ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Other Sources  (5,824)
  • SPACECRAFT DESIGN, TESTING AND PERFORMANCE  (5,824)
  • 1
    Publication Date: 2011-08-24
    Description: The Magellan spacecraft has been aerobraked into a 197 x 541 km near-circular orbit around Venus from which it is conducting a high-resolution gravity mapping mission. This was the first interplanetary aerobrake maneuver and involved flying the spacecraft through the upper reaches of the Venusian atmosphere 730 times over a 70 day period. Round-trip light-time varied from 9.57 to 18.83 minutes during this period. Navigation for this dynamic phase of the Magellan mission was planned and executed in the face of budget-driven down-sizing with all spacecraft safe modes disabled and a flight-team one-third the size of comparable interplanetary missions. Successful execution of this manuever using spacecraft hardware not designed to operate in a planetary atmosphere, demonstrated a practical cost-saving technique for both large and small future interplanetary missions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: British Interplanetary Society, Journal (ISSN 0007-094X); 48; 3; p. 111-122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Industrial demands for highly motivated and competent technical personnel to carry forward with the technological goals of the US has posed a significant challenge to graduating engineers. While curricula has improved and diversified over time to meet these industry demands, relevant industry experience is not always available to undergraduates. The microsatellite development program at San Jose State University (SJSU) has allowed an entire undergraduate senior class to utilize a broad range of training and education to refine their engineering skills, bringing them closer to becoming engineering professionals. Close interaction with industry mentors and manufacturers on a real world project provides a significant advantage to educators and students alike. With support from companies and government agencies, the students have designed and manufactured a microsatellite, designed to be launched into a low Earth orbit. This satellite will gather telemetry for characterizing the state of the spacecraft. This will enable the students to have a physical check on their predicted value of spacecraft subsystem performance. Additional experiments will also be undertaken during the two year lifetime, including micro-meteorite impact sensing and capturing digital color images of the Earth. This paper will detail the process whereby students designed, prototype and manufactured a small satellite in a large team environment, along with the experiments that will be performed on board. With the project's limited funds, it needed the support of many industry companies to help with technical issues and hardware acquisition. Among the many supporting companies, NASA's space shuttle small payloads program could be used for an affordable launch vehicle for the student project. The paper address these collaborations between the student project and industry support, as well as explaining the benefits to both. The paper draws conclusion on how these types of student projects can be used by industry as a feasible resource for developing small platforms for space based experiments, as well as increasing the practical experience and engineering knowledge of graduating students. These benefits to industry and universities, can lead to a close working relationship between the two. These types of projects can facilitate the development of low-cost space rated parts to be used by the industry and university projects. It can also help with the understanding and use of acceptable risk non-space rated parts reducing the cost of the spacecraft. This will lead to the development of low cost platforms for space based experiments, providing research companies an inexpensive, long duration platform to conduct their in-space experiments, while better preparing engineering undergraduates for their transition into the work force.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 289-294
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: SVN 9 was a GPS Block I research and development satellite. When it was launched in Jun. 1984, questions regarding the future performance of atomic frequency standards in orbit remained to be answered. In Mar. 1994, after performing for twice its designed life span, SVN 9 was deactivated as a member of the operational GPS satellite constellation. During the next two months, U.S. Air Force and Rockwell personnel performed various tests to determine just how well the atomic frequency standards had withstood ten years in the space environment. The results of these tests are encouraging. With a full constellation of Block II/IIA satellites on orbit, as well as the anticipated launch of the Block IIR satellites, results from the end of life testing will be helpful in assuring the continued success of the GPS program.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, The 26th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 405-413
