate the age of old buildings available on the river banks. The anthropogenic gamma dose accrued in exposed samples is determined by subtracting the natural radiation background dose for the corresponding age from the accumulated dose measured by thermoluminescence. For a site in the upper Techa river region, where the levels of external exposures were extremely high, the depth-dose distribution in bricks and the dependence of accidental dose on the height of the sampling position were determined. For the same site, Monte Carlo simulations of radiation transport were performed for different source configurations corresponding to the situation before and after the construction of a reservoir on the river and evacuation of the population in 1956. A comparison of the results provides an understanding of the features of the measured depth-dose distributions and height dependencies in terms of the source configurations and shows that bricks from the higher sampling positions are likely to have accrued a larger fraction of anthropogenic dose from the time before the construction of the reservoir. The applicability of the thermoluminescent dosimetry method to environmental dose reconstruction in the middle Techa region, where the external exposure was relatively low, was also investigated.
    Keywords: Environment Pollution
    Type: Health physics (ISSN 0017-9078); Volume 75; 6; 574-83
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-23
    Description: Analyses of satellite, ground-based, and balloon measurements allow updated estimates of trends in the vertical profile of ozone since 1979. The results show overall consistency among several independent measurement systems, particularly for northern hemisphere midlatitudes where most balloon and ground-based measurements are made. Combined trend estimates over these latitudes for the period 1979-96 show statistically significant negative trends at ail attitudes between 10 and 45 km, with two local extremes: -7.4 +/- 2.0% per decade at 40 km and -7.3 +/- 4.6% per decade at 15 km attitude. There is a strong seasonal variation in trends over northern midlatitudes in the altitude range of 10 to 18 km, with the largest ozone loss during winter and spring. The profile trends are in quantitative agreement with independently measured trends in column ozone, the amount of ozone in a column above the surface. The vertical profiles of ozone trends provide a fingerprint for the mechanisms of ozone depletion over the last two decades.
    Keywords: Environment Pollution
    Type: Science; Volume 285; 1689-1692
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-23
    Description: The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3 in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(sub x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of O3 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day. This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more O3 than expected.
    Keywords: Environment Pollution
    Type: Science; Volume 279; 49-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-23
    Description: Earth's 4.5 billion year history is a study in change. Natural geological forces have been rearranging the surface features and climatic conditions of our planet since its beginning. There is scientific evidence that some of these natural changes have not only led to mass extinctions of species (e.g., dinosaurs), but have also severely impacted human civilizations. For instance, there is evidence that a relatively sudden climate change caused a 300-year drought that contributed to the downfall of Akkadia, one of the most powerful empires in the Middle-East region around 2200 BC. More recently, the "little ice age" from 1200-1400 AD forced the Vikings to abandon Greenland when temperatures there dropped by about 1.5 C, rendering it too difficult to grow enough crops to sustain the population. Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rate of global change. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. We don't understand the cause-and-effect relationships among Earth's land, ocean, and atmosphere well enough to predict what, if any, impacts these rapid changes will have on future climate conditions. We need to make many measurements all over the world, over a long period of time, in order to assemble the information needed to construct accurate computer models that will enable us to forecast climate change. In 1988, the Earth System Sciences Committee, sponsored by NASA, issued a report calling for an integrated, long-term strategy for measuring the vital signs of Earth's climate system. The report urged that the measurements must all be intimately coupled with focused process studies, they must facilitate development of Earth system models, and they must be stored in an information system that ensures open access to consistent, long-term data. This committee emphasized that the only feasible way to collect these consistent, long-term data is through the use of space-based Earth "remote sensors" (instruments that can measure from a distance things like temperature).
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-23
    Description: We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-23
    Description: The SASS (Subsonic Assessment) Ozone and NO(x) Experiment (SONEX) was an airborne field campaign conducted in October-November 1997 in the vicinity of the North Atlantic Flight Corridor Lo study the impact of aircraft emissions on NOx and ozone (03). A fully instrumented NASA DC-8 aircraft was used as the primary SONEX platform. SONEX activities were closely coordinated with the European POLINAT-2 (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) program, which used a Falcon-20 aircraft and an instrumented in-service Swissair B-747. Both campaigns focused on the upper troposphere/"lowermost" stratosphere (UT/LS) as the region of greatest interest. Specific sampling goals were achieved with the aid of a state-of-the art modeling and meteorological support system, which allowed targeted sampling of air parcels with desired characteristics. A substantial impact of aircraft emissions on NO(x) and O3 in the UT/LS of the study region is shown to be present. It is further shown that the NO(x)- HO(x)-O3 relationships are highly nonlinear and must be accurately simulated to make meaningful future predictions with global models. SONEXIPOLINAT-2 results are being published in Special Sections of GRL and JGR. Here we provide a brief overview of SONEX design, implementation, and expected results to provide a context within which these publications can be understood.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-23
    Description: To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-23
    Description: The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3, in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of 03 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day.This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.
    Keywords: Environment Pollution
    Type: Science; Volume 279; 49-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-31
    Description: To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.
