ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,308)
  • Elsevier  (1,308)
  • American Geophysical Union (AGU)
  • 2015-2019  (1,308)
  • 1945-1949
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • The Fram Slide Complex has been active from late Miocene to late Pleistocene. • Local processes were critical for slope stability in the Fram Strait area. • Toe erosion caused by normal faulting may have led to retrogressive failure. • Low gradient contourite drifts might smooth and stabilize submarine slopes. • Low tsunami potential from the Fram Slide Complex could increase in the future. Abstract The best known submarine landslides on the glaciated NW European continental margins are those at the front of cross-shelf troughs, where the alternation of rapidly deposited glycogenic and hemi pelagic material generates sedimentary overpressure. Here, we investigate landslides in two areas built of contourite drifts bounded seaward by a ridge-transform junction. Seismic and bathymetric data from the Fram Slide Complex are compared with the tectonically similar Vastness area ~ 120 km to the south, to analyze the influence of local and regional processes on slope stability. These processes include tectonic activity, changes of climate and oceanography, gas hydrates and fluid migration systems, slope gradient, toe erosion and style of contourite deposition. Two areas within the Fram Slide Complex underwent different phases of slope failures, whereas there is no evidence at all for major slope failures in the Vastness area. The comparison cannot reveal the distinct reason for slope failure but demonstrates the strong impact of variation in the local controls on slope stability. The different failure chronologies suggest that toe erosion, which is dependent on the throw of normal faults, and the different thickness and geometry of contourite deposits can result in a critical slope morphology and exert pronounced effects on slope stability. These results highlight the limitations of regional hazard assessments and the need for multi-disciplinary investigations, as small differences in local controlling factors led to substantially different slope failure histories.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: We used a new sedimentary record from a small kettle wetland to reconstruct the Late Glacial and Holocene vegetation and fire history of the Krutoberegovo-Ust Kamchatsk region in eastern Kamchatka Peninsula (Russia). Pollen and charcoal data suggest that the Late Glacial landscape was dominated by a relatively fire-prone Larix forest-tundra during the Greenland Interstadial complex (GI 1) and a subarctic steppe during the Younger Dryas (GS1). The onset of the Holocene is marked by the reappearance of trees (mainly Alnus incana) within a fern and shrub dominated landscape. The Holocene Thermal Maximum (HTM) features shifting vegetational communities dominated by Alnus shrubs, diverse forb species, and locally abundant aquatic plants. The HTM is further defined by the first appearance of stone birch forests (Betula ermanii) – Kamchatka's most abundant modern tree species. The Late Holocene is marked by shifts in forest dynamics and forest-graminoid ratio and the appearance of new non-arboreal taxa such as bayberry (Myrica) and meadow rue (Filipendula). Kamchatka is one of Earth's most active volcanic regions. During the Late Glacial and Holocene, Kamchatka's volcanoes spread large quantities of tephra over the study region. Thirty-four tephra falls have been identified at the site. The events represented by most of these tephra falls have not left evidence of major impacts on the vegetation although some of the thicker tephras caused expansion of grasses (Poaceae) and, at least in one case, forest die-out and increased fire activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Highlights • Receiver functions from ocean-bottom seismometer stations reveal no significant crustal thickening in the surrounding of the Tristan da Cunha hot spot. • The mantle transition zone to the NW of Tristan da Cunha is thickened and cool. • The mantle transition zone is potentially thinned to the south/southwest of Tristan da Cunha. • A thickness of 60 to 75 km beneath Tristan da Cunha argues for a compositional control on the seismological lithosphere in the South Atlantic. Abstract The most prominent hotspot in the South Atlantic is Tristan da Cunha, which is widely considered to be underlain by a mantle plume. But the existence, location and size of this mantle plume have not been established due to the lack of regional geophysical observations. A passive seismic experiment using ocean bottom seismometers aims to investigate the lithosphere and upper mantle structure beneath the hotspot. Using the Ps receiver function method we calculate a thickness of 5 to 8 km for the oceanic crust at 17 ocean-bottom stations deployed around the islands. Within the errors of the method the thickness of the oceanic crust is very close to the global mean. The Tristan hotspot seems to have contributed little additional magmatic material or heat to the melting zone at the mid-oceanic ridge, which could be detected as thickened oceanic crust. Magmatic activity on the archipelago and surrounding seamounts seems to have only effected the crustal thickness locally. Furthermore, we imaged the mantle transition zone discontinuities by analysing receiver functions at the permanent seismological station TRIS and surrounding OBS stations. Our observations provide evidence for a thickened (cold) mantle transition zone west and northwest of the islands, which excludes the presence of a deep-reaching mantle plume. We have some indications of a thinned, hot mantle transition zone south of Tristan da Cunha inferred from sparse and noisy observations, which might indicate the location of a Tristan mantle plume at mid-mantle depths. Sp receiver functions image the base of lithosphere at about 60 to 75 km beneath the islands, which argues for a compositionally controlled seismological lithosphere-asthenosphere boundary beneath the study area.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Highlights • Observations show that formation of sediment-laden sea ice occurs in coastal polynyas in winter. • Sea ice rafted sediments are a significant component of the Laptev Sea’s sediment budget. • No observational evidence for sediment entrainment into sea ice in mid-shelf polynyas at water depth greater than 20 m. Abstract Sea ice is an important vehicle for sediment transport in the Arctic Ocean. On the Laptev Sea shelf (Siberian Arctic) large volumes of sediment-laden sea ice are formed during freeze-up in autumn, then exported and transported across the Arctic Ocean into Fram Strait where it partly melts. The incorporated sediments are released, settle on the sea floor, and serve as a proxy for ice-transport in the Arctic Ocean on geological time scales. However, the formation process of sediment-laden ice in the source area has been scarcely observed. Sediment-laden ice was sampled during a helicopter-based expedition to the Laptev Sea in March/April 2012. Sedimentological, biogeochemical and biological studies on the ice core as well as in the water column give insights into the formation process and, in combination with oceanographic process studies, on matter fluxes beneath the sea ice. Based on satellite images and ice drift back-trajectories the sediments were likely incorporated into the sea ice during a mid-winter coastal polynya near one of the main outlets of the Lena River, which is supported by the presence of abundant freshwater diatoms typical for the Lena River phytoplankton, and subsequently transported about 80 km northwards onto the shelf. Assuming ice growth of 12 to 19 cm during this period and mean suspended matter content in the newly formed ice of 91.9 mg l-1 suggests that a minimum sediment load of 8.4x104 t might have been incorporated into sea ice. Extrapolating these sediment loads for the entire Lena Delta region suggests that at least 65% of the estimated sediment loads which are incorporated during freeze-up, and up to 10% of the annually exported sediment load may be incorporated during an event such as described in this paper.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: The recent volcanic eruptions of Eyjafjallajökull 2010 and Grímsvötn 2011 demonstrated the risks that mediumsized explosive Icelandic eruptions pose to the North Atlantic region. Using the Eyjafjallajökull 2010 eruption as a case study, we assess how traceable such eruptions are in the marine sedimentary record at medial distances from the source and investigate which factors have affected the particle transport to the marine sedimentary archive. During R/V Poseidon cruise 457, we recovered 13 box cores at 100–1600 m water depths and distances of 18–180 km southwest, south, and east of Iceland. Volcanic glass shards from the uppermost surface sediment were analyzed for their major element composition by electron microprobe and assigned to their eruptive source by geochemical fingerprinting. The predominantly basaltic particles are mostly derived from the Katla, Grímsvötn-Lakagígar, and Bárðarbunga-Veiðivötn volcanic systems. We also identified rhyolitic particles from the Askja 1875 and Öræfajökull 1362 eruptions. Only three out of almost 900 analyzed glass shards are derived from the recent Eyjafjallajökull 2010 eruption, suggesting that medium-sized eruptions are only poorly preserved in marine sediments located at medial distances southwest to east of Iceland. We conclude that the frequency of past medium-sized eruptions is likely higher than detectable in this archive.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Highlights: • Fungal infections represent an increasing threat to human health. • Fungal infections in plants are a worldwide problem to the agricultural industry. • Diverse antifungal compounds were isolated from different marine organisms. • The number of new antifungal marine natural products is rapidly developing. • Marine sponges and bacteria are the predominant sources for antifungal compounds. Abstract: Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: The active volcanic island Tristan da Cunha, located at the southwestern and youngest end of the Walvis Ridge - Tristan/Gough hotspot track, is believed to be the surface expression of a huge thermal mantle anomaly. While several criteria for the diagnosis of a classical hotspot track are met, the Tristan region also shows some peculiarities. Consequently it is vigorously debated if the active volcanism in this region is the expression of a deep mantle plume, or if it is caused by shallow plate tectonics and the interaction with the nearby Mid-Atlantic Ridge. Because of a lack of geophysical data in the study area, no model or assumption has been completely confirmed. We present the first amphibian P-wave finite-frequency travel time tomography of the Tristan da Cunha region, based on cross-correlated travel time residuals of teleseismic earthquakes recorded by 24 ocean-bottom seismometers. The data can be used to image a low velocity structure southwest of the island. The feature is cylindrical with a radius of ~ 100 km down to a depth of 250 km. We relate this structure to the origin of Tristan da Cunha and name it the Tristan conduit. Below 250 km the low velocity structure ramifies into narrow veins, each with a radius of ~ 50 km. Furthermore, we imaged a linkage between young seamounts southeast of Tristan da Cunha and the Tristan conduit.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: Highlights: • Improved Claisen-Schmidt condensation using lithium hydroxide monohydrate in 1,4-dioxane. • Pyridylchalcones show good activity and selectivity against Trypanosoma brucei. • Pyridylchalcones show little activity against Leishmania donovani. • Promising leads in the development of novel compounds for the treatment of sleeping sickness. A library of novel pyridylchalcones were synthesised and screened against Trypanosoma brucei rhodesiense. Eight were shown to have good activity with the most potent 8 having an IC50 value of 0.29 μM. Cytotoxicity testing with human KB cells showed a good selectivity profile for this compound with a selectivity index of 47. Little activity was seen when the library was tested against Leishmania donovani. In conclusion, pyridylchalcones are promising leads in the development of novel compounds for the treatment of human African trypanosomiasis (HAT).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: In 2013, high-temperature vent fluids were sampled in the Nifonea vent field. This field is located within the caldera of a large shield-type volcano of the Vate Trough, a young extensional rift in the New Hebrides back-arc. Hydrothermal venting occurs as clear and black smoker fluids with temperatures up to 368 °C, the hottest temperatures measured so far in the western Pacific. The physico-chemical conditions place the fluids within the two-phase field of NaCl–H2O, and venting is dominated by vapour phase fluids with Cl concentrations as low as 25 mM. The fluid composition, which differs between the individual vent sites, is interpreted to reflect the specific geochemical fluid signature of a hydrothermal system in its initial, post-eruptive stage. The strong Cl depletion is accompanied by low alkali/Cl ratios compared to more evolved hydrothermal systems, and very high Fe/Cl ratios. The concentrations of REY (180 nM) and As (21 μM) in the most Cl-depleted fluid are among the highest reported so far for submarine hydrothermal fluids, whereas the inter-element REY fractionation is only minor. The fluid signature, which has been described here for the first time in a back-arc setting, is controlled by fast fluid passage through basaltic volcanic rocks, with extremely high water-rock ratios and only limited water-rock exchange, phase separation and segregation, and (at least) two-component fluid mixing. Metals and metalloids are unexpectedly mobile in the vapour phase fluids, and the strong enrichments of Fe, REY, and As highlight the metal transport capacity of low-salinity, low-density vapours at the specific physico-chemical conditions at Nifonea. One possible scenario is that the fluids boiled before the separated vapour phase continued to react with fresh glassy lavas. The mobilization of metals is likely to occur by leaching from fresh glass and grain boundaries and is supported by the high water/rock ratios. The enrichment of B and As is further controlled by their high volatility, whereas the strong enrichment of REY is also a consequence of the elevated concentrations in the host rocks. However, a direct contribution of metals such as As from magmatic degassing cannot be ruled out. The different fluid end-member composition of individual vent sites could be explained by mixing of vapour phase fluids with another fluid phase of different water/rock interaction history.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-01
    Description: Gorgonians are a key group of organisms in benthic marine communities with a wide bathymetric and geographical distribution. Although their presence on continental shelves and slopes has been known for more than 100 years, knowledge concerning the ecology of deep gorgonian species is still in a very preliminary stage. To overcome this situation, gorgonian assemblages located at 40–360 m depth were studied over a large geographical area on the continental shelf and upper slope of the Menorca Channel (Western Mediterranean Sea). A quantitative analysis of video transects recorded by a manned submersible and a remotely operated vehicle, were used to examine the diversity, distribution and demography of gorgonian species. Results showed high gorgonian diversity within this depth range (a total of nine species were observed) compared to Mediterranean coastal areas. Gorgonian assemblages on the continental shelf and upper slope were mostly monospecific (respectively 73% and 76% of occupied sampling units contained one single species), whereas shelf edge assemblages were highly multispecific (92% of occupied sampling units contained several species). This contrasts with the monospecificity of Mediterranean coastal gorgonian assemblages. Gorgonian populations on the continental shelf were mostly dominated by small colonies (88% of measured colonies) with few intermediate and large colonies (12% of measured colonies). In deeper areas small colonies were still dominant (60% of measured colonies), but intermediate and large colonies were much more abundant (40% of measured colonies). This suggests high recruitment rates on the continental shelf, but perturbations (trammel nets, long lines and strong storms) may limit the presence of intermediate and large colonies. Conversely, on the shelf edge and upper slope a more stable environment may allow colonies to reach larger dimensions. The identification and ecological characterization of these deep assemblages further extends the current knowledge about Mediterranean gorgonians, and is fundamental in improving the management and conservation of deep benthic ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-02-06
    Description: The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-06-04
    Description: Food supply is one of the main factors driving cold-water corals (CWC) distribution, which often concentrate on ridges where local near-bed turbulence/strong currents enhance food availability. However, efficiency in food capture is strongly dependent on current velocity. Moreover, seawater temperature may also affect feeding success, since polyp contraction or nematocyst function could be slower at temperatures below the natural thermal range of a species. The non-reef forming CWC Dendrophyllia cornigera occurs in areas at temperatures from 11 to 17 °C, but is apparently absent from most CWC reefs at temperatures constantly below 11 °C. This study thus aimed to assess if a reduction in feeding capacity may contribute to understand the absence of this CWC from strictly cold environments. The efficiency of D. cornigera to capture meso- and macrozooplankton was assessed under different flow speeds (2, 5 and 10 cm s − 1) and temperatures (8, 12, and 16 °C). Flow speeds did not significantly affect the capture of mesozooplankton, whereas capture of macrozooplankton was significantly enhanced with increasing flow speed. Both meso- and macrozooplankton captures were not significantly affected by temperature in D. cornigera. Overall, this CWC species is efficient in capturing zooplankton under a larger range of flow velocities than the widespread CWC Lophelia pertusa, whose capture efficiency significantly decreased from low to high flow speeds. Even if temperature does not directly affect the capture rates of D. cornigera, it may still influence the feeding capacity of this CWC since the capture rates at 8 °C were always in the lowest range of the observed values at each flow speed, and corals maintained at 8 °C required a much longer time to fully expand their polyps once they were placed in the incubation chambers, than corals maintained at 12 and 16 °C.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-02-06
    Description: Highlights • Crustal structure of Walvis Ridge reveals high seismic velocities in the lower crust intruding the African continent. • This modified crust is localized to approx. 100 × 100 km within the continent. • No indication for a large plume head observed The opening of the South Atlantic is a classical example for a plume related continental breakup. Flood basalts are present on both conjugate margins as well as aseismic ridges connecting them with the current plume location at Tristan da Cunha. To determine the effect of the proposed plume head on the continental crust, we acquired wide-angle seismic data at the junction of the Walvis Ridge with the African continent and modelled the P-wave velocity structure in a forward approach. The profile extends 430. km along the ridge and continues onshore to a length of 720. km. Crustal velocities beneath the Walvis Ridge vary between 5.5. km/s and 7.0. km/s, a typical range for oceanic crust. The crustal thickness of 22. km, however, is approximately three times larger than of normal oceanic crust. The continent-ocean transition is characterized by 30. km thick crust with strong lateral velocity variations in the upper crust and a high-velocity lower crust (HVLC), where velocities reach up to 7.5. km/s. The HVLC is 100 to 130. km wider at the Walvis Ridge than it is farther south, and impinges onto the continental crust of the Kaoko fold belt. Such high seismic velocities indicate Mg-rich igneous material intruded into the continental crust during the initial rifting stage. However, the remaining continental crust seems unaffected by intrusions and the root of the 40. km-thick crust of the Kaoko belt is not thermally abraded. We conclude that the plume head did not modify the continental crust on a large scale, but caused rather local effects. Thus, it seems unlikely that a plume drove or initiated the breakup process. We further propose that the plume already existed underneath the continent prior to the breakup, and ponded melt erupted at emerging rift structures providing the magma for continental flood basalts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 124 . pp. 55-65.