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The need for electrical energy supply in the rural communities of developing countries has been well documented. Equally well known is the potential for photovoltaic in cost effectively meeting this need. A major impediment to fulfilling the need is the lack of indigenous personnel with a knowledgeof photovoltaic systems, and the associated infrastructure required to implement project. Various delivery schemes for providing the needed training to developing countries personnel have been investigated. Various train methods and programs that have been employed to remedy the problem have had significant drawbacks in terms of cost, consistency, impact, reach, and sustainability. The hypothesis to be tested in this project posits that satellite-based distance education using ACTS technologies can overcome these impediments. The purpose of the project is to investigate the applicability of the ACTS satellite in providing distance education in photovoltaic systems to developing countries and rural communities. An evaluation of the cost effectiveness of using ACTS unique technologies to overcome identified problems shall be done. The limitations of ACTS in surmounting distance education problems in developing countries shall be investigated. This project will, furthermore, provide training to Savannah State College faculty in photovoltaic (PV) systems and in distance education configurations and models. It will also produce training materials adequate for use in PV training programs via distance education. Savannah State College will, as a consequence become well equipped to play a leading role in the training of minority populations in photovoltaic systems and other renewables through its Center for Advanced Water Technology and Energy Systems. This communication provides the project outline including the specific issues that will be investigated during the project. Also presented i the project design which covers the participations of the various components of a network of institutions that is formed for optimal project execution. The expected results and project output, including plans for potential leverages and linkages to be derived, are also discussed. Finally, we point out possible extensions from this project and other related projects that could be initiated based on the experiences gained from the project.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center, HBCUs Research Conference Agenda and Abstracts; p 36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: This paper gives a brief overview of the European free flying spacecraft 'EURECA' and the initial post flight investigations following its retrieval in June 1993. EURECA was in low earth orbit for 11 months commencing in August 1992, and is the first spacecraft to be retrieved and returned to Earth since the recovery of LDEF. The primary mission objective of EURECA was the investigation of materials and fluids in a very low micro-gravity environment. In addition other experiments were conducted in space science, technology and space environment disciplines. The European Space Agency (ESA) has taken the initiative in conducting a detailed post-flight investigation to ensure the full exploitation of this unique opportunity.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 23-35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Experimental data from spacecraft providing impact penetration rates and cratering for metallic targets is reviewed. Data includes NASA Explorers 16 and 23 and the Pegasus series, the second US-UK satellite Ariel 2, Space Shuttle STS-3 (MFE), recovered surfaces on Solar Max Satellite, The Long Duration Exposure Facility (LDEF) and EuReCa TiCCE. Factors concerning exposure to the environment are considered and, especially, material properties which affect the penetration resistance. Reference to a common material, Aluminum alloy 2024-T3, is effected and the data then compared to define firstly an average impact flux over the period. The data is examined, in the context of possible satellite and space debris growth rates, to determine the constancy of the flux. This also provides strong constraints on the current space debris component. It is found that the impact data are consistent with domination by natural meteoroid sources. Growth rates are not evident within the period 1980-1990 and Eureca TiCCE fluxes in 1993, for particles penetrating foils of around 10 microns thickness, supports the constancy of the flux. At larger dimensions the 1993 Eureca TiCCE fluxes show an 8-fold increase but this is considered not inconsistent with the selective exposure to meteoroid streams of a satellite stabilized in heliocentric co-ordinates for an 11 month period.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 337-351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: With the threat of damage to aerospace systems (space station, shuttle, hypersonic a/c, solar power satellites, loss of life, etc.) from collision with debris (manmade/artificial), there exists an opportunity for the design of a novel system (collision avoidance) to be incorporated into the overall design. While incorporating techniques from ccd and remote sensing technologies, an integrated system utilized in the infrared/visible spectrum for detection, tracking, localization, and maneuvering from doppler shift measurements is achievable. Other analysis such as impact assessment, station keeping, chemical, and optical tracking/fire control solutions are possible through this system. Utilizing modified field programmable gated arrays (software reconfiguring the hardware) the mission and mission effectiveness can be varied. This paper outlines the theoretical operation of a prototype system as it applies to collision avoidance (to be followed up by research).