    Keywords: Environment Pollution
    Type: IEEE Transactions on Geoscience and Remote Sensing; Volume 20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-08-31
    Description: This century, especially in the last few decades, Earth's history was marked by intense study and concern about our environment and how we affect it. Scientific studies show that the level of carbon dioxide in the atmosphere is rising, the ocean's productivity is changing, and the average global temperatures have risen by 0.511. What we do not completely understand is: What fraction of this variation is due to human interference with the environment? What fraction is due to natural phenomena? How do these changes correlate with each other? In order to obtain a better understanding of how land, atmosphere and ocean interact to produce changes on Earth's climate and how human intervention affects these changes, NASA started planning for the Earth Observing System (EOS) in the early 1980's. As a result, a series of satellites will be sent into orbit to monitor the Earth for the next 18 years, providing scientists with necessary data to help them answer these questions.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-08-29
    Description: Measurements of NO(x) and ozone performed during the NOXAR project are compared with results from the coupled chemistry-climate models ECHAM4.L39(DLR)/CHEM and GISS-model. The measurements are based on flights between Europe and the East coast of America and between Europe and the Far East in the latitude range 40 deg N to 65 deg N. The comparison concentrates on tropopause altitudes and reveals strong longitudinal variations of seasonal mean NO,, of 200 pptv. Either model reproduced strong variations 3 km below but not at the tropopause, indicating a strong missing NO(x) or NO(y) sink over remote areas, e.g. NO(x) to HNO3 conversion by OH from additional OH sources or HNO3 wash-out. Vertical profiles show maximum NO(x) values 2-3 km below the tropopause with a strong seasonal cycle. ECHAM4.L39(DLR)/CHEM reproduces a maximum, although located at the tropopause with a less pronounced seasonal cycle, whereas the GISS model reproduces the seasonal cycle but not the profile's shape due to its coarser vertical resolution. A comparison of NO(x) frequency distributions reveals that both models are capable of reproducing the observed variability, except that ECHAM4.L39(DLR)/CHEM shows no very high NO(x) mixing ratios. Ozone mean values, vertical profiles and frequency distributions are much better reproduced in either model, indicating that the NO(x) frequency distribution, namely the most frequent NO(x) mixing ratio, is more important for the tropospheric photochemical ozone production than its mean value. Both models show that among all sources, NO(x) from lightning contributes most to the seasonal cycle of NO(x) at tropopause altitudes. The impact of lightning in the upper troposphere on NO(x) does not vary strongly with altitude, whereas the impact of surface emissions decreases with altitude. However, the models show significant differences in lightning induced NO(x) concentrations, especially in winter, which may be related to the different treatment of the lower stratospheric coupling between dynamics and chemistry.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-08-29
    Description: Annual zonal averages of ozone amounts from Nimbus-7/TOMS (Total Ozone Mapping Spectrometer) (1979 to 1992) are used to estimate the interannual variability of ozone and UVB (290 - 315 nm) irradiance between plus or minus 60 deg. latitude. Clear-sky interannual ozone and UVB changes are mainly caused by the Quasi Biennial Oscillation (QBO) of stratospheric winds, and can amount to plus or minus 15% at 300 nm and plus or minus 5% at 310 nm (or erythemal irradiance) at the equator and at middle latitudes. Near the equator, the interannual variability of ozone amounts and UV irradiance caused by the combination of the 2.3 year QBO and annual cycles implies that there is about a 5-year periodicity in UVB variability. At higher latitudes, the appearance of the interannual UVB maximum is predicted by the QBO, but without the regular periodicity. The 5-year periodic QBO effects on UVB irradiance are larger than the currently evaluated long-term changes caused by the decrease in ozone amounts.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-08-29
    Description: Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-29
    Description: An algorithm is presented for retrieving vertical profiles of O3 concentration using measurements of UV and visible light scattered from the limb of the atmosphere. The UV measurements provide information about the O3 profile in the upper and middle stratosphere, while only visible wavelengths are capable of probing the lower stratospheric O3 profile. Sensitivity to the underlying scene reflectance is greatly reduced by normalizing measurements at a tangent height high in the atmosphere (approximately 55 km), and relating measurements taken at lower altitudes to this normalization point. To decrease the effect of scattering by thin aerosols/clouds that may be present in the field of view, these normalized measurements are then combined by pairing wavelengths with strong and weak O3 absorption. We conclude that limb scatter can be used to measure O3 between 15 km and 50 km with 2-3 km vertical resolution and better than 10% accuracy.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-29
    Description: The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-29
    Description: Two instruments were flown on shuttle flight STS-87 to test a new technique for inferring the ozone vertical profile using measurements of scattered sunlight from the Earth's limb. The instruments were an ultraviolet imaging spectrometer designed to measure ozone between 30 and 50 km, and a multi-filter imaging photometer that uses 600 nm radiances to measure ozone between 15 km and 35 km. Two orbits of limb data were obtained on December 2, 1997. For the scans analyzed the ozone profile was measured from 15 km to 50 km with approximately 3 km vertical resolution. Comparisons with a profile from an ozonesonde launched from Ascension Island showed agreement mostly within +/- 5%. The tropopause at 15 km was clearly detected.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-29
    Description: During the Aerosols99 trans-Atlantic cruise from Norfolk, VA, to Cape Town, South Africa, daily ozonesondes were launched from the NOAA R/V Ronald H Brown between 17 January and 6 February l999. A composite of tropospheric ozone profiles along the latitudinal transect shows 4 zones, which are interpreted using correlative shipboard ozone, CO, water vapor, and overhead aerosol optical thickness measurements. Elevated ozone associated with biomass burning north of the ITCZ (Intertropical Convergence Zone) is prominent at 3-5 km from 10-0N, but even higher ozone (100 ppbv, 7-10 km) occurred south of the ITCZ, where it was not burning. Column-integrated tropospheric ozone was 44 Dobson Units (DU) in one sounding, 10 DU lower than the maximum in a January-February 1993 Atlantic cruise with ozonesondes [Weller et al., 1996]. TOMS tropospheric ozone shows elevated ozone extending throughout the tropical Atlantic in January 1999. Several explanations are considered. Back trajectories, satellite aerosol observations and shipboard tracers suggest a combination of convection and interhemispheric transport of ozone and/or ozone precursors, probably amplified by a lightning NO source over Africa.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-29
    Description: The Goddard trajectory chemistry model was used with ER-2 aircraft data to test our current knowledge of radical photochemistry during the POLARIS (Polar Ozone Loss in the Arctic Region In Summer) campaign. The results of the trajectory chemistry model with and without trajectories are used to identify cases where steady state does not accurately describe the measurements. Over the entire mission, using trajectory chemistry reduces the variability in the modeled NO(x) comparisons to data by 25% with respect to the same model simulating steady state. Although the variability is reduced, NO(x)/NO(y) trajectory model results were found to be systematically low relative to the observations by 20-30% as seen in previous studies. Using new rate constants for reactions important in NO(y) partitioning improves the agreement of NO(x)/NO(y) with the observations but a 5-10% bias still exists. OH and HO2 individually are underpredicted by 15% of the standard steady state model and worsen with the new rate constants. Trajectory chemistry model results of OH/HO2 were systematically low by 10-20% but improve using the new rates constants because of the explicit dependence on NO. This suggests that our understanding of NO(x) is accurate to the 20% level and HO(x) chemistry is accurate to the 30% level in the lower stratosphere or better for the POLARIS regime. The behavior of the NO(x) and HO(x) comparisons to data using steady state versus trajectory chemistry and with updated rate coefficients is discussed in ten-ns of known chemical mechanisms and lifetimes.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-08-29
    Description: Using state-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 AA-monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analyses of rainfall and SST are carried out globally over the entire tropics and regionally over the AA-monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions during the boreal summer and winter respectively. The observed 1997-98 AA-monsoon anomalies are found to be very complex with approximately 34% of the anomalies of the Asian (boreal) summer monsoon and 74% of the Australia (austral) monsoon attributable to basin-scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19% and 10%, leaving about 47% and 16% due to internal dynamics for the boreal and austral monsoon respectively. For the boreal summer monsoon, it is noted that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also intrinsic monsoon regional coupled processes.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-29
    Description: Recent reanalyses of satellite, ground-based and balloon measurements allow updated estimates of trends in the vertical profile of ozone during 1980-96. The results show overall consistency between several independent measurement systems, particularly for northern hemisphere mid-latitudes where most ground-based measurements are made. Combined trend estimates over these latitudes show statistically significant negative trends at all altitudes between 10 and 45 km, with two local maxima: -7.4 +/- 2.0%/decade at 40 km and -7.6 +/- 4.6%/decade at 15 km altitude. There is a strong seasonal variation in trends over northern mid-latitudes in the altitude range of 10- 18 km. The profile trends are in quantitative agreement with independently measured trends in column ozone.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-29
    Description: The book being reviewed, Regional Hydrological Response to Climate Change, addresses the effects of global climate change, particularly global warming induced by greenhouse gas emissions, on hydrological budgets at the regional scale. As noted in its preface, the book consists of peer-reviewed papers delivered at scientific meetings held by the International Geographical Union Working Group on Regional Hydrological Response to Climate Change and Global Warming, supplemented with some additional chapters that round out coverage of the topic. The editors hope that this book will serve as "not only a record of current achievements, but also a stimulus to further hydrological research as the detail and spatial resolution of Global Climate Models improves". The reviewer found the background material on regional climatology to be valuable and the methodologies presented to be of interest. The value of the book is significantly diminished, however by the dated nature of some of the material and by large uncertainties in the predictions of regional precipitation change. The book would have been improved by a much more extensive documentation of the uncertainty associated with each step of the prediction process.