    Publication Date: 2020-02-06
    Description: Species distribution modelling can be applied to identify potentially suitable habitat for species with largely unknown distributions, such as many deep-water corals. Important variables influencing species occurrence in the deep sea, e.g. substrate composition, are often not included in these modelling approaches because high-resolution data are unavailable. We investigated the relationship between substrate composition and the occurrence of the two deep-water octocoral species Primnoa resedaeformis and Paragorgia arborea, which require hard substrate for attachment. On a scale of 10s of metres, we analysed images of the seafloor taken at two locations inside the Northeast Channel Coral Conservation Area in the Northwest Atlantic. We interpolated substrate composition over the sampling areas and determined the contribution of substrate classes, depth and slope to describe habitat suitability using maximum entropy modelling (Maxent). Substrate composition was similar at both sites - dominated by pebbles in a matrix of sand (〉80%) with low percentages of suitable substrate for coral occurrence. Coral abundance was low at site 1 (0.9 colonies of P. resedaeformis per 100m2) and high at site 2 (63 colonies of P. resedaeformis per 100m2) indicating that substrate alone is not sufficient to explain varying patterns in coral occurrence. Spatial interpolations of substrate classes revealed the difficulty to accurately resolve sparsely distributed boulders (3-5% of substrate). Boulders were by far the most important variable in the habitat suitability model (HSM) for P. resedaeformis at site 1, indicating the fundamental influence of a substrate class that is the least abundant. At site 2, HSMs identified cobbles and sand/pebble as the most important variables for habitat suitability. However, substrate classes were correlated making it difficult to determine the influence of individual variables. To provide accurate information on habitat suitability for the two coral species, substrate composition needs to be quantified so that small fractions (〈20% contribution of certain substrate class) of suitable substrate are resolved. While the collection and analysis of high-resolution data is costly and spatially limited, the required resolution is unlikely to be achieved in coarse-scale interpolations of substrate data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-02-01
    Description: This study reconstructs the history of multiple industrial and urban mercury (Hg) emissions recorded in the sediment archive of Lake Luitel (France) from AD similar to 1860 to AD 2011. For this purpose, we provide a well constrained short-lived radionuclides continuous age-depth relationship of the sediment sequence (mean accumulation rate of 5.18 +/- 0.28 mm.yr(-1)) with Hg accumulation rates (Hg AR), Hg isotopic composition and extensive historical data. Hg AR were stable around 45 mu g.m(-2).y(-1) from 1860 to WWI and rose to reach their maximum at the end of WWII (250 mu g m(-2) y(-1)) followed by a gradual decreased to reach about 90 mu g m(-2) y(-1) in the current period. Normalization to a terrigenous Hg proxy highlighted the dominance of atmospheric Hg inputs to the lake. The combination of Hg AR with isotopic signatures through the use of binary mixing (Delta Hg-199 vs 1/Hg AR) models and isotopic plots (and comparison to literature data) allowed us to identify the main industrial and urban historical inputs. The major outcome of this study is that the Hg mass independent fractionation (MIF) signature did not enable the identification of particular anthropogenic sources but reflected an integrated pool of industrial and urban emissions which tend to shift to less negative MIF values (mean: -0.15 +/- 0.04%) during their period of maximum emissions. Temporal MIF and Hg AR variations depict the rising Hg emissions from the industrial revolution (1860-1910) to the modern industrial and urban development period (1950-1980). Mass dependent fractionation (MDF) signatures enabled the identification of major contributors in relation to their relative intensities lying between two endmember pools: (i) the combustion activities (smelters, cement factories and urban heating) with more negative delta Hg-202 values, and (ii) the chemical and electrometallurgical activities (electrochemistry, chlor-alkali) with higher delta Hg-202 values. Unconformities of MIF and MDF signatures were observed during WWI, WWII and interwar period, and were attributed to drastic and rapid changes in regional industrial activities. Finally, recent laws regarding Hg emissions (1998-2011) prove their efficiency as Hg AR decreased with a return to more negative MIF and MDF signatures such as during the industrial revolution period. Our study highlights that the combination of Hg isotopic data with Hg AR in sediment archives is a useful tool for reconstructing the history of anthropogenic Hg emissions, and has the potential to identifiy their relative contributions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-04-23
    Description: Highlights • A rapid automated analytical method for simultaneous analysis of multiple trace metals in small volumes of seawater. • Isotope dilution is utilized for concentration quantification, eliminating sensitivity to variation in recovery. • Minimal variability in automated sample loading and elution volumes allows precise quantification via standard addition for monoisotopic elements. • High accuracy was confirmed by analysis of reference seawaters SAFe S, D1 and D2. • The utilized resin (WAKO) demonstrated improved recoveries for most tested trace metals in comparison to a NOBIAS Chelate-PA1 resin. A rapid, automated, high-throughput analytical method capable of simultaneous analysis of multiple elements at trace and ultratrace levels is required to investigate the biogeochemical cycle of trace metals in the ocean. Here we present an analytical approach which uses a commercially available automated preconcentration device (SeaFAST) with accurate volume loading and in-line pH buffering of the sample prior to loading onto a chelating resin (WAKO) and subsequent simultaneous analysis of iron (Fe), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd), lead (Pb), cobalt (Co) and manganese (Mn) by high-resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS). Quantification of sample concentration was undertaken using isotope dilution for Fe, Zn, Cu, Ni, Cd and Pb, and standard addition for Co and Mn. The chelating resin is shown to have a high affinity for all analyzed elements, with recoveries between 83 and 100% for all elements, except Mn (60%) and Ni (48%), and showed higher recoveries for Ni, Cd, Pb, Co and Mn in direct comparison to an alternative resin (NOBIAS Chelate-PA1). The reduced recoveries for Ni and Mn using the WAKO resin did not affect the quantification accuracy. A relatively constant retention efficiency on the resin over a broad pH range (pH 5–8) was observed for the trace metals, except for Mn. Mn quantification using standard addition required accurate sample pH adjustment with optimal recoveries at pH 7.5 ± 0.3. UV digestion was necessary to increase recovery of Co and Cu in seawater by 15.6% and 11.4%, respectively, and achieved full break-down of spiked Co-containing vitamin B12 complexes. Low blank levels and detection limits could be achieved (e.g., 0.029 nmol L⁻¹ for Fe and 0.028 nmol L⁻¹ for Zn) with the use of high purity reagents. Precision and accuracy were assessed using SAFe S, D1, and D2 reference seawaters, and results were in good agreement with available consensus values. The presented method is ideal for high throughput simultaneous analysis of trace elements in coastal and oceanic seawaters. We present a successful application of the analytical method to samples collected in June 2014 in the Northeast Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-02-01
    Description: Polysialic acid (PSA) serves as a hydrophilic polymer and affords conjugated biologically active molecules a longer circulation time in vivo. Furthermore, PSA could potentially target tumor tissues and help achieve better curative effects. In this study, PSA was conjugated with octadecyl dimethyl betaine (BS18) to yield a PSA-BS18 conjugate. The PSA-BS18 modified liposomal epirubicin (EPI-SL), had a particle size of 133.63 ± 0.92 nm, a zeta potential of −26.23 ± 1.50 mV and an encapsulation efficiency (%EE) of 96.23 ± 1.16%. In vitro release studies showed that PSA-BS18 could delay EPI release from the modified liposomes. The MTT assay suggested that EPI-SL led to stronger cytotoxic activity than that exhibited by common and PEGylated liposomes. The pharmacokinetic study showed that EPI-SL prolonged the residence time of the EPI in the blood compared with that observed from common liposomes. Bio-distribution results obtained from tumor-bearing mice clearly demonstrated that PSA-BS18 increased the accumulation of modified liposomes in tumors compared with that of common liposomes. In the antitumor efficacy study, EPI-SL showed the best antitumor and life-prolonging effects among all of the tested formulations. These findings strongly indicate EPI-SL might have great potential as an effective approach for anticancer therapy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-06-07
    Description: Highlights • Chronometric dating of Neanderthal remains to 190 ka from the volcanic context of Wannen-Ochtendung. • Red thermoluminescence dating (RTL) of heated detritical quartz extracted from crustal xenoliths • Shortened and full single aliquot regeneration (SAR) protocols agree. • Perfect agreement of RTL dating with argon dating for the identical events Abstract The partial neurocranium of a Neanderthal was recovered from deposits related to the latest volcanic activities recorded at the Wannen Volcanic Group. This last volcanic event provided heated mineral samples for thermoluminescence (TL) and Ar/Ar dating, allowing the estimation of the age of the hominin remains. Novel TL methods using a much less time consuming measurement protocol and employing the orange-red TL-signal (R-TL) were applied, resulting in ages of 177 ± 18 ka and 176 ± 21 ka for two samples of different geology. This new data is compared with standard TL-approaches for one of the samples, which provide an age of 187 ± 29 ka. The luminescence data is contrasted with a newly obtained Ar/Ar-age of 191 ± 12 ka for a sample from the identical heating event. All TL-dating results provide congruent results and are in perfect accordance with Ar/Ar dating, showing the applicability and accuracy of the new TL approach employed. These data also agree well with the geological age estimates and other chronometric data, placing the volcanism at Wannen to around 180–190 ka and thus providing a Saalian age of the fossil. Such an old age, however, contrasts to the reported preliminary placement of this specimen late in the Neanderthal lineage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 126 . pp. 40-49.
    Publication Date: 2020-02-06
    Description: Highlights: • We investigated growth and longevity of three deep-sea squids from the Monterey Bay. • We found daily growth increments in the statoliths of two deep-sea squids. • The estimated longevities are higher than those of shallow water relatives. • The estimated growth rates suggest a reduced pace of life in deep-sea squids. Abstract Coastal and epipelagic cephalopods are among the fastest growing invertebrates, with life cycles of typically 1 year or less. Evidence is accumulating that deep-sea taxa often live longer and grow slower than their shallow water relatives. We test the hypothesis that deep-sea squid show increased longevity and reduced growth rates compared to coastal and epipelagic species, by validation experiments and quantification of statolith increments of three deep-sea squids from the Monterey Submarine Canyon. The periodicity of statolith increment formation in coastal species is daily, but is unknown for deep-sea squid. Between 2010 and 2013, specimens of Chiroteuthis calyx, Galiteuthis phyllura and Octopoteuthis deletron were captured by remotely operated vehicles and trawl nets off California. ROV-captured living squid were immersed in tetracycline and kept alive in the lab for between 3 and 14 days. Correlating the number of elapsed days with the number of newly deposited statolith increments, and statolith growth after the fluorescent tetracycline mark, provided evidence of regular and daily increment deposition, in C. calyx and O. deletron. This relationship was less strong in G. phyllura and the one-increment-per-day hypothesis was not accepted for this species. Reconstructing growth rates based on statolith counts and wet weights from animals of a wide size range suggest that O. deletron is a slower growing squid (0.59% BW/day) than C. calyx (1.3% BW/day) and G. phyllura (1.2% BW/day). Octopoteuthis deletron matures at around two years, the oldest C. calyx was a mature male of 1.5 years and the eldest G. phyllura was 10 months and still immature. Maximum reported sizes for G. phyllura and C. calyx exceed those of our examined specimens, and therefore their longevity likely exceeds 2 years, in particular if the females brood their eggs. Our study supports the hypothesis that deeper living squid exhibit reduced growth rates and an increased longevity compared to shallow living species. We discuss these traits in the context of a life in the deep pelagic ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-02-06
    Description: Highlights • Identify new fine-grained hydrate filled fracture units in the Terrebonne Basin. • Identify new hydrate bearing thin sands, mostly within fractured muds. • Present detailed seismic amplitude maps of the new hydrate bearing units. • Discuss methane migration mechanisms and hydrate formation in thin sands. • Identify and discuss source-reservoir relationships between thick muds and thin sands. Abstract The interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are 〉100 m-thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grained units lack fracture features, and they contain 1–4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-02-06
    Description: Over the last decade there has been renewed interest in determining the water contents of basaltic magmas. A commonly applied method is analysis of H2O from melt inclusions in olivine. However, it is also well known that these can rapidly lose (or gain) H2O by diffusion. An alternative is to measure the H2O contents of clinopyroxene phenocrysts and use a partition coefficient (D) to estimate the original H2O content of the host magma. This approach is not without complications and several recent studies have attempted to assess the effects of diffusive loss of H2O from magmatic clinopyroxenes. In the ideal case, these crystals should be taken from rapidly cooled tephra or lapilli but such materials are not always available. In order to further assess the potential of using 5-10mm clinopyroxenes from lavas we undertook a detailed, multi-analytical investigation of clinopyroxenes from an ankaramite flow on Pico Island in the Azores. We conclude that these can be trusted to preserve (probably minimum) magmatic H2O contents if the H2O concentrations of multiple clinopyroxenes from a single sample form a linear correlation with the AlIV content that demonstrates a coupled substitution with little or no H2O loss. Conversely, if H2O contents decrease from core to rim whereas AlIV contents remain relatively constant then it is likely that those clinopyroxenes lost H2O during differentiation and/or cooling. We suspect that the olivine melt inclusions we analysed from Pico and São Miguel Islands also underwent diffusive loss of H2O. Using these criteria, we present clinopyroxene-derived magmatic H2O estimates for Corvo, Flores Faial, Pico and São Miguel Islands that range from 0.28 to 2.2wt%. When combined with published data these show that H2O contents often extend to higher values on the islands than along the adjacent mid-Atlantic ridge. These localised, elevated H2O contents can explain why the islands are emergent despite being situated away from the ridge and perhaps also the asymmetric nature of the bathymetry of the archipelago. It is possible that this H2O was recycled from material subducted very early on in Earth's history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-02-06
    Description: Highlight • It is important to develop systems able to detect and classify mineralized zones from waste materials while drilling deep-water; • Seismic P-wave velocities (Vp) were measured on 40 SMS and unmineralized mini-cores; • The porosity was back-calculated from Vp; • The results were compared with electrical resistivity measurements; • Using Archie’s Law, it is possible to observe that metallic conduction exists. Abstract Deep-sea mining exploration for seafloor massive sulfide (SMS) deposits is currently increasing. At present, most exploration activities are surficial and use indirect methods to identify potential sites and perform first assessments. For a proper resource estimate, however, drilling is inevitable. By using seabed drill rigs, exploration costs can be reduced considerably. SMS deposits are normally found at depths between 1000 and 4000 m and in order for deep sea mining to be implemented, reliable technologies are needed. Additionally, the development of geophysical systems that can detect and classify mineralized zones from waste materials while drilling could decrease costs and speed up offshore operations by limiting the amount of drilling of unmineralized materials. This paper shows how the physical properties of SMS can be used to discriminate between host rocks and mineralization. Seismic P-wave velocities (Vp) were measured on 40 SMS and unmineralized mini-cores. By back-calculating the porosity from Vp, comparing the results with electrical resistivity measurements, and using Archie's Law, it is possible to observe that metallic conduction exists. For deep-sea mineral exploration, the combination of seismic tests, electrical resistivity and magnetic susceptibility could support the preliminary discrimination of mineralized samples in the cores while drilling at the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-02-08
    Description: A Benguela Niño developed in November 2010 and lasted for 5 months along the Angolan and Namibian coastlines. Maximum amplitude was reached in January 2011 with an interannual monthly Sea Surface Temperature anomaly larger than 4 °C at the Angola Benguela Front. It was the warmest event since 1995. Consistent with previous Benguela Niños, this event was generated by a relaxation of the trade winds in the western equatorial Atlantic, which triggered a strong equatorial Kelvin wave propagating eastward along the equator and then southward along the southwest African coast. In the equatorial band, the associated ocean sub-surface temperature anomaly clearly shows up in data from the PIRATA mooring array. The dynamical signature is also detected by altimetry derived Sea Surface Height and is well reproduced by an Ocean Linear Model. In contrast to previous Benguela Niños, the initial propagation of sub-surface temperature anomalies along the equator started in October and the associated warming in the Angolan Benguela Front Zone followed on as early as November 2010. The warming was then advected further south in the Northern Benguela upwelling system as far as 25°S by an anomalously strong poleward sub-surface current. Demise of the event was triggered by stronger than normal easterly winds along the Equator in April and May 2011 leading to above normal shoaling of the thermocline along the Equator and the south-west African coastline off Angola and an associated abnormal equatorward current at the Angola Benguela Front in April and May 2011.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-02-08
    Description: Highlights • Analytical and numerical methods are employed to investigate fluid flow in active mud volcanoes or SHHS. • The effects of conduit radius and fluid properties on the flow rate are presented. • Conduit radius of such piercement systems cannot exceed a few metres at depth. • Clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. • A maximal exsolution depth between 1800 and 3200 m is inferred for CH4 and between 750 and 1000 m for CO2. Clastic eruptions involve the rapid ascension of sedimentary clasts together with fluids, gas and/or liquid phases that may further deform and brecciate the host rocks. These fluids transport the resulting mixture, called mud breccia, to the surface. Such eruptions are often associated with geological structures such as mud volcanoes, hydrothermal vent complexes and, more generally, piercement structures. They involve various processes, acting over a wide range of scales, which makes them a complex and challenging multi-phase system to model. Although piercement structures have been widely studied and discussed, only a few attempts have been made to model the dynamics of such clastic eruptions. The ongoing Lusi mud eruption, in the East Java back-arc basin, which began in May 2006, is a spectacular large scale clastic eruption. The Lusi eruptive behaviour has been extensively studied over the past decade and thus represents a unique opportunity to better understand ongoing clastic eruptions and thus fossil clastic systems. We use both analytical formulations and numerical models to investigate simple relationships between the mud breccia properties (density, viscosity, gas and clast content) and the volumetric flow rate. Our results show that the conduit radius of such piercement systems cannot exceed a few metres at depth, and that clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. Using published data for the annual gas fluxes at Lusi, we infer a maximal depth at which exsolution starts. This occurs between 1800 m and 3200 m depth for methane and between 750 m and 1000 m for carbon dioxide. Based on annual gas fluxes, we estimate that the conduit radius should be no larger than 1.5 m to match the maximal mud discharge, recorded at Lusi.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Micropaleontology, 135 . pp. 45-55.