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 285-287
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: POD Associates have revisited the issue of generic scaling laws able to adequately predict (within better than 20 percent) cratering in semi-infinite targets and perforations through finite thickness targets. The approach used was to apply physical logic for hydrodynamics in a consistent manner able to account for chunky-body impacts such that the only variables needed are those directly related to known material properties for both the impactor and target. The analyses were compared and verified versus CTH hydrodynamic code calculations and existing data. Comparisons with previous scaling laws were also performed to identify which (if any) were good for generic purposes. This paper is a short synopsis of the full report available through the NASA Langley Research Center, LDEF Science Office.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 523-535
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: Four of the eight available double layer microparticle capture cells, flown as the experiment A0023 on the trailing (West) face of LDEF, have been extensively studied. An investigation of the chemistry of impactors has been made using SEM/EDX techniques and the effectiveness of the capture cells as bumper shields has also been examined. Studies of these capture cells gave positive EDX results, with 53 percent of impact sites indicating the presence of some chemical residues, the predominant residue identified as being silicon in varying quantities.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 445-457
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 257-273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-08-31
    Description: The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 65-70
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The objective of the Materials Exposure Facility (MEF) is to provide a test bed in space for conducting long-term (greater than one year) materials experiments which require exposure to the low Earth orbit (LEO) space environment. The proposed MEF is planned to be an integral part of the agency's Space Environments and Effects Research Program. The facility will provide experiment trays similar to the Long Duration Exposure Facility (LDEF). Each tray location is planned to have a power and data interface and robotic installation and removal provisions. Space environmental monitoring for each side of the MEF will also be provided. Since routine access to MEF for specimen retrieval is extremely important to the materials research, Space Station Freedom has been chosen as the preferred MEF carrier.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1301-1304
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-08-31
    Description: There is need for a space platform for experiments investigating long duration exposure to space. This platform should be maintainable in the event of a malfunction, and experiments should be easily recoverable for analysis on Earth. The International Space Station provides such a platform. The current Space Station configuration has six external experiment attachment sites, providing utilities and data support distributed along the external truss. There are also other sites that could potentially support long duration exposure experiments. This paper describes the resources provided to payloads at these sites, and cites examples of integration of proposed long duration exposure experiments on these sites. The environments to which external attached payloads will be exposed are summarized.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1289-1300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-08-31
    Description: Space Station will be a permanent orbiting laboratory in space which will provide researchers with unprecedented opportunities for access to the space environment. Space Station is designed to provide essential resources of volume, crew, power, data handling and communications to accommodate experiments for long-duration studies in technology, materials and the life sciences. Materials and coatings for exposure research will be supported by Space Station, providing new knowledge for applications in Earthbased technology and future space missions. Space Station has been redesigned at the direction of the President. The redesign was performed to significantly reduce development, operations and utilization costs while achieving many of the original goals for long duration scientific research. An overview of the Space Station Program and capabilities for research following the redesign is presented below. Accommodations for pressurized and external payloads are described.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1285-1288
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-08-31
    Description: This paper presents an architecture for satellites regarded as intercommunicating agents. The architecture is based upon a postmodern paradigm of artificial intelligence in which represented knowledge is regarded as text, inference procedures are regarded as social discourse and decision making conventions and the semantics of representations are grounded in the situated behaviour and activity of agents. A particular protocol is described for agent participation in distributed search and retrieval operations conducted as joint activities.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies; p 15-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-08-31
    Description: This paper discusses the design and development of the Solar X-ray Imager (SXI) vacuum door assembly (VDA). Rationale for the type of mechanism, seal, and prime mover is covered. An overview of the testing performed is included.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Johnson Space Center, The 29th Aerospace Mechanisms Symposium; p 208-217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-08-31