    Keywords: Environment Pollution
    Type: Bulletin of the American Meteorological Society
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-29
    Description: The impact of aircraft emissions on reactive nitrogen in the upper troposphere (UT) and lowermost stratosphere (LS) was estimated using the NO(y)-O3 correlation obtained during the SASS Ozone and NO(x) Experiment (SONEX) carried out over the US continent and North Atlantic Flight Corridor (NAFC) region in October and November 1997. To evaluate the large scale impact, we made a reference NO(y)-O3 relationship in air masses, upon which aircraft emissions were considered to have little impact. For this purpose, the integrated input of NO(x) from aircraft into an air mass along a 10-d back trajectory (DELTA-NO(y)) was calculated based on the ANCAT/EC2 emission inventory. The excess NO(y) (dNO(y)) was calculated from the observed NO(y) and the reference NO(y)-O3 relationship. As a result, a weak positive correlation was found between the dNO(y) and DELTA-NO(y), and dNO(y) and NO(x)/NO(y) values, while no positive correlation between the dNO(y) and CO values was found, suggesting that dNO(y) values can be used as a measure of the NO(x) input from aircraft emissions. The excess NO(y) values calculated from another NO(y)-O3 reference relationship made using in-situ CN data also agreed with these dNO(y) values, within the uncertainties. At the NAFC region (45 N - 60 N), the median value of dNO(y) in the troposphere increased with altitude above 9 km and reached 70 pptv (20% of NO(y)) at 11 km. The excess NO(x) was estimated to be about half of the dNO(y) values, corresponding to 30% of the observed NO(x) level. Higher dNO(y) values were generally found in air masses where O3 = 75 - 125 ppbv, suggesting a more pronounced effect around the tropopause. The median value of dNO(y) in the stratosphere at the NAFC region at 8.5 - 11.5 km was about 120 pptv. The higher dNO(y) values in the LS were probably due to the accumulated effect of aircraft emissions, given the long residence time of affected air in the LS. Similar dNO(y) values were also obtained in air masses sampled over the US continent.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-29
    Description: For the past decade, the NASA Atmospheric Effects of Aviation Project (AEAP) has been the U.S. focal point for research on aircraft effects. In conjunction with U.S. basic research programs, AEAP and concurrent European research programs have driven remarkable progress reports released in 1999 [IPCC, 1999; Kawa et al., 1999]. The former report primarily focuses on aircraft effects in the upper troposphere, with some discussion on stratospheric impacts. The latter report focuses entirely on the stratosphere. The current status of research regarding aviation effects on stratospheric ozone and climate, as embodied by the findings of these reports, is reviewed. The following topics are addressed: Aircraft Emissions, Pollution Transport, Atmospheric Chemistry, Polar Processes, Climate Impacts of Supersonic Aircraft, Subsonic Aircraft Effect on the Stratosphere, Calculations of the Supersonic Impact on Ozone and Sensitivity to Input Conditions.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-29
    Description: Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-29
    Description: The well-known wave-one pattern seen in tropical total ozone [Shiotani, 1992; Ziemke et al., 1996, 1998] has been used to develop a modified-residual (MR) method for retrieving time-averaged stratospheric ozone and tropospheric ozone column amount from TOMS (Total Ozone Mapping Spectrometer) over the 14 complete calendar years of Nimbus 7 observations (1979-1992) and from TOMS on the Earth-Probe (1996-present) and ADEOS platforms (1996- 1997). Nine- to sixteen-day averaged tropical tropospheric ozone (TTO) maps, validated with ozonesondes, show a seasonality expected from dynamical and chemical influences. The maps may be viewed on a homepage: http://metosrv2.umd.edu/~tropo. Stratospheric column ozone, which is also derived by the modified-residual method, compares well with sondes (to within 6-7 DU) and with stratospheric ozone column derived from other satellites (within 8-10 DU). Validation of the TTO time-series is presently limited to ozonesonde comparisons with Atlantic stations and sites on the adjacent continents (Ascension Island, Natal, Brazil; Brazzaville); for the sounding periods, TTO at all locations agrees with the sonde record to +/-7 DU. TTO time-series and the magnitude of the wave-one pattern show ENSO signals in the strongest El Nifio periods from 1979-1998. From 12degN and 12degS, zonally averaged tropospheric ozone shows no significant trend from 1980-1990. Trends are also not significant during this period in localized regions, e.g. from just west of South America across to southern Africa. This is consistent with the ozonesonde record at Natal, Brazil (the only tropical ozone data publicly available for the 1980's), which shows a not statistically significant increase. The lack of trend in tropospheric ozone agrees with a statistical analysis based on another method for deriving TTO from TOMS, the so-called Convective-Cloud-Differential approach of Ziemke et al. [1998].