    Publication Date: 2020-02-06
    Description: Highlights • Planktic foraminifera species show an Early Holocene 14C plateau analogous to the atmospheric 14C plateau at 10.2–9.6 cal ka. • Age-calibrated Early Holocene 14C plateau boundaries provide precise age control in 3 sediment cores on a 900 km long transect. • Differences between planktic foraminiferal and atmospheric 14C ages reveal the 14C reservoir age of local surface waters. • Different planktic species document different 14C reservoir ages characteristic of different surface and subsurface waters. To trace spatial variations in Holocene reservoir ages of surface and subsurface waters we studied narrowly spaced 14C records of planktic foraminifera in three high-sedimentation rate cores from the Nordic Seas, the Barents Sea continental margin and eastern Fram Strait. The two northern cores reveal a distinct Early Holocene 14C plateau in dates on the subsurface dweller Neogloboquadrina pachyderma at 9.3–9.1 14C ka. The plateau was tuned to an atmospheric 14C plateau at 9.0–8.7 14C ka that spans 10.2–9.6 calendar ka. These two plateau boundaries provide robust age control points to estimate short-term changes in sedimentation rate and to correlate paleoceanographic signals over 900 km along the West Spitsbergen Current. The difference between planktic and atmospheric 14C plateau ages suggests local 14C reservoir ages of 370–400 yr. Planktic foraminifera species that inhabit different water masses document different reservoir ages. By comparison, the subpolar N. incompta reveals a reservoir age of 150 yr, probably formed in well-mixed Atlantic-sourced waters during winter. The near-surface dweller Turborotalita quinqueloba shows an age of 290 yr in the Fram Strait, but one of 720 yr at the Barents Sea continental margin. The latter age suggests a calcification within old, meltwater-enriched Arctic surface waters admixed by the East Spitsbergen Current. Likewise, we assign an elevated reservoir age of 760 yr on mixed species at a Norwegian Sea site near 71°N to Preboreal meltwaters that spread from northern Norway far west, also documented by the spatial distribution of a coeval δ13C minimum of N. pachyderma.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-02-06
    Description: It was proposed to utilize siderite FeCO3 in mid to late Archaean Superior type banded as a proxy to constrain the CO2 partial pressure of Archaean atmospheres. Implicit in this proposition is that siderite was a primary carbonate mineral that crystallized directly from Fe2+ enriched Archaean seawater, in equilibrium with atmospheric CO2. To our knowledge that proposition has not been demonstrated to be valid. We test with water-gas exchange experiments under controlled CO2 partial pressures if siderite can be stabilized as a primary mineral in Fe2+ bearing seawater. Reduced seawater proxies enriched in Fe2+ and Mn2+ are equilibrated with reduced N2-CH4-CO2-H2 gas phases with variable CO2. The solid phases stabilized in Fe2+ enriched water compositions are amorphous ferrous iron hydroxy carbonates. Crystalline siderite FeCO3 is not found to be a stable phase. The phases precipitating from Mn2+ enriched water include crystalline rhodochrosite MnCO3 and possibly amorphous Mn-enriched phases. Based on these results we advise against using siderite in banded iron formations as a CO2 sensor for the Archaean atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-02-06
    Description: Highlights • We review the knowledge on modern high-latitude planktic foraminifers. • Subpolar species currently invade higher latitudes. • Climate change affects phenology, seawater pH, and carbon turnover. • Modern planktic foraminifers are briefly discussed for their paleoceanographic significance. Abstract Planktic foraminifers can be sensitive indicators of the changing environment including both the Arctic Ocean and Southern Ocean. Due to variability in their ecology, biology, test characteristics, and fossil preservation in marine sediments, they serve as valuable archives in paleoceanography and climate geochemistry over the geologic time scale. Foraminifers are sensitive to, and can therefore provide proxy data on ambient water temperature, salinity, carbonate chemistry, and trophic conditions through shifts in assemblage (species) composition and the shell chemistry of individual specimens. Production and dissolution of the calcareous shell, as well as growth and remineralization of the cytoplasm, affect the carbonate counter pump and to a lesser extent the soft-tissue pump, at varying regional and temporal scales. Diversity of planktic foraminifers in polar waters is low in comparison to lower latitudes and is limited to three native species: Neogloboquadrina pachyderma, Turborotalita quinqueloba, and Globigerina bulloides, of which N. pachyderma is best adapted to polar conditions in the surface ocean. Neogloboquadrina pachyderma hibernates in brine channels in the lower layers of the Antarctic sea ice, a strategy that is presently undescribed in the Arctic. In open Antarctic and Arctic surface waters T. quinqueloba and G. bulloides increase in abundance at lower polar to subpolar latitudes and Globigerinita uvula, Turborotalita humilis, Globigerinita glutinata, Globorotalia inflata, and Globorotalia crassaformis complement the assemblages. Over the past two to three decades there has been a marked increase in the abundance of Orcadia riedeli and G. uvula in the subpolar and polar Indian Ocean, as well as in the northern North Atlantic. This paper presents a review of the knowledge of polar and subpolar planktic foraminifers. Particular emphasis is placed on the response of foraminifers to modern warming and ocean acidification at high latitudes and the implications for data interpretation in paleoceanography and paleoclimate research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-02-06
    Description: High-resolution marine seismic data acquisition and subsequent analyses are highly influenced by sea conditions, directly affecting data quality and interpretation. Traditional swell effect correction methods are effective in improving reflector continuity; however, they are less useful for enhancing travel time consistency at intersection points of crossing lines. To develop a robust swell-removal technique for a set of crossing lines multi-beam echo sounder (MBES) data and Chirp sub-bottom profiler (SBP) data were acquired. After generation of a time structure map of the sea-bottom converted from the final processed multi-beam data, a moving average was used to improve the event continuity of the sea-bottom reflection of the Chirp SBP data. Using the position of the Chirp SBP data, the difference between the travel time of the sea-bottom from the smoothed map and the original travel time of the sea-bottom is calculated as a static correction. The static correction method based on the MBES data was compared and verified using three different cases: (i) simple 2D swell effect correction on a line-by-line basis, (ii) comparing the swell corrections at the crossing positions of 2D lines acquired from different dates, and (iii) comparison of ties of intersection points between 2D lines after new swell correction applied. Although a simple 2D swell correction showed great enhancement of reflector continuity, only the full static correction using the newly proposed method using MBES data produced completely corrected reflection events especially at the crossing points of 2D lines.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-02-06
    Description: Highlights • 2-D velocity models at the highest slip patch during the Chilean 2010 Mw 8.8 earthquake. • The highest slip patch correlates with large accretionary prisms. • The highest slip patch correlates with low continental slope angles. • A similar pattern is observed along the giant 1960 Mw 9.5 earthquake rupture area. Abstract Subduction megathrust earthquakes show complex rupture behaviour and large lateral variations of slip. However, the factors controlling seismic slip are still under debate. Here, we present 2-D velocity-depth tomographic models across four trench-perpendicular wide angle seismic profiles complemented with high resolution bathymetric data in the area of maximum coseismic slip of the 8.8 Maule 2010 megathrust earthquake (central Chile, 34°–36°S). Results show an abrupt lateral velocity gradient in the trench-perpendicular direction (from 5.0 to 6.0 km/s) interpreted as the contact between the accretionary prism and continental framework rock whose superficial expression spatially correlates with the slope-shelf break. The accretionary prism is composed of two bodies: (1) an outer accretionary wedge (5–10 km wide) characterized by low seismic velocities of 1.8–3.0 km/s interpreted as an outer frontal prism of poorly compacted and hydrated sediment, and (2) the middle wedge (∼50 km wide) with velocities of 3.0–5.0 km/s interpreted as a middle prism composed by compacted and lithified sediment. In addition, the maximum average coseismic slip of the 2010 megathrust event is fairly coincident with the region where the accretionary prism and continental slope are widest (50–60 km wide), and the continental slope angle is low (〈5°). We observe a similar relation along the rupture area of the largest instrumentally recorded Valdivia 1960 9.5 megathrust earthquake. For the case of the Maule event, published differential multibeam bathymetric data confirms that coseismic slip must have propagated up to ∼6 km landwards of the deformation front and hence practically the entire base of the middle prism. Sediment dewatering and compaction processes might explain the competent rheology of the middle prism allowing shallow earthquake rupture. In contrast, the outer frontal prism made of poorly consolidated sediment has impeded the rupture up to the deformation front as high resolution seismic reflection and multibeam bathymetric data have not showed evidence for new deformation in the trench region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-02-06
    Description: Highlights • New and reprocessed seismic data improved structural mapping at the Møre Margin. • Time-structure and thickness maps of the Cretaceous units have been constructed. • Stratigraphy reconstruction of a transect reveals 188 km extension. • Average stretching factor is 2.2–3.6 depending on assumed initial crustal thickness. Abstract Lithospheric stretching is the key process in forming extensional sedimentary basins at passive rifted margins. This study explores the stretching factors, resulting extension, and structural evolution of the Møre segment on the Mid-Norwegian continental margin. Based on the interpretation of new and reprocessed high-quality seismic, we present updated structural maps of the Møre margin that show very thick post-rift sediments in the central Møre Basin and extensive sill intrusion into the Cretaceous sediments. A major shift in subsidence and deposition occurred during mid-Cretaceous. One transect across the Møre continental margin from the Slørebotn Subbasin to the continent-ocean boundary is reconstructed using the basin modelling software TecMod. We test different initial crustal configurations and rifting events and compare our structural reconstruction results to stretching factors derived both from crustal thinning and the classical backstripping/decompaction approach. Seismic interpretation in combination with structural reconstruction modelling does not support the lower crustal bodies as exhumed and serpentinised mantle. Our extension estimate along this transect is ~ 188 ± 28 km for initial crustal thickness varying between 30 and 40 km.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-02-06
    Description: Olivine-hosted inclusions of silicate and sulfide melts, Cr-spinel and pyroxene were studied to estimate magma composition, temperature, pressure, and fO2 at the onset and during the silicate-sulfide immiscibility in modern arc basalt from Tolbachik volcano, Kamchatka arc. We demonstrate that the olivine phenocrysts hosting sulfide and silicate melt inclusions belong to the same population. The compositions of the silicate melt inclusions in most primitive olivine (88–91 mol% Fo) represent moderately oxidized (~ QFM + 1.1) high-MgO (up to 12–12.6 wt%) and high CaO/Al2O3 (0.8–1.2) melt that has abundances and ratios of the lithophile trace elements typical of island arc magmas. The initial volatile contents in parental Tolbachik magma are estimated from the melt inclusions and mass-balance considerations to be at least 4.9 wt% H2O, 2600 ppm S, 1100 ppm Cl, 550 ppm F, and 1200 ppm CO2. These data are used to calculate the temperature (~ 1220 °C) and minimum pressure (3 kbar) at which the beginning of crystallization and exsolution of sulfide melt took place. The presence of anhydrite, especially ubiquitous in the crystallized silicate melt associated with sulfide globules, suggest that much higher sulfur abundances prior to degassing and sulfate immiscibility and/or crystallization should be expected. We tentatively considered hydrothermal accumulations of sulfur (elemental, sulfate and sulfide) in the volcanic conduit responsible for local contamination and oversaturation of the Tolbachik magma in sulfur and related sulfide immiscibility. Coexisting sulfide and sulfate can be also interpreted in favor of the magmatic sulfide oxidation and related generation of S-rich fluids. Such fluids are expected to accumulate metals released from decomposed sulfide melts and supply significant epithermal mineralization, including native gold.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Elsevier
    In:  Current Biology, 27 (11). R489-R494.
    Publication Date: 2017-10-04
    Description: Invisible to the naked eye, yet dominating life with some 1030 cells, bacteria and archaea (referred to herein as ‘microbes’) play key roles in the global cycling of nutrients, matter and energy in our oceans. Having experimented for over 3.5 billion years since their first appearance, they are true master chemists that are capable of carrying out the most diverse and complex of chemical reactions. One of the most abundant groups, cyanobacteria, converts light into chemical energy by fixing carbon dioxide into organic matter. Part of this fixed carbon is consumed by higher trophic levels, while another fraction sinks to the deep sediments where, over geological time scales, it fossilizes into the natural resources that we tap into for our everyday lives. Despite our knowledge of their global importance and significant recent advances in marine microbiome research (Figure 1), some of the most fundamental questions still remain unanswered, and serve as active drivers of current research in this field: How many microbes are out there, and how many different types? What are they? What are their functional roles? How are they globally distributed? How do they adapt to varying environmental conditions and how will they respond to future environmental changes? This Primer provides a brief overview on how these questions have been addressed in the context of developing technologies. We discuss new insights, as well as new concepts and more refined questions, and we highlight some of the future promises and challenges that lie ahead.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 129 . pp. 1-9.
    Publication Date: 2020-02-06
    Description: Reliable very deep shipborne SBE 911plus Conductivity Temperature Depth (CTD) data to within 60m from the bottom and Kongsberg EM122 0.5° × 1° multibeam echosounder data are collected in the Challenger Deep, Mariana Trench. A new position and depth are given for the deepest point in the world's ocean. The data provide insight into the interplay between topography and internal waves in the ocean that lead to mixing of the lowermost water masses on Earth. Below 5000m, the vertical density stratification is weak, with a minimum buoyancy frequency N = 1.0 ± 0.6 cpd, cycles per day, between 6500 and 8500m. In that depth range, the average turbulence is coarsely estimated from Thorpe-overturning scales, with limited statistics to be ten times higher than the mean values of dissipation rate εT = 3 ± 2 × 10-11 m2 s-3 and eddy diffusivity KzT = 2 ± 1.5 × 10-4 m2 s-1 estimated for the depth range between 10,300 and 10,850m, where N = 2.5 ± 0.6 cpd. Inertial and meridionally directed tidal inertio-gravity waves can propagate between the differently stratified layers. These waves are suggested to be responsible for the observed turbulence. The turbulence values are similar to those recently estimated from CTD and moored observations in the Puerto Rico Trench. Yet, in contrast to the Puerto Rico Trench, seafloor morphology in the Mariana Trench shows up to 500m-high fault scarps on the incoming tectonic plate and a very narrow trench, suggesting that seafloor topography does not play a crucial role for mixing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-02-05
    Description: Submarine groundwater discharge (SGD) is an important component of chemical fluxes in the coastal ocean. The composition of SGD is influenced by biogeochemical reactions that take place within the subterranean estuary (STE), the subsurface mixing zone of fresh and saline groundwaters. The STE is characterized by redox gradients that affect the speciation and mobility of redox-sensitive elements (RSEs). We examined the distributions and behavior of the RSEs Mo, U, V, and Cr within the larger redox framework of a shallow STE and evaluated the source-sink function of the STE for these elements. We found that the advection of water through the STE and the apparent respiration of organic matter drives the formation of a “classic” redox sequence typically observed in diffusion-dominated fine-grained sediments. High concentrations of dissolved organic matter (up to 2.9 mM) lead to extensive sulfide production (up to 1.8 mM) within 3 m of the surface. Both Mo and U are quantitatively removed as oxic surface waters mix into ferruginous and sulfidic zones. Molybdenum removal appears to occur where sulfide concentrations exceed ~ 11 μM, a previously reported threshold for quantitative formation of highly particle-reactive thiomolybdate species. Uranium removal apparently occurs via reduction and formation of insoluble phases or sorption to sediments. It is not clear how readily sequestered metals may be returned to solution, but SGD may be an important sink in the marine budget for both Mo and U. In contrast, both V and Cr show non-conservative addition across the salinity mixing gradient. Increases in pH appear to promote dissolution of V from minerals within the shallow aquifer, and mobilization may also be associated with dissolved organic matter. Chromium enrichment is associated with higher dissolved organic matter and is likely due to the formation of soluble Cr-organic complexes. Fluxes of these elements were constrained using SGD volume fluxes, determined using radium isotopes as well as direct discharge measurements by Lee-type seepage meters, and concentrations in directly-sampled seepage (Mo: − 0.21 to − 7.7 μmol m− 2 day− 1; U: − 0.02 to − 0.6 μmol m− 2 day− 1; V: 0.05 to 2.0 μmol m− 2 day− 1; Cr: 0.12 to 4.4 μmol m− 2 day− 1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-04-23
    Description: The stoichiometric dissociation constants of carbonic acid ( and ) were determined by measurement of all four measurable parameters of the carbonate system (total alkalinity, total dissolved inorganic carbon, pH on the total proton scale, and CO2 fugacity) in natural seawater and seawater-derived brines, with a major ion composition equivalent to that Reference Seawater, to practical salinity (SP) 100 and from 25 °C to the freezing point of these solutions and –6 °C temperature minimum. These values, reported in the total proton scale, provide the first such determinations at below-zero temperatures and for SP 〉 50. The temperature (T, in Kelvin) and SP dependence of the current and (as negative common logarithms) within the salinity and temperature ranges of this study (33 ≤ SP ≤ 100, –6 °C ≤ t ≤ 25 °C) is described by the following best-fit equations: = –176.48 + 6.14528 – 0.127714 SP + 7.396×10–5 + (9914.37 – 622.886 + 29.714 SP) T–1 + (26.05129 – 0.666812 ) lnT (σ = 0.011, n = 62), and = –323.52692 + 27.557655 + 0.154922 SP – 2.48396×10–4 + (14763.287 – 1014.819 – 14.35223 SP) T–1 + (50.385807 – 4.4630415 ) lnT (σ = 0.020, n = 62). These functions are suitable for application to investigations of the carbonate system of internal sea ice brines with a conservative major ion composition relative to that of Reference Seawater and within the temperature and salinity ranges of this study.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-02-08
    Description: Documenting the early tectonic and magmatic evolution of the Izu–Bonin–Mariana (IBM) arc system in the Western Pacific is critical for understanding the process and cause of subduction initiation along the current convergent margin between the Pacific and Philippine Sea plates. Forearc igneous sections provide firm evidence for seafloor spreading at the time of subduction initiation (52 Ma) and production of “forearc basalt”. Ocean floor drilling (International Ocean Discovery Program Expedition 351) recovered basement-forming, low-Ti tholeiitic basalt crust formed shortly after subduction initiation but distal from the convergent margin (nominally reararc) of the future IBM arc (Amami Sankaku Basin: ASB). Radiometric dating of this basement gives an age range (49.3–46.8 Ma with a weighted average of 48.7 Ma) that overlaps that of basalt in the present-day IBM forearc, but up to 3.3 m.y. younger than the onset of forearc basalt activity. Similarity in age range and geochemical character between the reararc and forearc basalts implies that the ocean crust newly formed by seafloor spreading during subduction initiation extends from fore- to reararc of the present-day IBM arc. Given the age difference between the oldest forearc basalt and the ASB crust, asymmetric spreading caused by ridge migration might have taken place. This scenario for the formation of the ASB implies that the Mesozoic remnant arc terrane of the Daito Ridges comprised the overriding plate at subduction initiation. The juxtaposition of a relatively buoyant remnant arc terrane adjacent to an oceanic plate was more favourable for subduction initiation than would have been the case if both downgoing and overriding plates had been oceanic.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-12-13