    Description: CLUSTER is a scientific space mission to in-situ investigate the Earth's plasma environment by means of four identical spin-stabilized spacecraft. Each spacecraft is provided with a set of four rigid booms: two Antenna Booms and two Radial Booms. This paper presents a summary of the boom development and verification phases addressing the key aspects of the Radial Boom design. In particular, it concentrates on the difficulties encountered in fulfilling simultaneously the requirements of minimum torque ratio and maximum allowed shock loads at boom latching for this two degree of freedom boom. The paper also provides an overview of the analysis campaign and testing program performed to achieve sufficient confidence in the boom performance and operation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Johnson Space Center, The 29th Aerospace Mechanisms Symposium; p 221-237
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The Clementine spacecraft was developed under the 'faster, better, cheaper' theme. The constraints of a low budget coupled with an unusually tight schedule forced many departures from the normal spacecraft development methods. This paper discusses technical lessons learned about several of the mechanisms on the Clementine spacecraft as well as managerial lessons learned for the entire mechanisms subsystem. A quick overview of the Clementine mission is included; the mission schedule and environment during the mechanisms releases and deployment are highlighted. This paper then describes the entire mechanisms subsystem. The design and test approach and key philosophies for a fast-track program are discussed during the description of the mechanisms subsystem. The mechanism subsystem included a marman clamp separation system, a separation nut separation system, a solar panel deployment and pointing system, a high gain antenna feed deployment system, and two separate sensor cover systems. Each mechanism is briefly discussed. Additional technical discussion is given on the marman clamp design, the sensor cover designs, and the design and testing practices for systems driven by heated actuators (specifically paraffin actuators and frangibolts). All of the other mechanisms were of conventional designs and will receive less emphasis. Lessons learned are discussed throughout the paper as they applied to the systems being discussed. Since there is information on many different systems, this paper is organized so that information on a particular topic can be quickly referenced.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Johnson Space Center, The 29th Aerospace Mechanisms Symposium; p 109-127
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-08-31
    Description: Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 287-322
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-08-31
    Description: Part of the LDEF tray allocated to French experiments (FRECOPA) has been devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Crater size distributions have made possible the evaluation of the incident microparticle flux in the near-Earth environment. Comparisons are made with measurements obtained on the other faces of LDEF (tray clamps), on the leading edge (MAP) and with results of a similar experiment flown on the MIR space station. The geometry of impact craters, depth in particular, provides useful information on the nature of impacting particles and the correlation of geometry with the chemical analysis of projectile remnants inside craters make possible a discrimination between meteoroids and orbital debris. Emphasis has been laid on the size distribution of small craters in order to assess a cut-off in the distribution of particles in LEO. Special attention has been paid to the phenomenon of secondary impacts. A comparison of flight data with current models of meteoroids and space debris shows a fair agreement for LDEF, except for the smaller particles: the possible contribution of orbital debris in GTO orbits to the LDEF trailing edge flux is discussed. For MIR, flight results show differences with current modeling: the possible enhancement of orbital debris could be due to the contaminating presence of a permanently manned space station.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 275-285
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-08-29
    Description: The NASA Orbiter Experiments (OEX) Program provided a mechanism for utilization of an operational space shuttle orbiter as a flight research vehicle, as an adjunct to its normal space transportation mission. OEX Program experiments were unique among orbiter payloads, as the research instrumentation for these experiments were carried as integral parts of the vehicle's structure, rather than being placed in the orbiter's payload bay as mission-unique cargo. On each of its first 17 flights, the Orbiter Columbia carried some type of research instrumentation. Various instrumentation systems were used to measure, in flight, the requisite parameters for determination of the orbiter aerodynamic characteristics over the entire entry flight regime and/or the aerodynamic-heating rates imposed upon the vehicle during the hypersonic portion of atmospheric entry. The data derived from this instrumentation represent benchmark hypersonic flight data heretofore unavailable for a lifting entry vehicle. The data are being used in a continual process of validation of state-of-the-art methods, both experimental and computational, for simulating/predicting the aerodynamic and aerothermal characteristics of advanced space transportation vehicles. This paper describes the OEX Program complement of research experiments, presents typical flight data obtained by these experiments, and demonstrates the utilization of these data for advancement and validation of vehicle aerothermodynamic-design tools. By example, the concept of instrumenting operational vehicles and/or spacecraft in order to perform advanced technology development and validation is demonstrated to be an effective and economical method for maturing space-systems design technologies.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AGARD, Space Systems Design and Development Testing; 17 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-29