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-29
    Description: Chemical data from flight 8 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) exhibited signatures consistent with aircraft emissions, stratospheric air, and surface-based pollution. These signatures are examined in detail, focussing on the broad aircraft emission signatures that are several hundred kilometers in length. A mesoscale meteorological model provides high resolution wind data that are used to calculate backward trajectories arriving at locations along the flight track. These trajectories are compared to aircraft locations in the North Atlantic Flight Corridor over a 27-33 hour period. Time series of flight level NO and the number of trajectory/aircraft encounters within the NAFC show excellent agreement. Trajectories arriving within the stratospheric and surface-based pollution regions are found to experience very few aircraft encounters. Conversely, there are many trajectory/aircraft encounters within the two chemical signatures corresponding to aircraft emissions. Even many detailed fluctuations of NO within the two aircraft signature regions correspond to similar fluctuations in aircraft encountered during the previous 27-33 hours. Results indicate that high resolution meteorological modeling, when coupled with detailed aircraft location data, is useful for understanding chemical signatures from aircraft emissions at scales of several hundred kilometers.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-29
    Description: Flight 10 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) extended southwest of Lajes, Azores. A variety of chemical signatures were encountered. These signatures are examined in detail, relating them to meteorological data from a high resolution numerical model having horizontal grid spacing of 30 and 90 km and 26 vertical levels. The meteorological output at hourly intervals is used to create backward trajectories from the locations of the chemical signatures. Four major categories of chemical signatures are discussed-stratospheric, lightning, continental pollution, and a transition layer. The strong stratospheric signal is encountered just south of the Azores in a region of depressed tropopause height. Three chemical signatures at different altitudes in the upper troposphere are attributed to lightning. Backward trajectories arriving at locations of these signatures are related to locations of cloud-to-ground lightning. Results show that the trajectories pass through regions of lightning 1-2 days earlier over the eastern Gulf of Mexico and off the southeast coast of the United States. The lowest leg of the flight exhibits a chemical signature consistent with continental pollution. Trajectories arriving at this signature are found to pass over the highly populated Northeast Corridor of the United States. Surface based pollution apparently is lofted to the altitudes of the trajectories by convective clouds along the East Coast that did not contain lightning. Finally, a chemical transition layer is described. Its chemical signature is intermediate to those of lightning and continental pollution. Trajectories arriving in this layer pass between the trajectories of the lightning and pollution signatures. Thus, they probably are impacted by both sources.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-29
    Description: Stratigraphic analyses of peat composition, LOI, pollen, spores, macrofossils, charcoal, and AMS ages are used to reconstruct the peatland, vegetation and climatic dynamics in the Pur-Taz region of western Siberia over 5000 years (9300 - 4500 BP). Section stratigraphy shows many changes from shallow lake sediment to different combinations of forested or open sedge, moss, and Equisetum fen and peatland environments. Macrofossil and pollen data indicate that Larix sibirica and Betula pubescens trees were first to arrive, followed by Picea obovata. The dominance of Picea macrofossils 6000-5000 BP in the Pur-Taz peatland along with regional Picea pollen maxima indicate warmer conditions and movement of the spruce treeline northward at this time. The decline of pollen and macrofossils from all of these tree species in uppermost peats suggests a change in the environment less favorable for their growth, perhaps cooler temperatures and/or less moisture. Of major significance is the evidence for old ages of the uppermost peats in this area of Siberia, suggesting a real lack of peat accumulation in recent millennia or recent oxidation of uppermost peat.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-29
    Description: We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The relevance of the results to the assessment of the environmental impact of aircraft effluence is also discussed.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-29
    Description: The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-29
    Description: We have developed a new empirically-based transport algorithm for use in our GSFC two-dimensional transport and chemistry model. The new algorithm contains planetary wave statistics, and parameterizations to account for the effects due to gravity waves and equatorial Kelvin waves. As such, this scheme utilizes significantly more information compared to our previous algorithm which was based only on zonal mean temperatures and heating rates. The new model transport captures much of the qualitative structure and seasonal variability observed in long lived tracers, such as: isolation of the tropics and the southern hemisphere winter polar vortex; the well mixed surf-zone region of the winter sub-tropics and mid-latitudes; the latitudinal and seasonal variations of total ozone; and the seasonal variations of mesospheric H2O. The model also indicates a double peaked structure in methane associated with the semiannual oscillation in the tropical upper stratosphere. This feature is similar in phase but is significantly weaker in amplitude compared to the observations. The model simulations of carbon-14 and strontium-90 are in good agreement with observations, both in simulating the peak in mixing ratio at 20-25 km, and the decrease with altitude in mixing ratio above 25 km. We also find mostly good agreement between modeled and observed age of air determined from SF6 outside of the northern hemisphere polar vortex. However, observations inside the vortex reveal significantly older air compared to the model. This is consistent with the model deficiencies in simulating CH4 in the northern hemisphere winter high latitudes and illustrates the limitations of the current climatological zonal mean model formulation. The propagation of seasonal signals in water vapor and CO2 in the lower stratosphere showed general agreement in phase, and the model qualitatively captured the observed amplitude decrease in CO2 from the tropics to midlatitudes. However, the simulated seasonal amplitudes were attenuated too rapidly with altitude in the tropics. Overall, the simulations with the new transport formulation are in substantially better agreement with observations compared with our previous model transport.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-29
    Description: We use Monte Carlo analysis to estimate the uncertainty in predictions of total O3 trends between 1979 and 1995 made by the Goddard Space Flight Center (GSFC) two-dimensional (2D) model of stratospheric photochemistry and dynamics. The uncertainty is caused by gas-phase chemical reaction rates, photolysis coefficients, and heterogeneous reaction parameters which are model inputs. The uncertainty represents a lower bound to the total model uncertainty assuming the input parameter uncertainties are characterized correctly. Each of the Monte Carlo runs was initialized in 1970 and integrated for 26 model years through the end of 1995. This was repeated 419 times using input parameter sets generated by Latin Hypercube Sampling. The standard deviation (a) of the Monte Carlo ensemble of total 03 trend predictions is used to quantify the model uncertainty. The 34% difference between the model trend in globally and annually averaged total O3 using nominal inputs and atmospheric trends calculated from Nimbus 7 and Meteor 3 total ozone mapping spectrometer (TOMS) version 7 data is less than the 46% calculated 1 (sigma), model uncertainty, so there is no significant difference between the modeled and observed trends. In the northern hemisphere midlatitude spring the modeled and observed total 03 trends differ by more than 1(sigma) but less than 2(sigma), which we refer to as marginal significance. We perform a multiple linear regression analysis of the runs which suggests that only a few of the model reactions contribute significantly to the variance in the model predictions. The lack of significance in these comparisons suggests that they are of questionable use as guides for continuing model development. Large model/measurement differences which are many multiples of the input parameter uncertainty are seen in the meridional gradients of the trend and the peak-to-peak variations in the trends over an annual cycle. These discrepancies unambiguously indicate model formulation problems and provide a measure of model performance which can be used in attempts to improve such models.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-29