    Description: The Neoarchean-Paleoproterozoic Transvaal Supergroup in South Africa contains the well-preserved stromatolitic Campbellrand-Malmani carbonate platform, which was deposited in shallow seawater shortly before the 2.40–2.32 Ga Great Oxidation Event (GOE). This platform is composed of alternating stromatolitic carbonates and mudstones and is a prominent candidate for (isotope-) geochemical mapping to investigate the appearance of very small amounts of free oxygen that accumulated in shallow waters preceding the GOE. Mo isotopes in sedimentary archives are widely used as a proxy for redox-changes in modern and ancient environments and recent evidence suggests that oxy-molybdate (MoO42−) is directly transferred from ocean water to inorganic carbonates with negligible fractionation, thus reflecting oceanic Mo isotope signatures. In this study we analyzed major and trace element compositions as well as Mo isotopic compositions of carbonate and mudstone samples from the KMF-5 drill core. Geochemical indicators, such as Fe and Mn concentrations and Fe-to-Mn abundance ratios reveal the preservation of some geochemical indicators despite the widespread silicification and dolomitization of the platform. Heavy δ30Si values of silicified carbonates between 0.53 and 2.35‰ point to Si precipitation from surface water during early diagenesis rather than to a later hydrothermal overprint. This assessment is supported by the frequent observation of rip-up structures of silica (chert) layers within the entire sedimentary succession. The δ98Mo values of whole rock samples throughout the Malmani-Campbellrand platform range between −0.82 and +1.40‰, similar to values reported for deeper slope carbonates from the Griqualand West area, but variations are independent from lithology or depositional water depth. These large variations in δ98Mo values indicate molybdenum redox cycling and thus the presence of free oxygen in the atmosphere-ocean system at that time, in agreement with earlier Mo isotopic studies on Campbellrand carbonates and shales. A similar range in δ98Mo values for carbonates between +0.40 and +0.87‰, however, was also found on the hand specimen scale, indicating the danger of a sample bias on the Mo isotopic stratigraphy of this carbonate platform. Results of previously unpublished adsorption experiments of Mo on CaCO3 clearly indicate that the Mo inventory of Malmani-Campbellrand carbonates was not only influenced by primary adsorption from seawater, but to a much larger degree by secondary processes during early diagenesis, which also affected the Mo isotopic composition of the samples on a local scale. Our results indicate that Mo concentrations and isotopic compositions in ancient stromatolitic carbonates were subject to redox changes within microbial mats and within the soft sediment during early diagenesis and later lithification, and as such cannot be used to quantitatively reconstruct the amount of free atmospheric oxygen or its fluctuations through Earth's history. Nevertheless, we interpret our heavy Mo isotopic signatures from carbonates as a minimum value for Neoarchean seawater and reinforce the assumption that free atmospheric oxygen built up a heavy oceanic Mo reservoir at that time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-02-08
    Description: The potential of crustose coralline algae as high-resolution archives of past ocean variability in mid- to high-latitudes has only recently been recognized. Few comparisons of coralline algal proxies, such as temperature-dependent algal magnesium to calcium (Mg/Ca) ratios, with in situ-measured surface ocean data exist, even rarer are well replicated records from individual sites. We present Mg/Ca records from nine coralline algal specimens (Clathromorphum compactum) from a single site in the Gulf of Maine, North Atlantic. Sections from algal mounds were analyzed using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) yielding individual Mg/Ca records of up to 30 years in length. We first test intra- and intersample signal replication and show that algal Mg/Ca ratios are reproducible along several transects within individual sample specimens and between different samples from the same study site. In addition, LA-ICP-MS-derived Mg/Ca ratios are compared to electron microprobe (EMP) analyzed data on the longest-lived specimens and were found to be statistically commensurable. Second, we evaluate whether relationships between algal-based SST reconstructions and in situ temperature data can be improved by averaging Mg/Ca records from multiple algal specimens (intersample averages). We found that intersample averages yield stronger relationships to sea surface temperature (SST) data than Mg/Ca records derived from individual samples alone. Thus, Mg/Ca-based paleotemperature reconstructions from coralline algae can benefit from using multiple samples per site, and can expand temperature proxy precision from seasonal to monthly.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-02-08
    Description: Changes in Atlantic Meridional Overturning Circulation (AMOC) strength exert a major influence on global atmospheric circulation patterns. However, the pacing and mechanisms of low-latitude responses to high-latitude forcing are insufficiently constrained so far. To elucidate the interaction of atmospheric and oceanic forcing in tropical South America during periods of major AMOC reductions (Heinrich Stadial 1 and the Younger Dryas) we generated a high-resolution foraminiferal multi-proxy record from off the Orinoco River based on Ba/Ca and Mg/Ca ratios, as well as stable isotope measurements. The data clearly indicate a three-phased structure of HS1 based on the reconfiguration of ocean currents in the tropical Atlantic Ocean. The initial phase (HS1a) is characterized by a diminished North Brazil Current, a southward displacement of the ITCZ, and moist conditions dominating northeastern Brazil. During subsequent HS1b, the NBC was even more diminished or yet reversed and the ITCZ shifted to its southernmost position. Hence, dryer conditions prevailed in northern South America, while eastern Brazil experienced maximally wet conditions. During the final stage, HS1c, conditions are similar to HS1a. The YD represents a smaller amplitude version of HS1 with a southward-shifted ITCZ. Our findings imply that the low-latitude continental climate response to high-latitude forcing is mediated by reconfigurations of surface ocean currents in low latitudes. Our new records demonstrate the extreme sensitivity of the terrestrial realm in tropical South America to abrupt perturbations in oceanic circulation during periods of unstable climate conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-02-08
    Description: Olivine-hosted inclusions of silicate and sulfide melts, Cr-spinel and pyroxene were studied to estimate magma composition, temperature, pressure, and fO2 at the onset and during the silicate-sulfide immiscibility in modern arc basalt from Tolbachik volcano, Kamchatka arc. We demonstrate that the olivine phenocrysts hosting sulfide and silicate melt inclusions belong to the same population. The compositions of the silicate melt inclusions in most primitive olivine (88–91 mol% Fo) represent moderately oxidized (~ QFM + 1.1) high-MgO (up to 12–12.6 wt%) and high CaO/Al2O3 (0.8–1.2) melt that has abundances and ratios of the lithophile trace elements typical of island arc magmas. The initial volatile contents in parental Tolbachik magma are estimated from the melt inclusions and mass-balance considerations to be at least 4.9 wt% H2O, 2600 ppm S, 1100 ppm Cl, 550 ppm F, and 1200 ppm CO2. These data are used to calculate the temperature (~ 1220 °C) and minimum pressure (3 kbar) at which the beginning of crystallization and exsolution of sulfide melt took place. The presence of anhydrite, especially ubiquitous in the crystallized silicate melt associated with sulfide globules, suggest that much higher sulfur abundances prior to degassing and sulfate immiscibility and/or crystallization should be expected. We tentatively considered hydrothermal accumulations of sulfur (elemental, sulfate and sulfide) in the volcanic conduit responsible for local contamination and oversaturation of the Tolbachik magma in sulfur and related sulfide immiscibility. Coexisting sulfide and sulfate can be also interpreted in favor of the magmatic sulfide oxidation and related generation of S-rich fluids. Such fluids are expected to accumulate metals released from decomposed sulfide melts and supply significant epithermal mineralization, including native gold.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-02-08
    Description: Coccoliths comprise a major fraction of the global carbonate sink. Therefore, changes in coccolithophores' Ca isotopic fractionation could affect seawater Ca isotopic composition, affecting interpretations of the global Ca cycle and related changes in seawater chemistry and climate. Despite this, a quantitative interpretation of coccolith Ca isotopic fractionation and a clear understanding of the mechanisms driving it are not yet available. Here, we address this gap in knowledge by developing a simple model (CaSri–Co) to track coccolith Ca isotopic fractionation during cellular Ca uptake and allocation to calcification. We then apply it to published and new δ44/40Ca and Sr/Ca data of cultured coccolithophores of the species Emiliania huxleyi and Gephyrocapsa oceanica. We identify changes in calcification rates, Ca retention efficiency and solvation–desolvation rates as major drivers of the Ca isotopic fractionation and Sr/Ca variations observed in cultures. Higher calcification rates, higher Ca retention efficiencies and lower solvation–desolvation rates increase both coccolith Ca isotopic fractionation and Sr/Ca. Coccolith Ca isotopic fractionation is most sensitive to changes in solvation–desolvation rates. Changes in Ca retention efficiency may be a major driver of coccolith Sr/Ca variations in cultures. We suggest that substantial changes in the water structure strength caused by past changes in temperature could have induced significant changes in coccolithophores' Ca isotopic fractionation, potentially having some influence on seawater Ca isotopic composition. We also suggest a potential effect on Ca isotopic fractionation via modification of the solvation environment through cellular exudates, a hypothesis that remains to be tested.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-02-08
    Description: Alphaproteobacterium strain MOLA1416, related to Mycoplana ramosa DSM 7292 and Chelativorans intermedius CC-MHSW-5 (93.6% 16S rRNA sequence identity) was isolated from the marine lichen, Lichina pygmaea and its chemical composition was characterized by a metabolomic network analysis using LC-MS/MS data. Twenty-five putative different compounds were revealed using a dereplication workflow based on MS/MS signatures available through GNPS (https://gnps.ucsd.edu/). In total, ten chemical families were highlighted including isocoumarins, macrolactones, erythrinan alkaloids, prodiginines, isoflavones, cyclohexane-diones, sterols, diketopiperazines, amino-acids and most likely glucocorticoids. Among those compounds, two known metabolites (13 and 26) were isolated and structurally identified and metabolite 26 showed a high cytotoxic activity against B16 melanoma cell lines with an IC50 0.6 ± 0.07 μg/mL.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-02-08
    Description: Highlights: • Lagrangian ocean analysis is a powerful way to analyse the output of ocean circulation models • We present a review of the Kinematic framework, available tools, and applications of Lagrangian ocean analysis • While there are unresolved questions, the framework is robust enough to be used widely in ocean modelling Abstract: Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-02-08
    Description: Highlights • Comparison of encrusting and rhodolith coralline algae for paleoclimate reconstruction • Both coralline algal forms can yield SST information, but encrusting forms generally yield higher correlations to SST. • Encrusting morphologies yielded longer records due to frequent growth irregularities in rhodoliths. Abstract Coralline algae have been used for sclerochronological studies throughout the last decade. These studies have focused on two different growth morphologies of the photosynthetic coralline algae: massive crusts forming small buildups on hard substrate, and free-living branching algal nodules, known as rhodoliths. The latter are generally found on soft-substrate, where they are frequently overturned by water movement and bottom feeding organisms, leaving one side of the rhodolith partially buried in the sediment at any given time. Here we test whether either of these growth morphologies is more suitable for proxy reconstructions by comparing Mg/Ca ratios – a temperature proxy – in multiple replicates of rhodoliths of Lithothamnion glaciale and in rhodoliths as well as encrusting specimens of Clathromorphum compactum. With both species being widespread throughout the Temperate and Arctic regions, we have chosen two North Atlantic localities at Nuuk Fjord, Greenland (Subarctic), and off the southeastern coast of Newfoundland, Canada (Temperate), for this study. Two to three Mg/Ca ratio transects spanning 18 years of growth were analysed on multiple specimens with encrusting morphologies and along different sides of rhodoliths using laser ablation inductively coupled mass spectrometry and compared to remotely sensed sea surface temperature (SST) data. The length of the common time span used for comparison was limited by growth interruptions in rhodoliths. Furthermore, our comparison is based on the assumption that rhodolith growth increments are annual – an assumption that has recently been challenged by mesocosm studies. Monthly Mg/Ca values from multiple transects within each individual were compared and in samples from Nuuk fjord significant correlations were found in 4 of 4 encrusting C. compactum, 4 of 4 C. compactum rhodoliths, and 2 of 3 L. glaciale rhodoliths. In Newfoundland significant correlations were found in 6 of 6 encrusting C. compactum comparisons (average: r = 0.61, p 〈 0.001), and in 6 of 6 L. glaciale rhodolith comparisons (average: r = 0.43, p 〈 0.001) for monthly resolved time series. The monthly Mg/Ca ratios (n = 216) from each morphology were compared with instrumental Reynolds SST yielding the following correlations: encrusting C. compactum (r = 0.64, p 〈 0.001), C. compactum rhodolith (r = 0.62, p 〈 0.001) and L. glaciale (r = 0.58, p 〈 0.001). In Newfoundland both morphologies indicate a similar strength in recording SST: encrusting C. compactum (r = 0.85, p 〈 0.001) and rhodolith-forming L. glaciale (r = 0.84, p 〈 0.001). In summary, Mg/Ca ratios derived from both coralline algal growth forms can yield SST information, however, massive encrusting forms generally yield higher correlations to SST than transects measured on individual rhodoliths, which only allowed for the generation of short uninterrupted time series due to frequent growth irregularities.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-04-23
    Description: The subterranean estuary (STE), the subsurface mixing zone of outflowing fresh groundwater and infiltrating seawater, is an area of extensive geochemical reactions that determine the composition of groundwater that flows into coastal environments. This study examined the porewater composition of a shallow STE (〈5 m depth) in Gloucester Point, VA (USA) over two years to determine seasonal variations in dissolved organic carbon (DOC) and the reduced metabolites Fe, Mn, and sulfide. An additional aim of this study was to investigate the relative importance of salinity gradients (which have great geochemical influence in surface estuaries) versus redox gradients on STE geochemistry. Two freshwater endmembers were identified, between which redox potential and composition varied with depth-a shallow freshwater endmember was oxidizing and high in DOC, whereas a deep freshwater endmember was reducing, lower in DOC, and high in sulfide. Results showed that dissolved Fe, Mn, and sulfide varied along a redox gradient distinct from the salinity gradient, and that three-endmember mixing was required to quantify non-conservative chemical addition/removal in the STE. In addition to salinity, humic carbon was used as a quasi-conservative tracer to quantify mixing according to a three-endmember model. The vertical distributions of DOC and reduced metabolites remained approximately constant over time, but concentrations varied with season. Dissolved organic carbon concentrations were greatest in the summer, and shallow meteoric groundwater supplied the majority of DOC to the STE. In summer, there was additional evidence for shallow non-conservative addition of DOC. Dissolved Fe and Mn were highest in a subsurface plume through the middle of the STE (100-140 cm below sediment surface at the high tide line) which was characterized by higher concentrations and greater non-conservative addition in the winter. In contrast, sulfide was higher in summer at depths within the Fe and Mn plume (100-140 cm). We attribute the contrasting seasonal patterns of dissolved Fe, Mn, and sulfide to differences in microbial response to temperature changes and organic matter availability, and to competition at the ferrous-sulfidic transition zone between dissimilatory metal reduction and sulfate reduction, leading to sulfate/sulfur reducing bacteria (SRB) being more active in summer and metal reducers being more active in winter. Throughout the STE, seasonal temperature and DOC variations determined the spatial distribution and geochemical cycling of Fe, Mn, and sulfur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-02-08
    Description: Highlights: • Comparison of global NEMO and FESOM configurations with emphasis on the Agulhas system. • Both models simulate a reasonable and comparable large-scale circulation. • Both models have individual strengths and weaknesses to match the observations of the WBC system. • The numerical cost of FESOM is twice the one of NEMO. Abstract: Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing. Although the number of 3D wet grid points used in FESOM is similar to that in the nested NEMO, FESOM uses about two times the number of CPUs to obtain the same model throughput (in terms of simulated model years per day). This is feasible due to the high scalability of the FESOM code.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-02-06
    Description: Knowledge and understanding of geographic distributions of species is crucial for many aspects in ecology, conservation, policy making and management. In order to reach such an understanding, it is important to know abiotic variables that impact and drive distributions of native and non-native species. We used an existing long-term macrobenthos database for species presence-absence information and biomass estimates at different environmental gradients in the northern Baltic Sea. Region specific abiotic variables (e.g. salinity, depth) were derived from previously constructed bathymetric and hydrodynamic models. Multidimensional ordination techniques were then applied to investigate potential niche space separation between all native and non-native invertebrates in the northern Baltic Sea. Such an approach allowed to obtain data rich and robust estimates of the current native and non-native species distributions and outline important abiotic parameters influencing the observed pattern. The results showed clear niche space separation between native and non-native species. Non-native species were situated in an environmental space characterized by reduced salinity, high temperatures, high proportion of soft seabed and decreased depth and wave exposure whereas native species displayed an opposite pattern. Different placement of native and non-native species along the studied environmental niche space is likely to be explained by the differences in their evolutionary history, human mediated activities and geological youth of the Baltic Sea. The results of this study can provide early warnings and effectively outline coastal areas in the northern Baltic Sea that are prone to further range expansion of non-native species as climate change is expected to significantly reduce salinity and increase temperature in wide coastal areas, both supporting the disappearance of native and appearance of non-native species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-02-08
    Description: Highlights • Widespread Holocene tephra KHG, from Kamchatka, is found as a cryptotephra in the NGRIP ice-core. • This is the first identification of tephra from the Kamchatka Peninsula in Greenland ice. • NGRIP KHG has an age of 7872 ± 50 a BP and improves age models for Kamchatka. • Existing 14C age estimates for the KHG eruption are too young. Abstract Contiguous sampling of Holocene ice from the NGRIP core, Greenland, has revealed a new rhyolitic cryptotephra that is geochemically identical to the KHG tephra, a widespread marker deposit originating from the Khangar volcano, Kamchatka. This is the first identification of tephra from the Kamchatka Peninsula in Greenland ice and the first finding of the KHG tephra outside Kamchatka. The NGRIP KHG has an age of 7872 ± 50 a BP 1950, and this date will help improve age models for Kamchatka, where existing age estimates of KHG are too young, thus highlighting the importance of locating long-range, low-concentration cryptotephra deposits in well-dated ice cores. In Greenland KHG is located close to the termination of the 8.2 ka BP cooling event that is also a climate feature in palaeo-records of Kamchatka. This tie-point therefore provides a unique opportunity to synchronise records of environmental change in distal locations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-02-08
    Description: Highlights • Active hydrothermal vent ecosystems are extremely rare. • Vent ecosystems are recognized as vulnerable by international organizations. • Mineral resources at active vents would not contribute significantly to the global metal supply. • Effective networks that protect representative active vents cannot be ensured. • A prohibition on mining active vents is consistent with obligations for conservation. Abstract There is increasing interest in mining minerals on the seabed, including seafloor massive sulfide deposits that form at hydrothermal vents. The International Seabed Authority is currently drafting a Mining Code, including environmental regulations, for polymetallic sulfides and other mineral exploitation on the seabed in the area beyond national jurisdictions. This paper summarizes 1) the ecological vulnerability of active vent ecosystems and aspects of this vulnerability that remain subject to conjecture, 2) evidence for limited mineral resource opportunity at active vents, 3) non-extractive values of active vent ecosystems, 4) precedents and international obligations for protection of hydrothermal vents, and 5) obligations of the International Seabed Authority under the UN Convention on the Law of the Sea for protection of the marine environment from the impacts of mining. Heterogeneity of active vent ecosystems makes it extremely challenging to identify “representative” systems for any regional, area-based management approach to conservation. Protection of active vent ecosystems from mining impacts (direct and indirect) would set aside only a small fraction of the international seabed and its mineral resources, would contribute to international obligations for marine conservation, would have non-extractive benefits, and would be a precautionary approach.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-02-08