    Description: Arcjet and ion propulsion offer potentially significant reductions in the mass of propulsion systems required for Earth orbiting satellites and planetary spacecraft. For this reason, they have been the subject of validation and demonstration programs. After examining the benefits of electric propulsion, this paper discusses the technology base for the Electric Propulsion Space Experiment (ESEX) arcjet demonstration experiment and the NASA Technology Application Readiness (NSTAR) ion propulsion validation program. As part of the Advanced Research Global Observation Spacecraft (ARGOS), ESEX will perform ten 15-min firings of a 30-kW ammonia arcjet. NASA's validation program, NSTAR, consists of two major elements: a ground-test element and an in-space experiment. The ground element will validate the life, integrability, and performance of low-power ion propulsion. The in-space element will demonstrate the feasibility of integrating and flying an ion propulsion system. The experiment will measure the interactions among the ion propulsion system, the host spacecraft, and the surrounding space plasma. It will provide a quantitative assessment of the ability of ground testing to replicate the in-space performance ion thrusters. By involving industry in NSTAR, a commercial source for this technology will be ensured. Furthermore, the successful completion of the NSTAR validation program will stimulate commercial and government (both civilian and military) uses of this technology.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AGARD, Space Systems Design and Development Testing; 15 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-08-29
    Description: Pegasus is a satellite-launching space rocket dropped from a B52 carrier aircraft instead of launching vertically from a ground pad. Its three-year, privately-funded accelerated development was carried out under a demanding design-to-nonrecurring cost methodology, which imposed unique requirements on its flight test program, such as the decision not to drop an inert model from the carrier aircraft; the number and type of captive and free-flight tests; the extent of envelope exploration; and the decision to combine test and operational orbital flights. The authors believe that Pegasus may be the first vehicle where constraints in the number and type of flight tests to be carried out actually influenced the design of the vehicle. During the period November 1989 to February of 1990 a total of three captive flight tests were conducted, starting with a flutter clearing flight and culminating in a complete drop rehearsal. Starting on April 5, 1990, two combination test/operational flights were conducted. A unique aspect of the program was the degree of involvement of flight test personnel in the early design of the vehicle and, conversely, of the design team in flight testing and early flight operations. Various lessons learned as a result of this process are discussed throughout this paper.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AGARD, Space Systems Design and Development Testing; 9 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-08-29
    Description: Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AGARD, Space Systems Design and Development Testing; 22 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2013-08-29
    Description: The Submillimeter Wave Astronomy Satellite (SWAS) mission is dedicated to the study of star formation and interstellar chemistry. To carry out this mission, SWAS will survey dense (n(sub H2) greater than 10(exp 3) cm(exp -3)) molecular clouds within our galaxy in either the ground-state of a low-lying transition of five astrophysically important species: H2O, H2O-18, O2, CI, and CO-13. By observing these lines SWAS will: (1) test long-standing theories that predict that these species are the dominant coolants of molecular clouds during the early stages of their collapse to form stars and planets, and (2) supply heretofore missing information about the abundanceof key species central to the chemical models of dense interstellar gas. SWAS will employ two independent Schottky barrier diode mixers, passively cooled to approx. 150 K, coupled to a highly efficient 54 x 68 cm off-axis Cassegrain antenna. During its two year mission, SWAS will observe giant and dark cloud cores with the goal of detecting or setting an upper limit on the water abundance of 3 x 10(exp -6) and on th molecular oxygen abundances of 2 x 10(exp -6), both relative to H2. In addition, advantage will be taken of SWAS's relatively large beamsize of 3.2 x 4.0 arcminutes at 551 GHz and 3.6 x 4.5 arcminutes at 492 GHz to obtain large-area (approx. 1 deg x 1 deg) maps of giant and dark clouds in the CO-13 and CI lines. SWAS is scheduled for launch in mid-1995.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 673-678
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-01-25