    Description: We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-29
    Description: In the framework of the project POLINAT 2 (Pollution in the North Atlantic Flight Corridor) we measured NO(x) (NO and NO2) and ozone on 98 flights through the North Atlantic Flight Corridor (NAFC) with a fully automated system permanently installed aboard an in-service Swissair B-747 airliner in the period of August to November 1997. The averaged NO, concentrations both in the NAFC and at the U.S. east coast were similar to that measured in autumn 1995 with the same system. The patchy occurrence of NO(x), enhancements up to 3000 pptv over several hundred kilometers (plumes), predominately found over the U.S. east coast lead to a log-normal NO(x) probability density function. In three case-studies we examine the origins of such plumes by combining back-trajectories with brightness temperature enhanced (IR) satellite imagery, with lightning observations from the U.S. National Lightning Detection Network (NLDN) or with the Optical Transient Detector (OTD) satellite. For frontal activity above the continental U.S., we demonstrate that the location of NO(x) plumes can be well explained with maps of convective influence. For another case we show that the number of lightning flashes in a cluster of marine thunderstorms is proportional to the NO(x) concentrations observed several hundred kilometers downwind of the anvil outflows and suggest that lightning was the dominant source. From the fact that in autumn the NO, maximum was found several hundred kilometers off the U.S. east coast, it can be inferred that thunderstorms triggered over the warm Gulf Stream current are an important source for the regional upper tropospheric NO(x) budget in autumn.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-29
    Description: Key questions to which SONEX was directed were the following: Can aircraft corridors be detected? Is there a unique tracer for aircraft NO(x)? Can a "background" NO(x) (or NO(y) be defined? What fraction of NO(x) measured during SONEX was from aircraft? How representative was SONEX of the North Atlantic in 1997 and how typical of other years? We attempt to answer these questions through species-species correlations, probability distribution functions (PDFs), and meteorological history. There is not a unique aircraft tracer, largely due to the high variability of air mass origins and tracer ratios, which render "average" quantities meaningless. The greatest NO and NO(y) signals were associated with lightning and convective NO sources. Well-defined background CO, NO(y) and NO(y)/ozone ratio appear in subsets of two cross-track flights with subtropical origins and five flights with predominantly mid-latitude air. Forty percent of the observations on these 7 flights showed NO(y)/ozone to be above background, evidently due to unreacted NO(x). This NO(x) is a combination of aircraft, lightning and surface pollution injected by convection. The strongly subtropical signatures in SONEX observations, confirmed by pv (potential vorticity) values along flight tracks, argues for most of the unreacted NO(x) originating from lightning. Potential vorticity statistics along SONEX flight tracks in 1992-1998, and for the North Atlantic as a whole, show the SONEX meteorological environment to be representative of the North Atlantic flight corridor in the October-November period.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-29
    Description: Airborne measurements of NO(x) total reactive nitrogen (NO(y)), O3 and condensation nuclei (CN) were made within air traffic corridors over the U.S. and North Atlantic regions (35-60 deg N) in the fall of 1997. NO(x) and NO(y) data obtained in the lowermost stratosphere (LS) were examined using the calculated increase in NO(y) ((delta)NO(y)) along five-day back trajectories as a parameter to identify possible effects of aircraft on reactive nitrogen. It is very likely that aircraft emissions had a significant impact on the NO(x) levels in the LS inasmuch as the NO(s), mixing ratios at 8.5-12 km were significantly correlated with the independent parameters of aircraft emissions, i.e., (delta)NO(y) levels and CN values. In order to estimate quantitatively the impact of aircraft emissions on NO(x), and CN, the background levels of CN and NO(x) at O3 = 100-200 ppbv were derived from the correlations of these quantities with (delta)NO(y)). On average, the aircraft emissions are estimated to have increased the NO(x) and CN values by 130 pptv and 400 STP,cc, respectively, which corresponds to 70 -/+ 30 % and 30 -/+ 20 % of the observed median values.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-29
    Description: The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-29
    Description: The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-08-29
    Description: An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key Endings are that subsonic aircraft emissions: (1) have not be responsible for the observed water vapor trends at 40 deg N; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively.
    Keywords: Environment Pollution
    Type: Geophysical Research Letters
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-31
    Description: There is considerable uncertainty as to whether interannual variability in climate and terrestrial ecosystem production is sufficient to explain observed variation in atmospheric carbon content over the past 20-30 years. In this paper, we investigated the response of net CO2 exchange in terrestrial ecosystems to interannual climate variability (1983 to 1988) using global satellite observations as drivers for the NASA-CASA (Carnegie-Ames-Stanford Approach) simulation model. This computer model of net ecosystem production (NEP) is calibrated for interannual simulations driven by monthly satellite vegetation index data (NDVI) from the NOAA Advanced Very High Resolution Radiometer (AVHRR) at 1 degree spatial resolution. Major results from NASA-CASA simulations suggest that from 1985 to 1988, the northern middle-latitude zone (between 30 and 60 degrees N) was the principal region driving progressive annual increases in global net primary production (NPP; i.e., the terrestrial biosphere sink for carbon). The average annual increase in NPP over this predominantly northern forest zone was on the order of +0.4 Pg (10 (exp 15) g) C per year. This increase resulted mainly from notable expansion of the growing season for plant carbon fixation toward the zonal latitude extremes, a pattern uniquely demonstrated in our regional visualization results. A net biosphere source flux of CO2 in 1983-1984, coinciding with an El Nino event, was followed by a major recovery of global NEP in 1985 which lasted through 1987 as a net carbon sink of between 0.4 and 2.6 Avg C per year. Analysis of model controls on NPP and soil heterotrophic CO2 fluxes (Rh) suggests that regional warming in northern forests can enhance ecosystem production significantly. In seasonally dry tropical zones, periodic drought and temperature drying effects may carry over with at least a two-year lag time to adversely impact ecosystem production. These yearly patterns in our model-predicted NEP are consistent in magnitude with the estimated exchange of CO2 by the terrestrial biosphere with the atmosphere, as determined by previous isotopic (delta (sup 13 C) convolution analysis. Ecosystem simulation results can help further target locations where net carbon sink fluxes have occurred in the past or may be verified in subsequent field studies.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-08-23
    Description: Analyses of satellite, ground-based, and balloon measurements allow updated estimates of trends in the vertical profile of ozone since 1979. The results show overall consistency among several independent measurement systems, particularly for northern hemisphere midlatitudes where most balloon and ground-based measurements are made. Combined trend estimates over these latitudes for the period 1979-96 show statistically significant negative trends at all altitudes between 10 and 45 km, with two local extremes: -7.4 plus or minus 2.0% per decade at 40 km and -7.3 plus or minus -4.6% per decade at 15 km altitude. There is a strong seasonal variation in trends over northern midlatitudes in the attitude range of 10 to 18 km, with the largest ozone loss during winter and spring. The profile trends are in quantitative agreement with independently measured trends in column ozone, the amount of ozone in a column above the surface. The vertical profiles of ozone trends provide a fingerprint for the mechanisms of ozone depletion over the last two decades.