    Description: From protists to humans, all animals and plants are inhabited by microbial organisms. There is an increasing appreciation that these resident microbes influence the fitness of their plant and animal hosts, ultimately forming a metaorganism consisting of a uni- or multicellular host and a community of associated microorganisms. Research on host–microbe interactions has become an emerging cross-disciplinary field. In both vertebrates and invertebrates a complex microbiome confers immunological, metabolic and behavioural benefits; conversely, its disturbance can contribute to the development of disease states. However, the molecular and cellular mechanisms controlling the interactions within a metaorganism are poorly understood and many key interactions between the associated organisms remain unknown. In this perspective article, we outline some of the issues in interspecies interactions and in particular address the question of how metaorganisms react and adapt to inputs from extreme environments such as deserts, the intertidal zone, oligothrophic seas, and hydrothermal vents
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-02-08
    Description: Highlights • In cold seeps of Guaymas Basin, aragonite, barite and pyrite precipitated from modified seawater. • Aragonite is highly depleted in 13C suggesting formation via anaerobic oxidation of methane. • Barite formed through mixing of reducing, Ba-rich seep fluids with a 34S-rich sulfate pool. • Pyrite framboids formed under anoxic-sulfidic water via microbial sulfate reduction. Abstract Authigenic carbonate crusts, surface muds and bivalve shell fragments have been recovered from inactive and active recently discovered cold seep sites in central Guaymas Basin. In this study, for first time, redox conditions and fluid sources involved in mineral precipitation were investigated by analyzing the mineralogy and textures of surface samples, along with skeletal contents, and C, O and S isotopes variations. The δ13C values of aragonitic bivalve shells and non-skeletal carbonate from some surface muds (1‰ to −3.7‰ V-PDB) suggest that carbonate precipitated from ambient dissolved inorganic carbon, whereas fibrous aragonite cement and non-skeletal carbonate from other sites are highly depleted in 13C (down to −47.6‰ V-PDB), suggesting formation via anaerobic oxidation of methane, characteristic of methane seepage environments. δ18O in most of the carbonates varies from +1.4‰ to +3.2‰ V-PDB, indicating that they formed from slightly modified seawater. Some non-skeletal carbonate grains from surface muds have lower δ18O values (−12.5‰ to −8.2‰ V-PDB) reflecting the influence of 18O-depleted pore water. Size distribution of pyrite framboids (mean value: 3.1 μm) scattered within diatomaceous sinter suggests formation from anoxic-sulfidic bottom waters. δ34S in pyrite is of −0.3‰ V-CDT compared to +46.6‰ V-CDT in barite, thus implying a fluid sulfate−sulfide fractionation of 21.3‰ that argues in favor of microbial sulfate reduction as the processes that mediated pyrite framboid formation, in a semi-closed system. Barite formation occurred through the mixing of reducing and Ba-rich seep fluids with a 34S-enriched sulfate pool that resulted from microbial sulfate reduction in a semi-closed system. The chemical composition of aragonite cement, barite and pyrite suggest mineral precipitation from modified seawater. Taken together, our data suggest that mineralization at the studied seep sites is controlled by the mixing of seawater with minor amounts of hydrothermal fluids, and oxygen-depleted conditions favoring anaerobic microbial processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-02-08
    Description: The submerged portions of the North-Anatolian Fault (NAF) in the Sea of Marmara and the NE-Aegean Sea are sites of large magnitude earthquakes, that leave diagnostic geological “signatures” in the sedimentary record in the form of mass-wasting deposits, turbidites, and fluid and gas escape features. This is due to the interplay of seismic-shaking, mass- and turbidity flows, sediment resuspension and fluids circulation in relatively small sub-basins with a complex paleo-oceanography, steep slopes, high rates of deformation, and diffuse fault-controlled gas and fluid seeps. To unravel the complex interrelations of these phenomena during earthquake cycles, we carried out paleoseismological studies at several key locations. Here, we report results of these studies, carried out onboard the R/V Urania over a decade, starting soon after the Mw 7.4, 1999 İzmit earthquake. Our work included high resolution mapping of active faults through multibeam bathymetry and high resolution seismic reflection profiles, multi-parameter analysis of sediment cores, as well as seafloor observations using sensors mounted on remotely-operated vehicles (ROV). The main objectives were to map active faults, determine slip-rates and earthquake recurrence times along major fault strands, and assess connections between fault deformation and fluid activity. We mapped fault geometry in the gulfs of İzmit, Gemlik and Saros, showing the trans-tensive nature of these depressions. The average slip-rates for the last ~ 10 ka was found to be 10 mm/y in the gulfs of İzmit and Saros, at the eastern and the western ends of the NAF northern strand, and 3–4 mm/yr in the Gulf of Gemlik, along the middle strand of the NAF. These rates, integrated over 10 ka of NAF activity, are smaller than those determined by the GPS geodetic measurements. Submarine paleoseismological studies in the Gulf of İzmit detected the sedimentary records of earthquakes for the last 2.4 ka, suggesting an average recurrence time of 300 years for major events. Multisensor observations and monitoring of the seafloor have shown widespread emissions of gas and fluids along the submerged part of the NAF, associated with reduced black sediments; we investigated their possible connection with the earthquake cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-02-01
    Description: The interior of the Australian continent shows evidence for late Quaternary to Recent fault-controlled mantle 3He and CO2 degassing. A series of interconnected NW-striking sinistral faults, the Norwest fault zone (NFZ), in south-central Australia are associated with travertine mounds, the latter show a regular spacing of 50–70 km. U-series ages on 26 samples range from to (2σ errors) and suggest a clustering every ∼3–4 ka since ∼26 ka. Geochemical data demonstrate a remarkable mantle-to-groundwater connection. Isotopic data indicate that the groundwater is circulating to depths 〉3 km and interacting with Neoproterozoic/Cambrian basement and mantle volatiles. 3He/4He isotope ratios show that the He comes in part from the mantle. This demonstrates that the NFZ cuts through the entire crust and provides pathways for mantle degassing. Scaling relationships suggest that the series of sinistral faults that make up the NFZ are interconnected at depths and have a significant strike length of 60–70 km or more. The NFZ occurs where a major compositional boundary and a significant heat flow anomaly occurs, and a major step in lithospheric thickness has been mapped. We discuss a tectonic model in which recent stress field, heat flow and lithospheric structure in central Australia reactivated a set of steeply dipping Neoproterozoic faults, which may now be growing into a crustal/lithospheric-scale structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-02-08
    Description: Highlights • Four of the seven seamounts northeast of the Galápagos Platform are drowned islands • The ages of the seamounts range from 5.2 Ma to 0.5 Ma • Seamount morphology changes from conical to elongate at ~1.5 Ma • The locus of volcanism appears to migrate eastward at the rate of Nazca plate motion Abstract We present new geochemical and 40Ar/39Ar analyses from seven seamounts located off the northeastern margin of the shallow Galápagos Platform. Initial volcanism at 5.2 Ma created a small island (Pico) over the current location of the hotspot with geochemically enriched lavas. There is no further record of magmatism in the study area until 3.8 to 2.5 Ma, during which four roughly conical volcanoes (Sunray, Grande, Fitzroy, and Beagle) formed through eruption of lavas derived from a depleted mantle source. Sunray, Fitzroy, and Grande were islands that existed for ~3 m.y. ending with the submergence of Fitzroy at ~0.5 Ma. The youngest seamounts, Largo and Iguana, do not appear to have been subaerial and were active at 1.3 Ma and 0.5 Ma, respectively, with the style of edifice changing from the previous large cones to E-W elongate, composite structures. The progression of magmatism suggests that Pico erupted near 91.5°W near the location of the Galápagos plume while the others formed well east of the plume center. If the locations of initial volcanism are calculated using the eastward velocity of the Nazca plate, there appears to be a progression of younger volcanism toward the east, opposite what would be expected from a fixed mantle plume source. The rate that initial volcanism moves eastward is close to the plate velocity. A combination of higher temperature and geochemical enrichment of the thickened lithosphere of the Galápagos platform could have provided a viscosity gradient at the boundary between the thick lithosphere and the thinner oceanic lithosphere to the northeast. As this boundary moved eastward with the Nazca plate, it progressively triggered shear-driven mantle upwelling and volcanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-02-08
    Description: Highlights • Melt inclusions from southern Payenia have highly variable element enrichment • Magmas formed by mixing of asthenospheric high Nb/U and lithospheric low Nb/U melts • Low Nb/U type inclusions are similar in composition to alkaline lamprophyres • Low Nb/U melts were formed by fractionation of high Nb/U melts in the SCLM • The percolative fractional crystallization involved cpx, rutile and apatite Abstract We present major and trace element compositions of melt inclusions from three alkali basalts from the Río Colorado volcanic field in the Payenia backarc province, Argentina. Modeling of diffusion profiles around the inclusions showed that most inclusions equilibrated 〈14 days after formation, indicating a short crustal residence time for the magmas and nearly direct ascent through the crust. Despite overlapping host rock isotopic compositions, the inclusions show a large variation in their degree of enrichment, and display trends that we interpret as mixing between asthenospheric OIB-type low K2O-high Nb/U melts and enriched high K2O-low Nb/U lithospheric mantle melts similar in composition to alkaline lamprophyres. The low Nb/U magmas are excessively enriched in the elements Cs, Rb, Ba, Th, U, K, Pb and Cl relative to Nb, Ta and REEs. The enriched low Nb/U components are interpreted to have formed by percolative fractional crystallization of asthenospheric high Nb/U melts in the lithospheric mantle involving crystallization of clinopyroxene, apatite and rutile. The residual fluid-rich melts either mixed directly with new batches of high Nb/U melts or metasomatized and veined the lithospheric mantle which later re-melted during continued volcanism. The major element compositions of the high K2O-low Nb/U components are distinct for the whole rocks and melt inclusions, and most enriched inclusions have lower SiO2 and higher TiO2 contents indicating derivation by melting of amphibole-bearing veins. In contrast, most wr low Nb/U basalts have higher SiO2 and lower TiO2 and were most likely formed by melting of pyroxenitic veins or peridotitic metasomatized lithospheric mantle.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-02-06
    Description: The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M ~ 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-02-06
    Description: Highlights • We track the preferential pathways of the Mediterranean Outflow Water (MOW). • A topographic analysis method is used to identify the MOW hydrological avenues. • Contour avenues and cross-slope channels have complementary roles steering the MOW. • The MOW is a density-driven current steered by both bottom topography and the Coriolis force. Abstract The Mediterranean Water leaves the western end of the Strait of Gibraltar as a bottom wedge of salty and warm waters flowing down the continental slope. The salinity of the onset Mediterranean Outflow Water (MOW) is so high that leads to water much denser (initially in excess of 1.5 kg m−3) than the overlying central waters. During much of its initial descent, the MOW retains large salinity anomalies – causing density anomalies that induce its gravity current character – and relatively high westward speeds – causing a substantial Coriolis force over long portions of its course. We use hydrographic data from six cruises (a total of 1176 stations) plus velocity data from two cruises, together with high-resolution bathymetric data, to track the preferential MOW pathways from the Strait of Gibraltar into the western Gulf of Cadiz and to examine the relation of these pathways to the bottom topography. A methodology for tributary systems in drainage basins, modified to account for the Coriolis force, emphasizes the good agreement between the observed trajectories and those expected from a topographically-constrained flow. Both contour avenues and cross-slope channels are important and have complementary roles steering the MOW along the upper and middle continental slope before discharging as a neutrally buoyant flow into the western Gulf of Cadiz. Our results show that the interaction between bottom flow and topography sets the path and final equilibrium depths of the modern MOW. Furthermore, they support the hypothesis that, as a result of the high erosive power of the bottom flow and changes in bottom-water speed, the MOW pathways and mixing rates have changed in the geological past.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine and Petroleum Geology, 90 . pp. 1-9.
    Publication Date: 2021-02-08
    Description: The spectacular Lusi eruption started in northeast Java, Indonesia, on May 29th, 2006, continuously erupting mud, water, gas, oil, and clasts ever since. Lusi provides an unprecedented opportunity to study the birth and the evolution of a large-scale and hot mud eruption. Lusi is interpreted as a hybrid between a traditional hydrocarbon-driven piercement structure (mud volcano) and a hydrothermal system fuelled by magmatic heat. Lusi is therefore an exciting natural laboratory for understanding analogue modern and palaeo-piercement systems such as mud volcanoes, sediment-hosted hydrothermal systems, and hydrothermal vent complexes. This special issue collects recent multidisciplinary work completed in the framework of the ERC-funded LUSI LAB project. These studies were conducted at and near Lusi. Contributions span across disciplines such as engineering, geochemistry, geophysics, geology and numerical modelling, including fieldwork, laboratory and theoretical approaches. The acquired results contribute to characterise the dynamics of complex interactions between volcanism and an ongoing erupting clastic system. Lusi still saves many mysteries that will be unravelled by future scientific investigations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-02-08
    Description: Microplastics (〈5 mm) have been found in many fish species, from most marine environments. However, the mechanisms underlying microplastic ingestion by fish are still unclear, although they are important to determine the pathway of microplastics along marine food webs. Here we conducted experiments in the laboratory to examine microplastic ingestion (capture and swallowing) and egestion by juveniles of the planktivorous palm ruff, Seriolella violacea (Centrolophidae). As expected, fish captured preferentially black microplastics, similar to food pellets, whereas microplastics of other colours (blue, translucent, and yellow) were mostly co-captured when floating close to food pellets. Microplastics captured without food were almost always spit out, and were only swallowed when they were mixed with food in the fish's mouth. Food probably produced a ‘gustatory trap’ that impeded the fish to discriminate and reject the microplastics. Most fish (93% of total) egested all the microplastics after 7 days, on average, and 49 days at most, substantially longer than food pellets (〈2 days). No acute detrimental effects of microplastics on fish were observable, but potential sublethal effects of microplastics on the fish physiological and behavioural responses still need to be tested. This study highlights that visually-oriented planktivorous fish, many species of which are of commercial value and ecological importance within marine food webs, are susceptible to ingest microplastics resembling or floating close to their planktonic prey. Microplastic similarity to food, and food presence together with microplastics, influence the ingestion of microplastics by visually-oriented planktivorous fish.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-02-08
    Description: Highlights • A carbonic anhydrase gene was identified from an hydrothermal vent metagenome. • The gene product LOGACA is a dimeric α-type carbonic anhydrase. • LOGACA is highly thermostable at alkaline pH. • Thermostability correlates with secondary structure, surface charges and ion pairs. Abstract Carbonic anhydrases (CAs) are extremely fast enzymes, which have attracted much interest in the past due to their medical relevance and their biotechnological potential. An α-type CA gene was isolated from DNA derived from an active hydrothermal vent chimney, in an effort to identify novel CAs with suitable properties for CO2 capture. The gene product was recombinantly produced and characterized, revealing remarkable thermostability, also in the presence of high ionic strength alkaline conditions, which are used in some CO2 capture applications. The Tm was above 90 °C under all tested conditions. The enzyme was crystallized and the structure determined by molecular replacement, revealing a typical bacterial α-type CA non-covalent dimer, but not the disulphide mediated tetramer observed for the hyperthermophilic homologue used for molecular replacement, from Thermovibrio ammonificans. Structural comparison suggests that an increased secondary structure content, increased content of charges on the surface and ionic interactions compared to mesophilic enzymes, may be main structural sources of thermostability, as previously suggested for the homologue from Sulfurihydrogenibium yellowstonense.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-02-08
    Description: Highlights • Improved position accuracy of up to 0.08 cm using SAPOS®-corrected DGNSS • High-resolution snippet backscatter to detect and monitor UXO and its environment • Combined evaluation of bathymetry, backscatter intensities, and sediments Abstract The present study reports the evaluation of snippet backscatter information gathered with a high-frequency multibeam echosounder system (200–400 kHz) due to their usability to detect ammunition of different sizes in shallow coastal waters. Besides the feasibility of the snippet backscatter data, it was focused on the attainable horizontal accuracy in comparison to side-scan sonar and autonomous underwater vehicle (AUV) surveys. The data was collected in shallow coastal waters of up to 18 m water depth (Baltic Sea) close to an ammunition dumping site characterized by an almost flat seafloor covered with sand and silt sediments. The analysis of the multibeam compared to sidescan data indicates the snippet backscatter to be a promising prospective method for ammunition detection and being able to improve horizontal position accuracy of up to 0.08 m.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-02-08
    Description: Seafloor spreading at slow and ultraslow rates is often taken up by extension on large-offset faults called detachments, which exhume lower crustal and mantle rocks, and in some cases make up domed oceanic core complexes. The exposed footwall may reveal a characteristic pattern of spreading-parallel corrugations, the largest of which are clearly visible in multibeam bathymetric data, and whose nature and origin have been the subject of controversy. In order to tackle this debate, we use available nearbottom bathymetric surveys recently acquired with autonomous deep-sea vehicles over five corrugated detachments along the Mid-Atlantic Ridge. With a spatial resolution of 2 m, these data allow us to compare the geometry of corrugations on oceanic detachments that are characterized by differing fault zone lithologies, and accommodate varying amounts of slip. The fault surfaces host corrugations with wavelengths of 10-250 m, while individual corrugations are finite in length, typically 100-500 m. Power spectra of profiles calculated across the corrugated fault surfaces reveal a common level of roughness, and indicate that the fault surfaces are not fractal. Since systematic variation in roughness with fault offset is not evident, we propose that portions of the exposed footwalls analyzed here record constant brittle strain. We assess three competing hypotheses for corrugation formation and find that the continuous casting and varying depth to brittle-ductile transition models cannot explain the observed corrugation geometry nor available geological observations. We suggest a model involving brittle strain localization on a network of linked fractures within a zone of finite thickness is a better explanation for the observations. This model explains corrugations on oceanic detachment faults exposed at the seafloor and on normal faults in the continents, and is consistent with recently imaged corrugations on a subduction zone megathrust. Hence fracture linkage and coalescence may give rise to corrugated fault zones, regardless of earlier deformation history and tectonic setting.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-09-04