    Description: The Small Satellite Technology Initiative (SSTI) 'CLARK' spacecraft is required to be single-failure tolerant, i.e., no failure of any single component or subsystem shall result in complete mission loss. Fault tolerance is usually achieved by implementing redundant subsystems. Fault tolerant systems are therefore heavier and cost more to build and launch than non-redundent, non fault-tolerant spacecraft. The SSTI CLARK satellite Attitude Determination and Control System (ADACS) achieves single-fault tolerance without redundancy. The attitude determination system system uses a Kalman Filter which is inherently robust to loss of any single attitude sensor. The attitude control system uses three orthogonal reaction wheels for attitude control and three magnetic dipoles for momentum control. The nominal six-actuator control system functions by projecting the attitude correction torque onto the reaction wheels while a slower momentum management outer loop removes the excess momentum in the direction normal to the local B field. The actuators are not redundant so the nominal control law cannot be implemented in the event of a loss of a single actuator (dipole or reaction wheel). The spacecraft dynamical state (attitude, angular rate, and momentum) is controllable from any five-element subset of the six actuators. With loss of an actuator the instantaneous control authority may not span R(3) but the controllability gramian integral(limits between t,0) Phi(t, tau)B(tau )B(prime)(tau) Phi(prime)(t, tau)d tau retains full rank. Upon detection of an actuator failure the control torque is decomposed onto the remaining active axes. The attitude control torque is effected and the over-orbit momentum is controlled. The resulting control system performance approaches that of the nominal system.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium 1995; p 417
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-01-25
    Description: The successful flight, retrieval, and analyses of the Long Duration Exposure Facility (LDEF) experiments demonstrated the value of long duration space exposure for a broad spectrum of science and engineering investigations. The original LDEF was an excellent gravity gradient spacecraft, but because of its 9 m length and 9,700 kg mass it was difficult to manifest on the Shuttle, for either launch or retrieval, in conjunction with other payloads. This paper discusses an LDEF follow-on spacecraft concept whose short stowed length (approximately 3 m) greatly improves Shuttle manifesting opportunities while still providing very large surface area exposure for experiments. Deployable 'wings' on each end of the short, 'cylindrical' main body of this new spacecraft provide the means for gravity gradient stabilization while greatly increasing the spacecraft surface area. The center section of the spacecraft is oriented with the end faces of the twelve sided, 4.2 m diameter 'cylinder' perpendicular to the velocity vector thus providing large areas for experiments in both the ram and anti-ram directions as well as additional exposure area around the periphery of the cylinder. When deployed and properly oriented with the Shuttle's Remote Manipulator System (RMS), both wings of the spacecraft are oriented edge on to the direction of motion and lie in the plane which contains the local gravity vector. The relatively thin wings readily accommodate dual side exposure of glass plate stacks for cosmic ray detection. Flat surfaces mounted normal to and on the periphery of the wings provide additional areas in both the ram and anti-ram directions for cosmic dust, micrometeoroid, and orbital debris collection free of contamination from 'splatter' off secondary surfaces. The baseline concept provides enhancements not available on the original LDEF such as solar array generated electrical power and data telemetry. Status of the efforts to promote support for and ultimately space flight of this concept will be presented. Suggestions for improvements in the spacecraft design and proposed utilization are solicited.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1307
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-01-25
    Description: In support of the power requirements for the Space Station Alpha (SSA), a joint program by the U.S. and Russia for a permanently manned space station to be launched into orbit by 1998, a robust control scheme is needed to assure the stability of the rotating machines that will be integrated into the power subsystem. A framework design and systems studies for modeling and analysis is presented. It employs classical d-q axes machine model with voltage/frequency dependent loads. To guarantee that design requirements and necessary trade studies are done, a functional analysis tool CORE is used for the study. This provides us with different control options for stability assessment. Initial studies and recommendations using advanced simulation tools are also presented. The benefits of the stability/control scheme for evaluating future designs and power management are discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center, HBCUs Research Conference Agenda and Abstracts; p 28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-01-25
    Description: The analyses, which are currently being performed by the LDEF Meteoroid and Debris Principal Investigators and the other LDEF Meteoroid and Debris Special Investigation Group Members of the data derived from the seven meteoroid and debris experiments that were flown on the LDEF and the post-retrieval scans of the impact sites found on other experiment and LDEF surfaces will, when they are completed, result in many very significant contributions to our knowledge of the meteoroid and debris status report on the analyses that have been performed to date and the preliminary contributions indicated by these analyses. This paper also discusses new questions that have been raised by the completed analyses regarding these environments and their effects on spacecraft.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 255