    Keywords: Environment Pollution
    Type: Science; Volume 285; 1689-1692
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-08-23
    Description: A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-08-23
    Description: A new approach is presented to quantify upper-level moisture transport from geostationary satellite data. Daily time sequences of Geostationary Operational Environmental Satellite GOES-7 water vapor imagery were used to produce estimates of winds and water vapor mixing ratio in the cloud-free region of the upper troposphere sensed by the 6.7- microns water vapor channel. The winds and mixing ratio values were gridded and then combined to produce a parameter called the water vapor transport index (WVTI), which represents the magnitude of the two-dimensional transport of water vapor in the upper troposphere. Daily grids of WVTI, meridional moisture transport, mixing ratio, pressure, and other associated parameters were averaged to produce monthly fields for June, July, and August (JJA) of 1987 and 1988 over the Americas and surrounding oceanic regions, The WVTI was used to compare upper-tropospheric moisture transport between the summers of 1987 and 1988, contrasting the latter part of the 1986/87 El Nino event and the La Nina period of 1988. A similar product derived from the National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) 40-Year Reanalysis Project was used to help to validate the index. Although the goal of this research was to describe the formulation and utility of the WVTI, considerable insight was obtained into the interannual variability of upper-level water vapor transport. Both datasets showed large upper-level water vapor transport associated with synoptic features over the Americas and with outflow from tropical convective systems. Minimal transport occurred over tropical and subtropical high pressure regions where winds were light. Index values from NCEP-NCAR were 2-3 times larger than that determined from GOES. This difference resulted from large zonal wind differences and an apparent overestimate of upper-tropospheric moisture in the reanalysis model. A comparison of the satellite-derived monthly values between the summers of 1987 and 1988 provided some insight into the impact of the ENSO event on upper-level moisture and its transport during the period. During July 1987, a large portion of the Tropics in the eastern Pacific Ocean and Caribbean Sea was dominated by strong vapor transport in excess of 4.0 g/kg m/s, with relatively small amounts in the other months. JJA 1988 transport values reached similar magnitude and showed similar patterns for all three months. The meridional transport of upper-level water vapor indicated large poleward transport from the Tropics to the higher latitudes. This transport favored the Southern Hemisphere, with large transport occurring south of the ITCZ, which extended across the eastern Pacific and northern South America. Zonally averaged monthly transport values were shown to provide a simple way to quantify the monthly and interannual changes in water vapor transport. Zonally averaged WVTI values peaked in the Southern Hemisphere subtropics during both austral winters. In the Tropics, a single, more- pronounced peak located over the equator and south latitudes occurred in 1988 as opposed to a dual peak in 1987. The second peak around 20'N latitude is consistent with findings of others in which upper-tropospheric winds were noted to be stronger in this region during warm ENSO events. Zonally averaged meridional transport was southward for all summer months and was stronger in 1988. The asymmetric nature of the zonally averaged meridional transport (more southerly water vapor transport) was enhanced during JJA 1988, thus indicating a stronger upper- level branch of the Hadley circulation during this notably strong La Nina period.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-02-04
    Description: Results are presented for six simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model for the years 1950 to 2099. There are two control simulations with constant 1950 atmospheric composition from different initial states, two GHG experiments with observed greenhouse gases up to 1990 and compounded .5% CO2 annual increases thereafter, and two GHG+SO4 experiments with the same varying greenhouse gases plus varying tropospheric sulfate aerosols. Surface air temperature trends in the two GHG experiments are compared between themselves and with the observed temperature record from 1960 and 1998. All comparisons show high positive spatial correlation in the northern hemisphere except in summer when the greenhouse signal is weakest. The GHG+SO4 experiments show weaker correlations. In the southern hemisphere, correlations are either weak or negative which in part are due to the model's unrealistic interannual variability of southern sea ice cover. The model results imply that temperature changes due to forcing by increased greenhouse gases have risen above the level of regional interannual temperature variability in the northern hemisphere over the past 40 years. This period is thus an important test of reliability of coupled climate models.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-08-23
    Description: We discuss the methodology of interpreting channel 1 and 2 AVHRR radiance data to retrieve tropospheric aerosol properties over the ocean and describe a detailed analysis of the sensitivity of monthly average retrievals to the assumed aerosol models. We use real AVHRR data and accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. Our analysis shows that two-channel algorithms can provide significantly more accurate retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening is the largest source of errors in the retrieved optical thickness. Both underestimating and overestimating aerosol absorption as well as strong variability of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-06-07
    Description: The purpose of this presentation is to discuss the developmental approach to the Environmental Impact Statement regarding the X-33 vehicle.
    Keywords: Environment Pollution
    Type: Third Aerospace Environmental Technology Conference; 43-53; NASA/CP-1999-209258
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Opto-Knowledge Systems, Inc. was founded in 1991 specifically to take advantage of the emergence of a new technology field related to spectral imaging. The technology has applications in diverse areas such as Earth remote sensing, agriculture, geology, medical diagnosis, manufacturing, forensics, and more. Under the NASA/Goddard Space Flight Center STTR project, OKSI developed several major aspects to further the state of the art, resulting in several commercial products.
    Keywords: Environment Pollution
    Type: Spinoff 1999; 70; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-12-01
    Description: Earth's rotation vector is not a constant in space. Rather, it varies slightly with time on all temporal scales in a very complex, but interesting way. Phenomenologically, the variation can be considered separately in terms of (1) variations in the rotational speed (which translates into the length of day); and (2) variations in the orientation of the rotation axis (called the polar motion relative to the Earth reference frame, and the nutations relative to the inertial space). From the dynamics point of view, these changes can be separated into two types: astronomical (due to external torques mostly exerted by Moon and Sun), and geophysical (due to mass transport in the geophysical fluids of the Earth system under the conservation of angular momentum). Interesting and significant phenomena result. Decades of advancing measurements and active research have yielded fascinating stories.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-05
    Description: The Environmental Health activity for the Extended Duration Orbiter Medical Project (EDOMP) was formed to develop an overall strategy for safeguarding crew members from potential airborne hazards anticipated on missions of extended duration. These efforts were necessary because of major modifications to the air revitalization system of the U.S. Space Shuttle and an increased potential for environmental health risks associated with longer space flights. Degradation of air quality in the Shuttle during a space flight mission has the potential to affect the performance of the crew not only during piloting, landing, or egress, but also during space flight. It was anticipated that the risk of significant deterioration in air quality would increase with extended mission lengths and could result from: (1) a major chemical contamination incident, such as a thermodegradation event or toxic leak, (2) continual accumulation of volatile organic compounds to unacceptable levels, (3) excessive levels of airborne particles, (4) excessive levels of microorganisms, or (5) accumulation of airborne pathogens.
    Keywords: Environment Pollution
    Type: Extended Duration Orbiter Medical Project; 4-1 - 4-12; NASA/SP-1999-534
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-06-28
    Description: The main instrumentation platform consisted of eddy correlation sensors mounted on a scaffold tower at a height of 4.2 m above the peat surface. The sensors were attached to a boom assembly which could be rotated into the prevailing winds. The boom assembly was mounted on a movable sled which, when extended, allowed sensors to be up to 2 m away from the scaffolding structure to minimize flow distortion. When retracted, the sensors could easily be installed, serviced or rotated. An electronic level with linear actuators allowed the sensors to be remotely levelled once the sled was extended. Two instrument arrays were installed. A primary (fast-response) array consisted of a three-dimensional sonic anemometer, a methane sensor (tunable diode laser spectrometer), a carbon dioxide/water vapor sensor, a fine wire thermocouple and a backup one-dimensional sonic anemometer. The secondary array consisted of a one-dimensional sonic anemometer, a fine wire thermocouple and a Krypton hygrometer. Descriptions of these sensors may be found in other reports (e.g., Verma; Suyker and Verma). Slow-response sensors provided supporting measurements including mean air temperature and humidity, mean horizontal windspeed and direction, incoming and reflected solar radiation, net radiation, incoming and reflected photosynthetically active radiation (PAR), soil heat flux, peat temperature, water-table elevation and precipitation. A data acquisition system (consisting of an IBM compatible microcomputer, amplifiers and a 16 bit analog-to-digital converter), housed in a small trailer, was used to record the fast response signals. These signals were low-pass filtered (using 8-pole Butterworth active filters with a 12.5 Hz cutoff frequency) and sampled at 25 Hz. Slow-response signals were sampled every 5 s using a network of CR21X (Campbell Scientific, Inc., Logan Utah) data loggers installed in the fen. All signals were averaged over 30-minute periods (runs).