    Description: Highlights • Synthesis of timescales of magmatic processes at spreading centres. • Compilation of drilled MORB glass compositions, chemical stratigraphy of the oceanic crust. • No chemical difference between MORB sampled from active ridges or by drilling. • Chemical variations on timescales 〈 1 ka reflect changes in melt recharge relative to fractionation. • Changes in the composition of melt entering crust occur over timescales of 10 to 100 ka. Abstract Oceanic crust is continuously created at mid-ocean ridges by decompression melting of the upper mantle as it upwells due to plate separation. Decades of research on active spreading ridges have led to a growing understanding of the complex magmatic, tectonic and hydrothermal processes linked to the formation of new oceanic igneous crust. However, less is known about the timescales of magmatic processes at mid-ocean ridges, including melting in and melt extraction from the mantle, fractional crystallisation, crustal assimilation and/or magma mixing. In this paper, we review the timescales of magmatic processes by integrating radiometric dating, chemical and petrological observations of mid-ocean ridge basalts (MORBs) and geophysical models. These different lines of evidence suggest that melt extraction and migration, and crystallisation and mixing processes occur over timescales of 1 to 10,000 a. High-resolution geochemical stratigraphic profiles of the oceanic crust using drill-core samples further show that at fast-spreading ridges, adjacent flow units may differ in age by only a few 100 a. We use existing chemical data and new major- and trace-element analyses of fresh MORB glasses from drill-cores in ancient Atlantic and Pacific crust, together with model stratigraphic ages to investigate how lava chemistry changes over 10 to 100 ka periods, the timescale of crustal accretion at spreading ridges which is recorded in the basalt stratigraphy in drilled sections through the oceanic crust. We show that drilled MORBs have compositions that are similar to those of young MORB glasses dredged from active spreading ridges (lavas that will eventually be preserved in the lowermost part of the extrusive section covered by younger flows), showing that the dredged samples are indeed representative of the bulk oceanic crust. Model stratigraphic ages calculated for individual flows in boreholes, together with the geochemical stratigraphy of the drilled sections, show that at fast-spreading ridges, magma compositions vary over 〈 100 to 1000 a, likely due to variations in the relative rates of crystallisation and melt recharge. However, on longer timescales of 10 to 100 ka, variations in the composition of the primitive melt feeding the ridge lead to chemical variations in the erupted lavas, likely as a function of thermal and/or chemical heterogeneity of the mantle source. The further understanding of these temporal variations in magma composition, especially at shorter timescales of less than a few centuries, is a promising area for future research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-02-06
    Description: In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in calcite we performed precipitation experiments decoupling temperature and precipitation rate (R∗). Calcite was precipitated at 12.5, 25.0 and 37.5 °C by diffusing NH3 and CO2 gases into aqueous solutions closely following the experimental setup of Lemarchand et al (2004). The precipitation rate (R∗) for every sample was determined applying the initial rate method and from the specific surface area of almost all samples for each reaction. The order of reaction with respect to Ca2+ ions was determined to be one and independent of T. However, the order of reaction with respect to HCO3- changed from three to one as temperature increases from 12.5, 25 °C and 37.5 °C. Strontium incorporated into calcite (expressed as DSr= [Sr/Ca] calcite/ [Sr/Ca] solution) was found to be R∗ and T dependent. As a function of increasing R∗ the Δ88/86Sr-values become more negative and as temperature increases the Δ88/86Sr values also increase at constant R∗. The DSr and Δ88/86Sr-values are correlated to a high degree and depend only on R∗ being independent of temperature, complexation and varying initial ratios. Latter observation may have important implications for the study of diagenesis, the paleo-sciences and the reconstruction of past environmental conditions. Calcium isotope fractionation (Δ44/40Ca) was also found to be R∗ and T dependent. For 12.5 and 25.0 °C we observe a general increase of the Δ44/40Ca values as a function of R∗ (Lemarchand et al type behavior, Lemarchand et al (2004)). Whereas at 37.5 °C a significant decreasing Δ44/40Ca is observed relative to increasing R∗ (Tang et al type behavior, Tang et al. (2008)). In order to reconcile the discrepant observations we suggest that the temperature triggered change from a Ca2+-NH3-aquacomplex covalent controlled bonding to a Ca2+-H2O-aquacomplex van-der-Waals controlled bonding caused the change in sign of the R∗ - Δ44/40Ca slope due to the switch of an equilibrium type of isotope fractionation related to the covalent bonding during lower temperatures to a kinetic type of isotope fractionation at higher temperatures. This is supported by the observation that the Δ44/40Ca ratios are independent from the [Ca]: [DIC] ratio at 12.5 and 25°C but highly dependent at 37.5°C. Our observations imply the chemical fluid composition and temperature dependent complexation controls the amount and direction of Ca isotope fractionation in contrast to the Sr isotopes which do not show any change of its fractionation behaviour as a function of complexation in the liquid phase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-02-06
    Description: Highlights • First present seafloor hydrothermal mineralization processes at both Wocan-1 and Wocan-2 on the slow-spreading Carlsberg Ridge. • The Cu-rich chimneys were formed at slightly lower temperatures than Cu-rich and Fe-rich massive sulfides. • The main Ag-carriers were both late-stage Cu sulfides and Fe sulfides, which deposited under low temperatures and oxidized conditions. • Fluid mixing of hydrothermal fluids with seawater might result in significant redistributions of trace metal elements in sulfides. Abstract The basalt-hosted Wocan hydrothermal field (WHF), located on the NW slope of an axial volcanic ridge in a depth of ∼3000 m at 6°22′N on the slow-spreading Carlsberg Ridge, northwest Indian Ocean, was discovered in 2013 during Chinese DY28th cruise. Preliminary investigations show that the field consists of two hydrothermal sites: Wocan-1, which shows indications for recent high-temperature hydrothermal activity, is located near the peak of the axial volcanic ridge in a water depth of 2970-2990 m, and the inactive Wocan-2 site, located at a water depth of 3100 m, ∼1.7 km to the northwest of Wocan-1. The recovered hydrothermal precipitates can be classified into four groups: (i) Cu-rich chimneys; (ii) Cu-rich massive sulfides; (iii) Fe-rich massive sulfides; and (iv) silicified massive sulfides. We conducted mineral texture and assemblage observation and Laser-ablation ICP-MS analyses of the hydrothermal precipitates to study the mineralization processes. Our results show that there are distinct systematic trace element distributions throughout the different minerals in the four sample groups. In general, chalcopyrite from the group (i) is enriched in Pb, As, Mo, Ga, Ge, V, and Sb, metals that are commonly referred to as medium- to low-temperature elements. In contrast these elements are present in low contents in the chalcopyrite grains from other sample groups. Selenium, a typical high-temperature metal, is enriched in chalcopyrite from groups (ii) and (iv), whereas Ag and Sn are enriched only in some silicified massive sulfides. As with chalcopyrite, pyrite also shows distinct trace element associations in grains with different habitus. The low-temperature association of elements (Pb, Mo, Mn, U, Mg, Ag, and Tl) is typically present in colloform/framboidal pyrite, whereas the high-temperature association (Se, Co, and Bi) is enriched in euhedral pyrite. Sphalerite in the groups (i) and (iii) at Wocan-1 is characterized by high concentrations of Ga, Ge, Pb, Cd, As, and Sb, indicating that sphalerite in these sample groups likely precipitated at intermediate temperatures. Early bornite, which mainly occurs in the central part of the Cu-rich chimney, is typically enriched in Sn and In compared to the other minerals. In contrast, late bornite that likely formed during increasing interaction of hydrothermal fluids with cold, oxygenated seawater has low Sn and In, but significantly higher concentrations of Ag, Au, Mo and U. Digenite, also forming in the exterior parts of the samples during the late stages of hydrothermal fluid venting, is poor in most trace elements, except Ag and U. The notable Ag enrichment in the late-stage mineral assemblages at both Wocan-1 and Wocan-2 may therefore be related to lower temperatures and elevated pH. Our results indicate that Wocan-1 has experienced a cycle of heating with Cu-rich chimney growth and subsequent cooling, followed by late seafloor weathering, while Wocan-2 has seen intermediate- to high-temperature mineralization followed by intense silicification of sulfides. Seafloor weathering processes or mixing of hydrothermal fluids with seawater during the waning stages of hydrothermal fluid flow result in significant redistributions of trace elements in sulfide minerals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-02-06
    Description: The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf–Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between −16.8 and −14.9 at the surface to more radiogenic values near −11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to −11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ −4) and North East Atlantic Deep Water (ɛHf ∼ −0.1), although their source waters have essentially the same ɛNd signature. This most likely reflects different weathering signals of hafnium delivered to Denmark Strait Overflow Water and North East Atlantic Deep Water (incongruent weathering of old rocks from Greenland versus basaltic rocks from Iceland). In addition, the ɛHf data resolve two layers within the main body of Labrador Sea Water not visible in the ɛNd distribution, which are shallow Labrador Sea Water (ɛHf ∼ −2) and deep Labrador Sea Water (ɛHf ∼ −4.5). The latter layer was formed between the late 1980’s and mid 1990’s during the last cold state of the Labrador Sea and underwent substantial modification since its formation through the admixture of Irminger Water, Iceland Slope Water and North East Atlantic Deep Water, which is reflected in its less radiogenic ɛHf signature. The overall behavior of Hf in the water column suggests its higher sensitivity to local changes in weathering inputs on annual to decadal timescales. Although application of Hf isotopes as a tracer for global water mass mixing is complicated by their susceptibility to incongruent weathering inputs they are a promising tracer of local processes in restricted basins such as the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-02-06
    Description: Highlights • First magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site. • New inversion method resolves high-resolution magnetic anomaly in a steep environment. • Lost City bears a positive magnetization resulting from specific chemical processes. A 2003 high-resolution magnetic survey conducted by the Autonomous Underwater Vehicle ABEover the low-temperature, ultramafic-hosted hydrothermal field Lost City reveals a weak positive magnetic anomaly. This observation is in direct contrast to recent observations of strong positive magnetic anomalies documented over the high-temperature ultramafic-hosted hydrothermal vents fields Rainbow and Ashadze, which indicates that temperature may control the production of magnetization at these sites. The Lost City survey provides a unique opportunity to study a field that is, to date, one of a kind, and is an end member of ultramafic-hosted hydrothermal systems. Our results highlight the key contribution of temperature on magnetite production resulting from serpentinization reactions. Whereas high temperature promotes significant production and partitioning of iron into magnetite, low temperature favors iron partitioning into various alteration phases, resulting in a magnetite-poor rock. Moreover, the distribution of magnetic anomalies confirms results of a previous geological survey indicating the progressive migration of hydrothermal activity upslope. These discoveries contribute to the results of 25yrs of magnetic exploration of a wide range of hydrothermal sites, from low-to high-temperature and from basalt-to ultramafic-hosted, and thereby validate using high-resolution magnetics as a crucial parameter for locating and characterizing hydrothermal sites hosting unique chemosynthetic-based ecosystems and potentially mineral-rich deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-02-06
    Description: The water masses passing the Fram Strait are mainly responsible for the exchange of heat and freshwater between the Nordic Seas and the Arctic Ocean (the Arctic Mediterranean, AM). Disentangling their exact sources, distribution and mixing, however, is complex. This work provides new insights based on a detailed geochemical tracer inventory including dissolved Nd isotope (εNd), rare earth element (REE) and stable oxygen isotope (δ18O) data along a full water depth section across Fram Strait. We find that Nd isotope and REE distributions in the open AM primarily reflect lateral advection of water masses and their mixing. Seawater-particle interactions exert important control only above the shelf regions, as observed above the NE Greenland Shelf. Advection of northward flowing warm Atlantic Water (AW) is clearly reflected by an εNd signature of -11.7 and a Nd concentration ([Nd]) of 16 pmol/kg in the upper ∼500 m of the eastern and central Fram Strait. Freshening and cooling of the AW on its way trough the AM are accompanied by a continuous change towards more radiogenic εNd signatures (e.g. -10.4 of dense Arctic Atlantic Water). This mainly reflects mixing with intermediate waters but also admixture of dense Kara Sea waters and Pacific-derived waters. The more radiogenic εNd signatures of the intermediate and deep waters (reaching -9.5) are mainly acquired in the SW Nordic Seas through exchange with basaltic formations of Iceland and SE Greenland. Inputs of Nd from Svalbard are not observed and surface waters and Nd on the Svalbard shelf originate from the Barents Sea. Shallow southward flowing Arctic-derived waters (〈 200 m) form the core of the East Greenland Current above the Greenland slope and can be traced by their relatively radiogenic εNd (reaching -8.8) and elevated [Nd] (21 to 29 pmol/kg). These properties are used together with δ18O and standard hydrographic tracers to define the proportions of Pacific-derived (〈 ∼30 % based on Nd isotopes) and Atlantic-derived waters, as well as of river waters (〈 ∼8 %). Shallow waters (〈 150 m) on the NE Greenland Shelf share some characteristics of Arctic-derived waters, but exhibit less radiogenic εNd values (reaching -12.4) and higher [Nd] (up to 38 pmol/kg) in the upper ∼100 m. This suggests local addition of Greenland freshwater of up to ∼6 %. In addition to these observations, this study shows that the pronounced gradients in εNd signatures and REE characteristics in the upper water column provide a reliable basis for assessments of shallow hydrological changes within the AM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-02-08
    Description: The relationship between fisheries and marine spatial planning (MSP) is still widely unsettled. While several scientific studies highlight the strong relation between fisheries and MSP, as well as ways in which fisheries could be included in MSP, the actual integration of fisheries into MSP often fails. In this article, we review the state of the art and latest progress in research on various challenges in the integration of fisheries into MSP. The reviewed studies address a wide range of integration challenges, starting with techniques to analyse where fishermen actually fish, assessing the drivers for fishermen's behaviour, seasonal dynamics and long-term spatial changes of commercial fish species under various anthropogenic pressures along their successive life stages, the effects of spatial competition on fisheries and projections on those spaces that might become important fishing areas in the future, and finally, examining how fisheries could benefit from MSP. This paper gives an overview of the latest developments on concepts, tools, and methods. It becomes apparent that the spatial and temporal dynamics of fish and fisheries, as well as the definition of spatial preferences, remain major challenges, but that an integration of fisheries is already possible today
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-02-06
    Description: We report double-spike molybdenum (Mo) isotope data for forty-two mafic and fifteen ultramafic rocks from diverse locations and compare these with results for five chondrites. The δ98/95Mo values (normalized to NIST SRM 3134) range from −0.59 ± 0.04 to +0.10 ± 0.08‰. The compositions of one carbonaceous (CI) and four ordinary chondrites are relatively uniform (−0.14 ± 0.01‰, 95% ci (confidence interval)) in excellent agreement with previous data. These values are just resolvable from the mean of 10 mid-ocean ridge basalts (MORBs) (0.00 ± 0.02‰, 95% ci). The compositions of 13 mantle-derived ultramafic xenoliths from Kilbourne Hole, Tariat and Vitim are more diverse (−0.39 to −0.07‰) with a mean of −0.22 ± 0.06‰ (95% ci). On this basis, the isotopic composition of the bulk silicate Earth (BSE or Primitive Mantle) is within error identical to chondrites. The mean Mo concentration of the ultramafic xenoliths (0.19 ± 0.07 ppm, 95% ci) is similar in magnitude to that of MORB (0.48 ± 0.13 ppm, 95% ci), providing evidence, either for a more compatible behaviour than previously thought or for selective Mo enrichment of the subcontinental lithospheric mantle. Intraplate and ocean island basalts (OIBs) display significant isotopic variability within a single locality from MORB-like to strongly negative (−0.59 ± 0.04‰). The most extreme values measured are for nephelinites from the Cameroon Line and Trinidade, which also have anomalously high Ce/Pb and low Mo/Ce relative to normal oceanic basalts. δ98/95Mo correlates negatively with Ce/Pb and U/Pb, and positively with Mo/Ce, explicable if a phase such as an oxide or a sulphide liquid selectively retains isotopically heavy Mo in the mantle and fractionates its isotopic composition in low degree partial melts. If residual phases retain Mo during partial melting, it is possible that the [Mo] for the BSE may be misrepresented by values estimated from basalts. This would be consistent with the high Mo concentrations of all the ultramafic xenoliths of 40–400 ppb, similar to or, significantly higher than, current estimates for the BSE (39 ppb). On this basis a revised best estimate of the Mo content in the BSE based on these concentrations would be in the range 113–180 ppb, significantly higher than previously assumed. These values are similar to the levels of depletion in the other refractory moderately siderophile elements W, Ni and Co. A simpler explanation may be that the subcontinental lithospheric mantle has been selectively enriched in Mo leading to the higher concentrations observed. Cryptic melt metasomatism would be difficult to reconcile with the high Mo/Ce of the most LREE depleted xenoliths. Ancient Mo-enriched subducted components would be expected to have heavy δ98/95Mo, which is not observed. The Mo isotope composition of the BSE, cannot be reliably resolved from that of chondrites at this time despite experimental evidence for metal–silicate fractionation. An identical isotopic composition might result from core–mantle differentiation under very high temperatures such as were associated with the Moon-forming Giant Impact, or from the BSE inventory reflecting addition of moderately siderophile elements from an oxidised Moon-forming impactor (O'Neill, 1991). However, the latter would be inconsistent with the non-chondritic radiogenic W isotopic composition of the BSE. Based on mantle fertility arguments, Mo in the BSE could even be lighter (lower 98/95Mo) than that in chondrites, which might be explained by loss of S rich liquids from the BSE during core formation (Wade et al., 2012). Such a late removal model is no longer required to explain the Mo concentration of the BSE if its abundance is in fact much higher, and similar to the values for ultramafic xenoliths.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-06-26
    Description: Highlights • Glass inclusions record 11 Ma of early arc magma evolution. • Arc tholeiites succeed calc-alkalic magmas temporally. • Volcanic arc output directly linked to mantle wedge composition. • Dynamic slab control on arc magmatism following subduction initiation. Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu–Bonin–Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu–Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early ‘calc-alkalic’, high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the ‘calc-alkalic’ stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of wedge replenishment by corner flow does not overwhelm the rate of magma extraction.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-02-01