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-28
    Description: This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198437 , NAS 1.26:198437 , E-10048 , MTI-95TR29 , NIPS-95-06845
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-28
    Description: The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110205 , NAS 1.15:110205 , NIPS-95-06529
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-28
    Description: The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-104813 , S-801 , NAS 1.15:104813
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-06-28
    Description: Phase 2 testbed is part of a sequence of laboratory models, developed at NASA Langley Research Center, to enhance our understanding on how to model, control, and design structures for space applications. A key problem with structures that must perform in space is the appearance of unwanted vibrations during operations. Instruments, design independently by different scientists, must share the same vehicle causing them to interact with each other. Once in space, these problems are difficult to correct and therefore, prediction via analysis design, and experiments is very important. Phase 2 laboratory model and its predecessors are designed to fill a gap between theory and practice and to aid in understanding important aspects in modeling, sensor and actuator technology, ground testing techniques, and control design issues. This document provides detailed information on the truss structure and its main components, control computer architecture, and structural models generated along with corresponding experimental results.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-109059 , NAS 1.15:109059 , NIPS-95-06374
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-06-28
    Description: The development of an open-hop guidance architecture is outlined for autonomous rendezvous and docking (AR&D) missions to determine whether the Global Positioning System (GPS) can be used in place of optical sensors for relative initial position determination of the chase vehicle. Feasible command trajectories for one, two, and three impulse AR&D maneuvers are determined using constrained trajectory optimization. Early AR&D command trajectory results suggest that docking accuracies are most sensitive to vertical position errors at the initial conduction of the chase vehicle. Thus, a feasible command trajectory is based on maximizing the size of the locus of initial vertical positions for which a fixed sequence of impulses will translate the chase vehicle into the target while satisfying docking accuracy requirements. Documented accuracies are used to determine whether relative GPS can achieve the vertical position error requirements of the impulsive command trajectories. Preliminary development of a thruster management system for the Cargo Transfer Vehicle (CTV) based on optimal throttle settings is presented to complete the guidance architecture. Results show that a guidance architecture based on a two impulse maneuvers generated the best performance in terms of initial position error and total velocity change for the chase vehicle.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4687 , NAS 1.26:4687
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198191 , NAS 1.26:198191
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-28
    Description: Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers are most effective in reducing the energy of neutrons. Once neutrons are reduced to very low energies, the probability for undergoing a reaction with a nucleus (the cross section) becomes very high. The product of such a reaction is often radioactive and can involve the release of a significant amount of energy. Thus, it is important to provide protection from low energy neutrons during a long duration space flight. Among the light elements, lithium and boron each have an isotope with a large thermal neutron capture cross section, Li-6 and B-10. However, B-10 is more abundant in the naturally-occurring element than Li-6, has a thermal neutron capture cross section four times that of Li-6, and produces the stable products, He-4 and Li-7 in the interaction while Li-6 produces radioactive tritium (H-3). Thus, boron is the best light-weight material for thermal neutron absorption in spacecraft. The work on this project was focused in two areas: computer design where existing computer codes were used, and in some cases modified, to calculate the propagation and interactions of high energy charged particles through various media, and materials development where boron was incorporated into high performance materials.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199720 , NAS 1.26:199720 , NIPS-95-06073
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-06-28
    Description: The JSC International Space Station program office requested that SSB prepare a databook to document the alternate space station assembly sequence known as Tier 2, which assumes that the Russian participation has been eliminated and that the functions that were supplied by the Russians (propulsion, resupply, initial attitude control, communications, etc.) are now supplied by the U.S. Tier 2 utilizes the Lockheed Bus-l to replace much of the missing Russian functionality. The space station at each stage of its buildup during the Tier 2 assembly sequence is characterized in terms of of properties, functionality, resource balances, operations, logistics, attitude control, microgravity environment and propellant usage. The assembly sequence as analyzed was defined by JSC as a first iteration, with subsequent iterations required to address some of the issues that the analysis in this databook identified. Several significant issues were identified, including: less than desirable orbit lifetimes, shortage of EVA, large flight attitudes, poor microgravity environments, and reboost propellant shortages. Many of these issues can be resolved but at the cost of possible baseline modifications and revisions in the proposed Tier 2 assembly sequence.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110198 , NAS 1.15:110198