    Keywords: Environment Pollution
    Type: NASA/CR-97-206828 , NAS 1.26:206828
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-27
    Description: The backscattered ultraviolet (BUV) technique has been used for almost 3 decades to monitor global total ozone and the distribution of ozone in the stratosphere. Satellite BUV measurements in the 250-340 mn wavelength region are technically challenging because the Earth's radiance varies by approximately 4 orders of magnitude during a single scan. Further, the observed signal increases by over three orders of magnitude in about 2 minutes as the satellite emerges into daylight. The gain of the instrument's photomultiplier tube (PMT) detector is low when the spacecraft first emerges into the sunlit portion of the orbit relative to the gain observed after the PMT has experienced moderately high current levels. This "hysteresis" effect was first observed on the Nimbus-7 SBUV and TOMS instruments. The effect is difficult to characterize prelaunch because of the high signal levels and rapid variations required. We have recently observed and quantified the hysteresis effect for the NOAA-9 SBUV/2 instrument, which collected ozone data from February 1985 to February 1998. The instrument gain is observed to be up to 3% low at high solar zenith angles [Chi = 85-90 degrees] in the emergent hemisphere (i.e. Southern Hemisphere at launch). The gain error decreases as the SZA decreases and average PMT current increases, and is generally negligible for Chi 〈 65 degrees. The magnitude of the hysteresis effect varies with season, and exhibits long-term changes as the NOAA-9 sun-synchronous orbit drifts. In the latter portion of the record, when the spacecraft emerged from the dark in the Northern Hemisphere, hysteresis effects were then observed in the North. NOAA-9 total ozone errors due to the hysteresis effect are typically on the order of 2%, but can reach 5% in extreme cases. We have developed a quantitative correction for the hysteresis effect that incorporates both seasonal and long-term variations in magnitude. Results of similar analyses for the NOAA-11 and NOAA-14 SBUV/2 instruments will also be discussed. The characterization of the hysteresis effect in high solar zenith angle SBUV/2 ozone data represents a significant step towards reconciling polar ozone measurements from different satellite instruments.
    Keywords: Environment Pollution
    Type: NEWRAD 1999; 25-27 O t. 1999; Madrid; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-17
    Description: A chemical analysis of soil-water mixtures and the first microscopic images of martian soil will be among the results to be returned by the Mars Environmental Compatibility Assessment (MECA) payload on the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's primary goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. As a survey of soil properties, the MECA data set will also be rich in information relevant to basic geology, paleoclimate, and exobiology. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases. Cyclic voltammetry will address oxidants, and anodic stripping voltammetry will probe potentially hazardous trace metals. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in a controlled illumination environment to image dust and soil particles from millimeters to nanometers in size. Careful selection of substrates and an abrasion tool allows experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. Mounted on the end of the robot arm, MECA's electrometer consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultra-violet- light-induced ions and a low-voltage break-down threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. In addition, the electrostatic environment is key to transport of dust and, consequently, martian meteorology. MECA will also observe natural dust accumulation on engineering materials. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the inter-action between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. Dust accumulation as a function of conductivity, magnetic field strength, and other parameters will be explored. The MECA instruments described above will assess potential hazards that the Martian soil might present to human explorers and their equipment. In addition, MECA will provide information on the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-17
    Description: The observation that the Mars Pathfinder landing site probably looks very similar to when it was deposited by catastrophic floods some 1.8-3.5 Ga allows quantitative constraints to be placed on the rate of change at the landing site since that time. When combined with interpretations of data recently returned by the Mars Pathfinder and Global Surveyor missions and perspectives drawn from 20 years of analysis and interpretation of Viking data, these observations and inferences suggest an early warmer and wetter environment with vastly different erosion rates and a major climatic change on Mars. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-17
    Description: Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: Ninth Annual V. M. Goldschmidt Conference; LPI-Contrib-971
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-17
    Description: Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.
    Keywords: Environment Pollution
    Type: IUGG99; Jan 01, 1999; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-18
    Description: As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol-size distributions were measured on board the CIRPAS Pelican aircraft through the use of a Differential Mobility Analyzer (DMA) and 2 Optical Particle Counters (OPCs). During the campaign, the boundary-layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free-tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on 4 missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol-size distributions and those measured directly by an airborne 14-wavelength sunphotometer and 3 nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size-distribution-based calculations. Simultaneous comparison with such a wide range of directly-measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly-measured optical properties varied for different measurements and for different cases. Averaged over the 4 case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotometer by 2.5% in the clean boundary layer, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and non-dusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured scattering coefficient were -9.6%, +4.7%, +17%, and -41% for measurements within the clean boundary layer, polluted boundary layer, free troposphere with a dust layer, and free troposphere without a dust layer, respectively. Each of these quantities, as well as the majority of the more than 100 individual comparisons from which they were averaged, were within estimated uncertainties.
    Keywords: Environment Pollution
    Type: TELLUS (ISSN 0280-6509); 52B; 2; 498-525
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-18
    Description: We report on two aspects of the simulation of global transport of plumes originating from subtropical biomass fires. We use of meteorological assimilation (MM5) at 2-degree resolution with a Grail cloud parameterization and a Blackadar-based planetary boundary layer parameterization. Ames's GRACES model provides emissions, transport, and an appropriate level of simulated chemical transformation. We have worked with passive-tracer CO or linear chemistry. This is appropriate since we find major work to be done in evaluating CO source strengths and transport mechanisms before chemical integrations could be meaningful. First, we present mechanisms by which CO and other pollutants are introduced into the free troposphere, and are then transported with hate dilution from approx. 0 to approx. 180 degrees longitude. One principal conduit for these plumes is the vernal subtropical jet; however the plumes appear at various altitudes and latitudes as they influenced by frontal motions and (most likely) radiative processes. A common, repeated pattern of transport has pollutant plumes arriving in the distant Pacific Ocean from Africa and South America at 25 degrees south and 14 km altitude. Following this, there is then a general appearance of pollution at extending down to 5 kin at more equatorial (10 S) and polar latitudes (to 45 S). Second, we evaluate the quantitative success of our simulation. (Such success requires efforts considerably beyond trajectory analyses, and is necessary for our community to claim an understanding of the effects of biomass burning on global atmospheric chemistry and the planet's trend in oxidizing capacity.) We find that we simulate most pollution episodes sampled by Glenn Sachse's CO instrument and the Blake hydrocarbon analyses during PENT A. We will present our current ideas on why our general levels appear satisfactory when the observations are within 20 ppb of background levels, but substantially miss the variability associated with the most intense biomass burning plumes. As time allows, we will speculate on the origins of a class of plumes that appear in the mid-troposphere, but are missing from our simulations.