    Description: Highlights • A serpentinised peridotite basement is strongly supported by S-waves analysis • Depth dependent serpentinisation resembles to that observed at magma-poor margins. • Mantle exhumation was preceded by MOR-type magmatism and later intraplate volcanism. Summary The Tyrrhenian basin opened in the Neogene following the E–SE retreat of the Appenines–Calabrian subduction system and the subsequent back-arc extension of an orogenic crust. The resultant crustal structure includes a complex distribution of continental, back-arc magmatism, and mantle-exhumation domains. A clear example of this complex structure is found in the central and deepest part of the basin (i.e. Magnaghi–Vavilov sub-basin) where geophysical data supported that the bulk of the basement is composed of partially serpentinised peridotite representing exhumed mantle rocks, and intruded by basalts forming low ridges and volcanic edifices. However, those data sets cannot univocally demonstrate the widespread presence of serpentinised mantle rocks, let alone the percentage of serpentinisation. Here, we use S-wave arrivals and available geological information to further constrain the presence of mantle serpentinisation. Travel times of converted S-waves were used to derive the overall Vp/Vs and Poisson's ratio (σ), as well as S-wave velocity of the basement in the Magnaghi-Vavilov Basins. This analysis reveals Vp/Vs ≈ 1.9 (σ ≈ 0.3) that strongly supports a serpentinised peridotite forming the basement under the basins, rather than oceanic-type gabbro/diabase. P-wave velocity models is later used to quantify the amount of serpentinisation from fully serpentinised (up to 100%) at the top of the basement to 〈 10% at 5–7 km deep, with a depth distribution similar to continent–ocean Transition zones at magma-poor rifted margins. Seismic reflection profiles show normal faulting at either flank of the Magnaghi–Vavilov Basin that is potentially responsible for the onset of serpentinisation and later mantle exhumation. These results, together with basement sampling information in the area, suggests that the late stage of mantle exhumation was accompanied or soon followed by the emplacement of MOR-type basalts forming low ridges that preceded intraplate volcanism responsible for the formation of large volcanoes in the area.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-02-06
    Description: Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)—for example, neoechinulin B—have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-02-06
    Description: Highlights • The Jbel Boho complex is shown to have an alkaline, intraplate geochemical signature. • At least three magma generations are responsible for forming the extrusive-intrusive complex. • The highly evolved and LREE-rich rhyolitic dykes are associated with synchysite-(Ce) mineralization. Abstract The Jbel Boho complex (Anti-Atlas/Morocco) is an alkaline magmatic complex that was formed during the Precambrian-Cambrian transition, contemporaneous with the lower early Cambrian dolomite sequence. The complex consists of a volcanic sequence comprising basanites, trachyandesites, trachytes and rhyolites that is intruded by a syenitic pluton. Both the volcanic suite and the pluton are cut by later microsyenitic and rhyolitic dykes. Although all Jbel Boho magmas were probably ultimately derived from the same, intraplate or plume-like source, new geochemical evidence supports the concept of a minimum three principal magma generations having formed the complex. Whereas all volcanic rocks (first generation) are LREE enriched and appear to be formed by fractional crystallization of a mantle-derived magma, resulting in strong negative Eu anomalies in the more evolved rocks associated with low Zr/Hf and Nb/Ta values, the younger syenitic pluton displays almost no negative Eu anomaly and very high Zr/Hf and Nb/Ta. The syenite is considered to be formed by a second generation of melt and likely formed through partial melting of underplated mafic rocks. The syenitic pluton consists of two types of syenitic rocks; olivine syenite and quartz syenite. The presence of quartz and a strong positive Pb anomaly in the quartz syenite contrasts strongly with the negative Pb anomaly in the olivine syenite and suggests the latter results from crustal contamination of the former. The late dyke swarm (third generation of melt) comprises microsyenitic and subalkaline rhyolitic compositions. The strong decrease of the alkali elements, Zr/Hf and Nb/Ta and the high SiO2 contents in the rhyolitic dykes might be the result of mineral fractionation and addition of mineralizing fluids, allowing inter-element fractionation of even highly incompatible HFSE due to the presence of fluorine. The occurrence of fluorite in some volcanic rocks and the Ca-REE-F carbonate mineral synchysite in the dykes with very high LREE contents (Ce ∼720 ppm found in one rhyolitic dyke) suggest the fluorine-rich nature of this system and the role played by addition of mineralizing fluids. The REE mineralization expressed as synchysite-(Ce) is detected in a subalkaline rhyolitic dyke (with ΣLREE = 1750 ppm) associated with quartz, chlorite and occasionally with Fe-oxides. The synchysite mineralization is probably the result of REE transport by acidic hydrothermal fluids as chloride complex and their neutralization during fluid-rock interaction. The major tectonic change from compressive to extensional regime in the late Neoproterozoic induced the emplacement of voluminous volcaniclastic series of the Ediacran Ouarzazate Group. The alkaline, within-plate nature of the Jbel Boho igneous complex implies that this extensional setting continued during the early Cambrian.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-06-26
    Description: Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates at two sites: freshwater (Nida) and brackish water (Smiltyne) in the Curonian Lagoon (SE Baltic Sea). Using the size-fractionation approach and dilution experiments, we found that the microzooplankton community was able to remove up to 78% of nanophytoplankton (2–20 μm) standing stock and 130% of the total daily primary production in the brackish waters of the lagoon, and up to 83% of standing stock and 76% of the primary production of picophytoplankton (0.2–2 μm) in the freshwater part. The observed differences were attributed to the changes in ciliate community size and trophic structure, with larger nano-filterers (30–60 μm) dominating the brackish water assemblages and pico-nano filterers (〈20 μm and 20–30 μm) prevailing in the freshwater part of the lagoon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-02-06
    Description: Highlights • Late stage volcanism covers old oceanic crust north of the Florianopolis Fracture Zone. • No influence of fracture zone on formation of Walvis Ridge at 6° E. • Walvis Ridge at 6° E erupted in deep water environment. Abstract The Walvis Ridge is one of the major hotspot trails in the South Atlantic and a classical example for volcanic island chains. Two models compete about the origin of the ridge: It is either the result of a deep mantle plume or active fracture zones above mantle inhomogeneities. Among other things crustal information is needed to constrain the models. Here, we provide such constraint with a 480 km long P-wave velocity model of the deep crustal structure of the eastern Walvis Ridge at 6° E. According to our data the Walvis Ridge stretches across the Florianopolis Fracture Zone into the Angola Basin. Here, we observe a basement high and thick basaltic layers covering the oceanic crust and the fracture zone. We found two crustal roots along the profile: one is located beneath the ridge crest, the other one beneath the northern basement high in the Angola Basin. The crustal thickness reaches 18 km and 12 km and the lower crustal velocities are 7.2 km/s and 7.4 km/s, respectively. The bathymetric expression of the ridge along the profile is less pronounced than closer to shore, which is mainly attributable to the absence of a thick layer of volcanic debris, rather than to reduced crustal thickness below the basement surface. Therefore, this part of the ridge was never or only briefly subaerially exposed. The crustal structure suggests that the ridge and the fracture zone formed independently of each other. The oceanic crust north of the fracture zone, which is buried underneath the basalt layer, is younger than the reconstructed age of hotspot volcanism of the Walvis Ridge. We interpret these structures north of the fracture zone to be at least partly a product of late stage volcanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-02-06
    Description: Highlights • Seafloor massive sulphides vary in mineralogy and oxidise at different rates. • Galvanic cells play a role in increasing dissolution rates. • SMS deposits that have been inactive for some time may have lost economic value. • The geochemistry of oxidation products has potential to be an exploration tool. • Potential for anthropogenic release of heavy metals during seafloor mining. • Any risk needs addressing by the ISA prior to the formation of mining regulations. The weathering process of seafloor massive sulphide (SMS) deposits can be considered analogous to weathering of terrestrial volcanogenic massive sulphides (VMS) deposits. However, in the context of SMS deposits, the process occurs in chemically buffered waters of near neutral pH, resulting in the formation of insoluble Fe oxy-hydroxide minerals including goethite and hematite as well as sulphates such as jarosite. As a result of this precipitation, it is commonly assumed that any SMS deposit is unlikely to exhibit a significant loss of metals (dissolution and release of heavy metals) into the water column. However, galvanic interactions have never been considered in this seafloor context, whilst they have already been shown to have the ability to increase dissolution significantly in terrestrial deposits. If heavy metal release is not temporally balanced by precipitation of oxide phases, there is the potential that these metal occurrences lose economic value. This is specifically significant if there is an industrial focus on exploiting deposits associated with hydrothermal vents that have been inactive for some time. Not only this, but the geochemistry of weathering products – ‘gossans’ – that are formed have the potential to be used as tools for exploration. Furthermore, it is unknown what impact galvanic coupling may have with regards to anthropogenic release of heavy metals during seafloor mining of deposits associated with either active or inactive vents (disturbance of sediment, plume generation and dewatering process). This environmental impact needs to be addressed prior to the formulation of regulations for deep-sea mining by the International Seabed Authority. The present review examines our current understanding of oxidation and dissolution of a mixed sulphide ore, bringing together lines of evidence from a range of literature sources. Based on this review, different seafloor sulphide ore deposits will dissolve by oxidation and release a variety of different metals (economic and/or toxic), all at different rates, with galvanic cells playing a role by increasing dissolution rates. While precipitation of oxide and oxy-hydroxide phases will occur, it is unknown in both a natural weathering and anthropogenic (mining) context whether heavy metal release (including economic and toxic metals) is temporally balanced by this precipitation and any subsequent adsorption. Based on our current understanding, certain sites will be more predisposed to oxidation as a result of their mineralogy (those containing significant pyrrhotite, marcasite, galena and secondary copper sulphides) and/or environment (higher temperatures and oxygen concentrations, lower pH's). Furthermore, certain sites pose more of an environmental risk (in terms of toxicity) than others, with arc-related SMS deposits associated with higher concentrations of As, Pb, Sb, Cd and Hg and ultra-mafic hosted SMS deposits associated with high concentrations of Co and Ni. The review highlights the need for subsequent studies that investigate the natural weathering process of seafloor sulphide ore deposits, including how this process impacts their economic value and consequent geochemical signature of oxides that are produced over time. Moreover, this review underlines the necessity for experiments to elucidate the oxidative dissolution of ore throughout any mining process.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-08-04
    Description: Marine teleost fish sustain compensation of extracellular pH after exposure to hypercapnia by means of efficient ion and acid-base regulation. Elevated rates of ion and acid-base regulation under hypercapnia may be stimulated further by elevated temperature. Here, we characterized the regulation of transepithelial ion transporters (NKCC1, NBC1, SLC26A6, NHE1 and 2) and ATPases (Na(+)/K(+) ATPase and V-type H(+) ATPase) in gills of Atlantic cod (Gadus morhua) after 4 weeks of exposure to ambient and future PCO2 levels (550 μatm, 1200 μatm, 2200 μatm) at optimum (10 °C) and summer maximum temperature (18 °C), respectively. Gene expression of most branchial ion transporters revealed temperature- and dose-dependent responses to elevated PCO2. Transcriptional regulation resulted in stable protein expression at 10 °C, whereas expression of most transport proteins increased at medium PCO2 and 18 °C. mRNA and protein expression of distinct ion transport proteins were closely co-regulated, substantiating cellular functional relationships. Na(+)/K(+) ATPase capacities were PCO2 independent, but increased with acclimation temperature, whereas H(+) ATPase capacities were thermally compensated but decreased at medium PCO2 and 10 °C. When functional capacities of branchial ATPases were compared with mitochondrial F1Fo ATP-synthase strong correlations of F1Fo ATP-synthase and ATPase capacities generally indicate close coordination of branchial aerobic ATP demand and supply. Our data indicate physiological plasticity in the gills of cod to adjust to a warming, acidifying ocean within limits. In light of the interacting and non-linear, dose-dependent effects of both climate factors the role of these mechanisms in shaping resilience under climate change remains to be explored.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-02-06
    Description: Highlights • Mid-MIS 6 changes resemble Dansgaard-Oeschger variability during MIS 3. • Both Termination I and II demonstrate similar two-step-like character. • Sea surface bioproductivity was higher during MIS 6 than during MIS 4-2. • Bottom-water conditions were less stable during MIS 6 than during MIS 4-2. • Sea-ice cover was reduced during MIS 6 as compared to MIS 4-2. Abstract We present high-resolution multi-proxy records from a marine sediment core (SO201-2-85KL) from the western Bering Sea to assess orbital- and millennial-scale paleoceanographic conditions during two last glacial intervals, including both terminations. Based on changes in foraminiferal assemblages, grain-size content and previously published TOC and δ13C records, we reconstruct variations in sea-surface biological productivity, intermediate-water oxygenation and sea-ice conditions during the last 180 kyr. Our data demonstrate remarkable differences between the penultimate (MIS 6) and last (MIS 4-2) glacial. Relatively high sea surface bioproductivity and reduced sea-ice cover are reconstructed for the penultimate glacial interval, whereas low bioproductivity and expanded sea-ice cover appear to be typical for the last glacial. Millennial-scale changes in intermediate water ventilation are inferred from faunal records for the middle part of the penultimate glacial. High-amplitude environmental variability during the penultimate glacial time in the Bering Sea resembles the well-known Dansgaard-Oeschger oscillations, and roughly corresponds to similar rapid climatic fluctuations found in North Atlantic records. The Termination II and I intervals display a similar succession of high-bioproductivity events, being more pronounced during the penultimate glacial-interglacial transition, probably due to the different orbital configuration. During the late phase of Termination II, two short intervals, characterized by high sea surface bioproductivity and low oxygen content of bottom waters, resemble the Bølling and Allerød warmings, whereas an episode with low bioproductivity occurs in between, similar to the Older Dryas. Our results provide support for a close circumpolar coupling between high-latitude environments on millennial timescales at least since the penultimate glacial.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-03-24
    Description: The March 13th 1888 collapse of Ritter Island in Papua New Guinea is the largest known sector collapse of an island volcano in historical times. One single event removed most of the island and its western submarine flank, and produced a landslide deposit that extends at least 70 km from the headwall of the collapse scar. We have mapped and described the deposits of the debris avalanche left by the collapse using full-coverage multibeam bathymetry, side-scan sonar backscatter intensity mapping, chirp seismic-reflection profiles, TowCam photographs of the seafloor and samples from a single dredge. Applying concepts originally developed on the 1980 Mount St. Helens collapse landslide deposits, we find that the Ritter landslide deposits show three distinct morphological facies: large block debris avalanche, matrix-rich debris avalanche and distal debris flow facies. Restoring the island's land and submarine topography we obtained a volume of 4.2 km3 for the initial collapse, about 75% of which is now forming the large block facies at distances less than 12 km from the collapse scar. The matrix-rich facies volume is unknown, but large scale erosion of the marine sediment substrate yielded a minimum total volume of 6.4 km3 in the distal debris flow and/or turbidite deposits, highlighting the efficiency of substrate erosion during the later history of the landslide movement. Although studying submarine landslide deposits we can never have the same confidence that subaerial observations provide, our analysis shows that well-exposed submarine landslide deposits can be interpreted in a similar way to subaerial volcano collapse deposits, and that they can in turn be used to interpret older, incompletely exposed submarine landslide deposits. Studying the deposits from a facies perspective provides the basis for reconstructing the kinematics of a collapse event landslide; understanding the mechanisms involved in its movement and deposition; and so providing key inputs to tsunami models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Applied Geophysics, 136 . pp. 178-189.
    Publication Date: 2020-02-06
    Description: Highlights • We present a joint inversion method for the transmitter navigation and the seafloor resistivity for frequency domain marine CSEM data. • We invert for both the transmitter navigation parameters of the towed dipole source (including antenna azimuth, dip, and horizontal positions) and seafloor resistivity. • The eigenparameter analysis shows that seafloor resistivities and transmitter navigation parameters can be independently resolved. • The inversions of both the synthetical and field data sets are tested. Abstract We present a joint inversion method for the transmitter navigation and the seafloor resistivity for frequency domain marine controlled-source electromagnetic (CSEM) data. The inversion approach is based on the modified BFGS scheme, which has an advantage that one can update the Hessian matrix by using the BFGS scheme rather than computing the Hessian matrix itself during the inversion process. The partial derivatives of the electromagnetic field responses with respect to both the seafloor resistivity and the transmitter navigation parameters including the azimuth, dip and horizontal positions of the transmitter antenna are analytically calculated. We invert for both the navigation parameters of the towed dipole source (including antenna azimuth, dip, and horizontal positions) and seafloor resistivity by using the whole range of data instead of the near-field data (usually source-receiver offset 〈1 km). An eigenparameter analysis shows that seafloor resistivities and transmitter navigation parameters can be independently resolved, and a better reconstruction can be obtained with multiple frequency data. The inversions of both the synthetical and field data sets indicate that our inversion method can simultaneously reconstruct seafloor resistivity structures and transmitter navigation parameters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-02-06
    Description: Highlights: • First feeding of wild brown trout fry with partial inclusion of dietary plant proteins is beneficial for subsequent growth • Feeding of 50% dietary plant protein results in same growth when compared to fishmeal as exclusive protein source • The early feeding of plant-based diets did not induce nutritional programming effects in first-feeding fry • Wild brown trout fry exhibit highly plastic responses to different feeding strategies during the first months of life • Pepsin and amylase activities are only partly affected by plant-derived protein sources and rather intrinsically regulated Abstract: Decreasing fishmeal availability and increasing prices promote the usage of plant-derived feedstuff as a substitution for fishmeal in commercial salmonid diets. However, little is known about the impact of plant-derived feedstuff on juvenile brown trout (Salmo trutta), a species that exhibits strong phenotypic plasticity with various genetic sub-structures and high overall genetic diversity. Thus, the production of brown trout for restocking purposes preferentially uses wild fish as broodstock to avoid loss of genetic variability. Because of nutritional programming, the strictly carnivorous feeding habit of wild brown trout broodfish could nevertheless have a negative impact on the digestive physiology of fry and fingerlings that are fed with commercial plant-protein containing trout diets. The present study, therefore, investigated whether the feeding of plant-based diets from first feeding onwards induced a permanent improvement in the utilisation of plant-derived protein sources in wild brown trout juveniles. Any plastic responses to the experimental diets resulting in a long-term physiological effect were hypothesised to be not only observed in growth performance, but also in altered pepsin and amylase activities. We demonstrated that (i) the feeding of wild brown trout fry with inclusion levels of up to 50% of dietary plant proteins is beneficial during the first weeks of life and (ii) continuous feeding of at least 50% plant-derived dietary protein resulted in the same rate of growth when compared to the growth resulting from fishmeal as the exclusive dietary protein source. Pepsin and amylase activities were only partly affected by diet-type and it can be concluded that intestinal pepsin and amylase activities in juvenile brown trout are primarily regulated by intrinsic mechanisms. In the present experiment, we were not able to induce a permanent nutritional programming effect of the first feeding diet; instead, a cross-over diet change applied 89 days post first feeding demonstrated that wild brown trout fry exhibit highly plastic responses to different feeding strategies during the first months of life.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Elsevier
    In:  Cell Host & Microbe, 21 (4). pp. 419-420.
    Publication Date: 2020-07-24
    Description: Commensal microbes colonize the skin where they promote immune development and prevent infection without inducing damaging inflammatory responses. In this issue of Cell Host & Microbe, Scharschmidt et al. (2017) show that during hair follicle development, commensals induce regulatory T cell migration to the skin to ensure cutaneous homeostasis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-02-06
    Description: This paper examines the on-shelf circulation of the eastern Australian continental shelf for a region off southeast Queensland. We identify a characteristic seasonally reoccurring wind-driven cyclonic flow. It influences the cross-shelf exchange with the East Australian Current (EAC), which is the western boundary current of the South Pacific Ocean. We refer to this cyclonic circulation as the Fraser Gyre. It is located south of Fraser Island between about 25 °S and 27 °S. The region is adjacent to the intensification zone of the EAC where the current accelerates and establishes a swift, albeit seasonally variable southward boundary flow. Through the analysis of several data sets including remotely sensed sea surface temperature and sea surface height anomaly, satellite tracked surface drifters, ocean and atmospheric reanalysis data as well as geostrophic currents from altimetry, we find that the on-shelf Fraser Gyre develops during the southern hemisphere autumn and winter months. The gyre is associated with a longshore near-coast northward flow. Maximum northward on-shelf depth averaged velocities are estimated with about 0.15–0.26 ms-1. The flow turns eastward just to the south of Fraser Island and joins the persistent southward EAC flow along the shelf break. The annual mean net cross-shelf outward and inward flow associated with the gyre is about -1.17 ± 0.23 Sv in the north and 0.23 ± 0.13 Sv (1 Sv = 106 m3s−1) in the south. Mean seasonal water renewal time scales of the continental shelf are longest during austral winter with an average of about 3.3 days due to the Fraser Gyre retaining water over the shelf, however, monthly estimates range from 2 to 8 days with the longer timescale during the austral autumn and winter. The southerly wind during austral autumn and winter is identified as controlling the on shelf circulation and is the principal driver of the seasonally appearing Fraser Gyre. The conceptual model of the Fraser Gyre is consistent with general physical principals of the coastal shelf circulation. A southerly wind is associated with surface layer flow toward the coast, a near coast positive SSHa with a current in the direction of the wind, down-welling and export of shelf water. The Fraser Gyre influenced cross-shelf exchanges are possibly facilitating the offshore transport of fish larvae, sediments, nutrients, river discharges, and other properties across the shelf break and into the southward flowing EAC during the austral autumn and winter.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-02-06
    Description: In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in aragonite we performed precipitation experiments decoupling temperature and precipitation rates (R∗, μmol/m2.h) in the interval of about 2.3 to 4.5 μmol/m2.h. Aragonite is the only pure solid phase precipitated from a stirred solutions exposed to an atmosphere of NH3 and CO2 gases throughout the spontaneous decomposition of (NH4)2CO3. The order of reaction with respect to Ca ions is one and independent of temperature. However, the order of reaction with respect to the dissolved inorganic carbon (DIC) is temperature dependent and decreases from three via two to one as temperature increases from 12.5 and 25.0 to 37.0 °C, respectively. Strontium distribution coefficient (DSr) increases with decreasing temperature. However, R∗ responds differently depending on the initial Sr/Ca concentration and temperature: at 37.5 °C DSr increase as a function of increasing R∗ but decrease for 12.5 and 25 °C. Not seen at 12.5 and 37.5 °C but at 25°C the DSr-R∗ gradient is also changing sign depending on the initial Sr/Ca ratio. Magnesium (Mg) adsorption coefficient between aragonite and aqueous solution (DMg) decreases with temperature but increases with R∗ in the range of 2.4 to 3.8 μmol/m2.h. Strontium isotope fractionation (Δ88/86Sraragonite-aq) follows the kinetic type of fractionation and become increasingly negative as a function of R∗ for all temperatures. In contrast Ca isotope fractionation (Δ44/40Caaragonite-aq) shows a different behavior than the Sr isotopes. At low temperatures (12.5 and 25°C) Ca isotope fractionation (Δ44/40Caaragonite-aq) becomes positive as a function of R∗. In contrast, at 37.5°C and as a function of increasing R∗ the Δ44/40Caaragonite-aq show a Sr type like behavior and becomes increasingly negative. Concerning both the discrepant behavior of DSr as a function of temperature as well as for the Ca isotope fractionation as a function of temperature we infer that the switch of sign in the trace element partitioning as well as in the direction of the Ca isotope fractionation is probably due to the switch of complexation from a Ca2+-NH3 complexation at and below 25 °C to an Ca2+-H2O aquacomplex at 37.5 °C. The DSr - Δ88/86Srcalcite-aq correlation for calcite is independent of temperature in contrast to aragonite. We interpreted the strong DSr-temperature dependency of aragonite, the smaller range of Sr isotope fractionation as well as the shallower Δ88/86Srcalcite-aq-R∗ gradients to be a consequence of the increased aragonite solubility and the “Mg blocking effect”. In contrast to Sr the Ca isotope fractionation values in calcite and aragonite depend both on the complexation in solution and independent on polymorphism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 463 . pp. 125-134.
    Publication Date: 2017-12-14
    Description: The Mediterranean mid-littoral zone is inhabited by two sympatric chthamalid barnacles: Chthamalus stellatus and Euraphia depressa, C. stellatus extends from the high midtidal zone, above the algal belt, to the supra-littoral fringe, E. depressa is restricted to the uppermost intertidal levels in wave-beaten places and to cryptic habitats lower on the shore within the belt of C. stellatus. Previous studies have suggested that the reason for the fragmented distribution pattern of E. depressa is competitive displacement by the sympatric C. stellatus, following random settlement. This hypothesis is in agreement with the common model of zonation suggested by Connell that lower distribution limits are determined by biotic factors (competition and predation), while upper limits are set by physical factors. It is hard to test the validity of this model for this barnacle pair since the early ontogenetic stages of the species are morphologically indistinguishable, hindering our ability to understand distribution processes. Using 16S mtDNA as a genetic marker in a multiplex PCR system, cyprids and spats were individually identified. Settlement and recruitment rates were assessed using settlement plates, and the effect of post-settlement processes was tested with transplantation of settlers between zones. Results showed different strategies in each species: settlement of E. depressa was habitat-specific, while settlement of C. stellatus was random. Shifting individuals of C. stellatus to the high and cryptic zones resulted in high mortality; however, exposing juveniles of E. depressa that settled in artificially cryptic low shore habitat to C. stellatus presence had no effect on their survival. These finding do not agree with the formerly suggested hypothesis that zonation is mainly determined by post-settlement factors, and that the interspecies boundary is determined by interspecific competition, implying that competition model cannot be adapted to Mediterranean intertidal zonation and that other models, dominated by physical enforcement and pre-settlement recruitment-limiting factors, may prevail in this ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-02-01
    Description: The extent of the global human footprint [1] limits our understanding of what is natural in the marine environment. Remote, near-pristine areas provide some baseline expectations for biomass [2, 3] and suggest that predators dominate, producing an inverted biomass pyramid. The southern pass of Fakarava atoll—a biosphere reserve in French Polynesia—hosts an average of 600 reef sharks, two to three times the biomass per hectare documented for any other reef shark aggregations [4]. This huge biomass of predators makes the trophic pyramid inverted. Bioenergetics models indicate that the sharks require ~90 tons of fish per year, whereas the total fish production in the pass is ~17 tons per year. Energetic theory shows that such trophic structure is maintained through subsidies [5–9], and empirical evidence suggests that sharks must engage in wide-ranging foraging excursions to meet energy needs [9, 10]. We used underwater surveys and acoustic telemetry to assess shark residency in the pass and feeding behavior and used bioenergetics models to understand energy flow. Contrary to previous findings, our results highlight that sharks may overcome low local energy availability by feeding on fish spawning aggregations, which concentrate energy from other local trophic pyramids. Fish spawning aggregations are known to be targeted by sharks, but they were previously believed to play a minor role representing occasional opportunistic supplements. This research demonstrates that fish spawning aggregations can play a significant role in the maintenance of local inverted pyramids in pristine marine areas. Conservation of fish spawning aggregations can help conserve shark populations, especially if combined with shark fishing bans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-02-08
    Description: Highlights • The Danube deep-sea fan offers best conditions for hydrate production. • Gas production out of a hypothetical methane hydrate reservoir was simulated. • Hazard assessment to investigate the hazard of production-induced slope failures. • Factor of Safety against slope failure is not affected by the production process. • Mobilized mass could hit the production site if landslide were to happen. Methane production from gas hydrate reservoirs is only economically viable for hydrate reservoirs in permeable sediments. The most suitable known prospect in European waters is the paleo Danube deep-sea fan in the Bulgarian exclusive economic zone in the Black Sea where a gas hydrate reservoir is found 60 m below the seafloor in water depths of about 1500 m. To investigate the hazards associated with gas production-induced slope failures we carried out a slope stability analysis for this area. Screening of the area based on multibeam bathymetry data shows that the area is overall stable with some critical slopes at the inner levees of the paleo channels. Hydrate production using the depressurization method will increase the effective stresses in the reservoir beyond pre-consolidation stress, which results in sediment compaction and seafloor subsidence. The modeling results show that subsidence would locally be in the order of up to 0.4 m, but it remains confined to the immediate vicinity above the production site. Our simulations show that the Factor of Safety against slope failure (1.27) is not affected by the production process, and it is more likely that a landslide is triggered by an earthquake than by production itself. If a landslide were to happen, the mobilized sediments on the most likely failure plane could generate a landslide that would hit the production site with velocities of up to 10 m s-1. This case study shows that even in the case of production from very shallow gas hydrate reservoirs the threat of naturally occurring slope failures may be greater than that of hydrate production itself and has to be considered carefully in hazard assessments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-12-23
    Description: Highlights • Sediment accumulation rates in Nicobar Fan abruptly increase 9.5 Ma. • Increased sediment flux to eastern Indian Ocean and restructuring of sediment routing. • Nicobar Fan holds significant record of Indian Ocean sedimentation in late Neogene. • Shillong Plateau and Indo–Burmese wedge uplift drive sediment south in late Miocene. A holistic view of the Bengal–Nicobar Fan system requires sampling the full sedimentary section of the Nicobar Fan, which was achieved for the first time by International Ocean Discovery Program (IODP) Expedition 362 west of North Sumatra. We identified a distinct rise in sediment accumulation rate (SAR) beginning ∼9.5 Ma and reaching 250–350 m/Myr in the 9.5–2 Ma interval, which equal or far exceed rates on the Bengal Fan at similar latitudes. This marked rise in SAR and a constant Himalayan-derived provenance necessitates a major restructuring of sediment routing in the Bengal–Nicobar submarine fan. This coincides with the inversion of the Eastern Himalayan Shillong Plateau and encroachment of the west-propagating Indo–Burmese wedge, which reduced continental accommodation space and increased sediment supply directly to the fan. Our results challenge a commonly held view that changes in sediment flux seen in the Bengal–Nicobar submarine fan were caused by discrete tectonic or climatic events acting on the Himalayan–Tibetan Plateau. Instead, an interplay of tectonic and climatic processes caused the fan system to develop by punctuated changes rather than gradual progradation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-02-06
    Description: Incipient warming of peatlands at high latitudes is expected to modify soil drainage and hence the redox conditions, which has implications for Fe export from soils. This study uses Fe isotopes to assess the processes controlling Fe export in a range of Icelandic soils including peat soils derived from the same parent basalt, where Fe isotope variations principally reflect differences in weathering and drainage. In poorly weathered, well-drained soils (non-peat soils), the limited Fe isotope fractionation in soil solutions relative to the bulk soil (Δ57Fesolution-soil = -0.11 ± 0.12 ‰) is attributed to proton-promoted mineral dissolution. In the more weathered poorly drained soils (peat soils), the soil solutions are usually lighter than the bulk soil (Δ57Fesolution-soil = -0.41 ± 0.32 ‰), which indicates that Fe has been mobilised by reductive mineral dissolution and/or ligand-controlled dissolution. The results highlight the presence of Fe-organic complexes in solution in anoxic conditions. An additional constraint on soil weathering is provided by Si isotopes. The Si isotope composition of the soil solutions relative to the soil (Δ30Sisolution-soil = 0.92 ± 0.26 ‰) generally reflects the incorporation of light Si isotopes in secondary aluminosilicates. Under anoxic conditions in peat soils, the largest Si isotope fractionation in soil solutions relative to the bulk soil is observed (Δ30Sisolution-soil = 1.63 ± 0.40 ‰) and attributed to the cumulative contribution of secondary clay minerals and amorphous silica precipitation. Si supersaturation in solution with respect to amorphous silica is reached upon freezing when Al availability to form aluminosilicates is limited by the affinity of Al for metal-organic complexes. Therefore, the precipitation of amorphous silica in peat soils indirectly supports the formation of metal-organic complexes in poorly drained soils. These observations highlight that in a scenario of decreasing soil drainage with warming high latitude peatlands, Fe export from soils as Fe-organic complexes will increase, which in turn has implications for Fe transport in rivers, and ultimately the delivery of Fe to the oceans.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-02-06
    Description: Tertiary rift-related intraplate basanites from the Batain basin of northeastern Oman have low SiO2 (〈 45.6 wt.%), high MgO (〉 9.73 wt.%) and moderate to high Cr and Ni contents (Cr 〉 261 ppm, Ni 〉 181 ppm), representing near primary magmas that have undergone fractionation of mainly olivine and magnetite. Rare earth element systematics and p-T estimates suggest that the alkaline rocks are generated by different degrees of partial melting (4–13%) of a spinel-peridotite lithospheric mantle containing residual amphibole. The alkaline rocks show restricted variations of 87Sr/86Sr and 143Nd/144Nd ranging from 0.70340 to 0.70405 and 0.51275 to 0.51284, respectively. Variations in Pb isotopes (206Pb/204Pb: 18.59–18.82, 207Pb/204Pb: 15.54–15.56, 208Pb/204Pb: 38.65–38.98) of the alkaline rocks fall in the range of most OIB. Trace element constraints together with Sr–Nd–Pb isotope composition indicate that assimilation through crustal material did not affect the lavas. Instead, trace element variations can be explained by melting of a lithospheric mantle source that was metasomatized by an OIB-type magma that was accumulated at the base of the lithosphere sometimes in the past. Although only an area of less than 1000 km2 was sampled, magmatic activity lasted for about 5.5 Ma with a virtually continuous activity from 40.7 ± 0.7 to 35.3 ± 0.6 Ma. During this period magma composition was nearly constant, i.e. the degree of melting and the nature of the tapped source did not change significantly over time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-02-06
    Description: Highlights • Deep-sea mineral exploration and exploitation licenses have been issued recently. • Mining will modify the abiotic and biotic environment. • At directly mined sites, species are removed and cannot resist disturbance. • Recovery is highly variable in distinct ecosystems and among benthic taxa. • Community changes may persist over geological time-scales at directly mined sites. Abstract With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species’ potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-04-23
    Description: The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the field.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-02-08
    Description: Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07 − 3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024 – 0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link between surface and benthic production and has to be further considered in the future as a regular carbon input to the deep-sea floor in the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-12-13
    Description: We present whole rock 187Os/188Os data for the most mafic lavas along the Lesser Antilles arc (MgO = 5–17 wt.%) and for the subducting basalt and sediments. 187Os/188Os ratios vary from 0.127 to 0.202 in the arc lavas. Inverse correlations between 187Os/188Os and Os concentrations and between 187Os/188Os and indices of differentiation such as MgO suggests that assimilation, rather than source variation, is responsible for the range of Os isotopic variation observed. 87Sr/86Sr, La/Sm and Sr/Th are also modified by assimilation since they all correlate with 187Os/188Os. The assimilant is inferred to have a MORB-like 87Sr/86Sr with high Sr (〉700 ppm), low light on middle and heavy rare earth elements (L/M-HREE; La/Sm ∼2.5) and 187Os/188Os 〉 0.2. Such compositional features are likely to correspond to a plagioclase-rich early-arc cumulate. Given that assimilation affects lavas that were last stored at more than 5 kbar, assimilation must occur in the middle-lower crust. Only a high MgO picrite from Grenada escaped obvious assimilation (MgO = 17% wt.%) and could reflect mantle source composition. It has a very radiogenic 87Sr/86Sr (0.705) but a 187Os/188Os ratio that overlaps the mantle range (0.127). 187Os/188Os and 87Sr/88Sr ratios of the sediments and an altered basalt from the subducting slab vary from 0.18 to 3.52 and 0.708 to 0.714. We therefore suggest that, unlike Sr, no Os from the slab was transferred to the parental magmas. Os may be either retained in the mantle wedge or even returned to the deep mantle in the subducting slab.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-02-06
    Description: The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates “root structures” that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-02-08
    Description: Highlights: • First long-term study on microplastic in the marine environment • Case study based on a unique sample set from the highly human impacted Baltic Sea • Water column microplastic concentration constant over past three decades • Microplastic concentration in forage fish constant over past three decades • We hypothesise that household waste is the dominant source of Baltic marine plastics. Abstract Microplastic is considered a potential threat to marine life as it is ingested by a wide variety of species. Most studies on microplastic ingestion are short-term investigations and little is currently known about how this potential threat has developed over the last decades where global plastic production has increased exponentially. Here we present the first long-term study on microplastic in the marine environment, covering three decades from 1987 to 2015, based on a unique sample set originally collected and conserved for food web studies. We investigated the microplastic concentration in plankton samples and in digestive tracts of two economically and ecologically important planktivorous forage fish species, Atlantic herring (Clupea harengus) and European sprat (Sprattus sprattus), in the Baltic Sea, an ecosystem which is under high anthropogenic pressure and has undergone considerable changes over the past decades. Surprisingly, neither the concentration of microplastic in the plankton samples nor in the digestive tracts changed significantly over the investigated time period. Average microplastic concentration in the plankton samples was 0.21±0.15particlesm-3. Of 814 fish examined, 20% contained plastic particles, of which 95% were characterized as microplastic (〈5mm) and of these 93% were fibres. There were no significant differences in the plastic content between species, locations, or time of day the fish were caught. However, fish size and microplastic in the digestive tracts were positively correlated, and the fish contained more plastic during summer than during spring, which may be explained by increased food uptake with size and seasonal differences in feeding activity. This study highlights that even though microplastic has been present in the Baltic environment and the digestive tracts of fishes for decades, the levels have not changed in this period. This underscores the need for greater understanding of how plastic is cycled through marine ecosystems. The stability of plastic concentration and contamination over time observed here indicates that the type and level of microplastic pollution may be more closely correlated to specific human activities in a region than to global plastic production and utilization as such.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-04-23
    Description: Dissolved free amino acids (DFAA) in seawater are a form of nitrogen (N) available for marine microbes. In oligotrophic environments where N-containing nutrients are the limiting factor for microbial growth, N nutrition from DFAA could be crucial, but as yet it is poorly resolved. Measurements of individual DFAA are challenging as concentrations are typically in the low nmol L− 1 range. Here we report modifications to methodology using o-phthaldialdehyde (OPA) derivatization and reversed phase high performance liquid chromatography (HPLC) that provide a 30-fold improvement in sensitivity enabling the detection of 15 amino acids in seawater with a limit of detection as low as 10 pmol L− 1 with accuracy and precision of better than 10%. This analytical methodology is now suitable for the challenging quantitation of DFAA in oligotrophic seawaters. The method was successfully applied to a suite of seawater samples collected on a cruise crossing the South Atlantic Ocean, where concentrations of DFAAs were generally low (sub nmol L− 1), revealing basin-scale features in the oceanographic distributions of DFAA. This unique dataset implies that DFAAs are an important component of the N cycle in both near-coastal and open oceans. Further calculations suggest that the proportions of organic N originating from DFAA sources were significant, contributing between 0.2 and 200% that of NH4 + and up to 77% that of total inorganic nitrogen in the upper 400 m in some regions of the transect.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Treatise on Geophysics. , ed. by Schubert, G. Elsevier, Amsterdam, pp. 277-305.
    Publication Date: 2017-12-04
    Description: Seismic anisotropy is common within the Earth's solid interior, in the crust, in the mantle, and in the inner core. Elastic anisotropy leads to direction-dependent wave velocities, shear-wave splitting, and polarization anomalies in both surface waves and body waves. We review the basic theory and the latest developments in modeling methods for seismic-wave propagation in anisotropic media. From mineral alignment to fine-layering effects and from mid-oceanic ridges and subduction zones to sutured continental terranes, we summarize the seismological observations that can be related to elastic anisotropy, the mechanisms proposed to explain it, and the geodynamic constraints that it offers.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...