    Keywords: Environment Pollution
    Type: PEM Tropics Workshop; Mar 19, 1998 - Mar 21, 1998; MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The Earth's rotation is not constant but exhibits minute changes on all observable time scales ranging from subdaily to secular. This rich spectrum of observed Earth rotation changes reflects the rich variety of astronomical and geophysical phenomena that are causing the Earth's rotation to change, including, but not limited to, ocean and solid body tides, atmospheric wind and pressure changes, oceanic current and sea level height changes, post-glacial rebound, and torques acting at the core-mantle boundary. In particular, the decadal-scale variations of the Earth's rotation are thought to be largely caused by interactions between the Earth's outer core and mantle. Comparing the inferred Earth rotation variations caused by the various core-mantle interactions to observed variations requires Earth rotation observations spanning decades, if not centuries. During the past century many different techniques have been used to observe the Earth's rotation. By combining the individual Earth rotation series determined by each of these techniques, a series of the Earth's rotation can be obtained that is based upon independent measurements spanning the greatest possible time interval. In this study, independent observations of the Earth's rotation are combined to generate a length-of-day series spanning 1832-1997. The observations combined include lunar occultation measurements spanning 1832-1955, optical astrometric measurements spanning 1956-1982, lunar laser ranging measurements spanning 1970-1997, and very long baseline interferometric measurements spanning 1978-1998. These series are combined using a Kalman filter developed at JPL for just this purpose. The resulting combined length-of-day series will be presented and compared with other available length-of-day series of similar duration.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-17
    Description: Heterogeneous reactions on the surface of aerosols lead to a decrease in the concentration of nitrogen radicals and an increase in the concentration of chlorine and hydrogen radical species. As a consequence, enhanced sulfate aerosol levels in the lower stratosphere resulting from volcanic eruptions lead to lower concentrations of ozone due to more rapid loss by chlorine and hydrogen radicals. This study focuses on continuing the effort to quantify the effect of sulfate aerosols on the partitioning of inorganic chlorine species at midlatitudes. The study begins with an examination of balloon-borne measurements of key chlorine species obtained by the JPL MkIV interferometer for different aerosol loading conditions. A detailed comparison of the response of HCl to variations in aerosol surface area observed by MkIV, ER-2 instruments, HALOE, and ATMOS is carried out by examining HCl vs CH4 correlation diagrams, since CH4 is the only tracer measured on each platform. Finally, the consistency between theory and observed changes in ClO and HCl due to variations in aerosol surface area is examined.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: The objectives of this project were: (1) To incorporate into an existing version of the University of Maryland Surface Radiation Budget (SRB) model, optical parameters of forest fire aerosols, using best available information, as well as optical properties of other aerosols, identified as significant. (2) To run the model on regional scales with the new parametrization and information on forest fire occurrence and plume advection, as available from NASA LARC, and test improvements in inferring surface fluxes against daily values of measured fluxes. (3) Develop strategy how to incorporate the new parametrization on global scale and how to transfer modified model to NASA LARC.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.
    Keywords: Environment Pollution
    Type: P698
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager (TMI) and Visible and Infrared Sensor (VIRS) will be presented. Comparisons and contrasts among the different sensors will be drawn. Results will also be compared to previous rainfall climatologies generated from the SSM/I instrument. In particular this paper will focus on the synergy between the TRMM radar and passive microwave radiometer and what we have learned from is synergy.
    Keywords: Environment Pollution
    Type: Climate, Environmental Change and Regional Impacts: Seasonal-to-Interannual Climate Variability; Sep 21, 1999 - Sep 24, 1999; Beijing; China|Impacts of Ocean Variability on Climate Change; Sep 23, 1999 - Sep 24, 1999; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: High spectral resolution (0.003 per cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5N, 155.6W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4-16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first 2 years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4-16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32'N and 45'S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4-16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during the strong El Nino warm phase of 1997- 1998 are the likely source of the elevated emission products.
    Keywords: Environment Pollution
    Type: Paper-1999JD900366 , Journal of Geophysical Research (ISSN 0148-0227); 104; D15; 18,667-18,680
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: The first Clouds and the Earth's Radiant Energy System (CERES) instrument has been returning useful data on Earth's radiation budget from the Tropical Rainfall Measuring Mission (TRMM) spacecraft since late 1997. Validation of the initial data is now intensively underway. As one component of this validation, the CERES Students' Cloud Observations On-Line (S'COOL) project has been operational since April 1998 - the 2nd CERES validation month. S'COOL involves school children in over 140 schools in 15 countries on 5 continents in making and reporting observations and measurements which they and CERES scientists can then compare to the satellite retrievals. The project is planned to continue through the life of the CERES Project (nominally 15 years), and new participants are invited to join on a continuous basis. This paper will report on the first year of the operational phase of the project, during which a number of exciting events occurred (a demonstration of the project to First Lady Hillary Rodham Clinton, and visits by CERES personnel to participating schools, among others). It will further report on some of the noteworthy observations and comparisons which have been made possible by this project. We have found that schools are often located in interesting places, in terms of the clouds found there and the satellite's ability to observe these clouds. The paper will also report on the learning opportunities delivered by this project, and on new questions about the planet and its climate which arise in the students' minds as a result of their active participation.
    Keywords: Environment Pollution
    Type: Education; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: This report addresses the Tropospheric Trace Gas and Airborne Measurement Group (TTGAMG) endeavors to continue to push the evolution of the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE) into a sensor capable of making airborne eddy correlation measurements of nitrogen oxides. It will mainly address the TTGAMG successes and failures as well as its participation in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and the deliverables can not be achieved as proposed in the original funding of this grant. Most of these changes have been driven by the passing away of John Bradshaw, the original principal investigator.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: The objective of the research was the development of a new small, lightweight instrument for the detection of ClONO2, NO2, ClO, and BrO, carried aboard a robotic aircraft, specifically the NASA ER-2. The schematic of the instrument is shown. Some of the observations which this instrument is designed to make are discussed. The observations of the instrument during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission are also reviewed.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: We examine the horizontal wavenumber spectra of horizontal velocity and potential temperature collected by aircraft above the Pacific Ocean to determine whether gravity waves, quasi-two-dimensional (Q-2-D) turbulence, or vortical modes dominate atmospheric fluctuations at scale sizes of 1-100 km and altitudes of 2-12 km. We conclude from the study of Doppler-shifting effects that Q-2-D turbulence and/or vortical modes are more prevalent than gravity waves over the ocean, except in the equatorial zone. The results are consistent with recent numerical simulations of Q-2-D turbulence, which show that the characteristic inverse cascade of energy is greatly facilitated by the presence of background rotation. Furthermore, a Stokes-parameter analysis reveals the general paucity of coherent wavelike motions, although specific cases of gravity-wave propagation are observed. Finally, a case study of a long flight segment displays a k(sup -3) horizontal velocity variance spectrum at scales longer than about 100 km. A Stokes-parameter analysis indicates that these large-scale fluctuations were likely due to vortical modes rather than inertio-gravity waves.
    Keywords: Environment Pollution
    Type: Journal of Geophysical Research (ISSN 0148-0227); 104; D13; 16,297-16,308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: This report documents the research performed under NASA Ames Cooperative Agreement NCC 2-991, which covered the period 1 April 1997 through 31 March 1999. Previously, an interim technical report (Technical Report No. 1, 20 March 1998) summarized the work completed during the period 1 April 1997 through 31 March 1998. The objective of the proposed research was to advance our understanding of atmospheric aerosol behavior, aerosol-induced climatic effects, and the remote measurement and retrieval capabilities of spaceborne sensors such as SAGE II by combining and comparing data from these instruments and from airborne and ground-based instruments.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...