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-06-28
    Description: The effects of spacecraft charging can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are protected against charging is an important engineering function necessary to assure mission success. Spacecraft charging is expected to have a significant role in future space activities and programs. Objectives of this reference publication are to present a brief overview of spacecraft charging, to acquaint the reader with charging history, including illustrative cases of charging anomalies, and to introduce current spacecraft charging prevention activities of the Electromagnetics and Environments Branch, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-RP-1375 , NAS 1.61:1375 , M-791
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-06-28
    Description: The combined loads test of the 3-Bay FASTMast marks the end of the Lewis Research Center (LeRC) effort to characterize the behavior of the principal Space Station solar array support structure. The primary objective of this test and analysis effort was to develop a method to predict structural stability failure modes under flight-like applied loads. Included at the beginning of this report is a brief historical perspective of the hardware design development and FASTMast structural stability problem evolution. Once an understanding of the solution process has been established, test and analysis details are presented and related to the postulated failure theories. The combined load test series subjected the structure to a combination of transverse, moment, and torsion loads similar to that expected in the service environment. Nonlinear finite element (FE) models were developed and large displacement analyses were performed to support the test effort and failure mode predictions. Details of the test configuration as well as test and analysis results are presented. The results were then critiqued to establish valid and successful support of the failure mode assessments. Finally, study conclusions are drawn and recommendations for safe operation of the FASTMast structure are presented for consideration.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-106895 , E-9543 , NAS 1.15:106895
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-06-28
    Description: A computer model for microenvironmental solar exposure was developed to predict solar exposure to satellite surfaces which may shadow or reflect on one another. This document describes the technical features of the model as well as instructions for the installation and use of the program.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198189 , NAS 1.26:198189
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: An alternative wet lubricant known as Pennzane(TM) SHF X-2000 is recommended for some spaceflight bearing systems. The performance characteristics between Pennzane(TM) SHF X-2000 and Bray 815Z were compared. The life tests showed excellent performances with continuous operation approaching three years in conservative operating environments. Space flight performance data are provided for several of the tested mechanisms which are operating in-orbit since February 1994.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-200295 , NAS 1.26:200295 , ESA, Proceedings of 6th European Space Mechanisms and Tribology Symposium; p 285-291
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: The effects of electromagnetic interference can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are electrically compatible is an important engineering function necessary to assure mission success. This reference publication will acquaint the reader with spacecraft electronic systems failures and anomalies caused by electromagnetic interference and will show the importance of electromagnetic compatibility activities in conjunction with space flight programs. It is also hoped that the report will illustrate that evolving electronic systems are increasingly sensitive to electromagnetic interference and that NASA personnel must continue to diligently pursue electromagnetic compatibility on space flight systems.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-RP-1374 , M-787 , NAS 1.61-1374
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-06-28
    Description: The Long Duration Exposure Facility (LDEF) was retrieved in 1990 after spending 69 months in low-earth-orbit (LEO). A wide variety of mechanical, electrical, thermal, and optical systems, subsystems, and components were flown on LDEF. The Systems Special Investigation Group (Systems SIG) was formed by NASA to investigate the effects of the 69 month exposure on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. This report is the Systems SIG final report which updates earlier findings and compares LDEF systems findings to results from other retrieved spacecraft hardware such as Hubble Space Telescope. Also included are sections titled (1) Effects of Long Duration Space Exposure on Optical Scatter, (2) Contamination Survey of LDEF, and (3) Degradation of Optical Materials in Space.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4693 , NAS 1.26:4693
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-06-28
    Description: There is currently considerable interest in low-cost, lightweight, compactly packageable deployable elements for various future missions involving small spacecraft. These elements must also have a simple and reliable deployment scheme and possess zero or very small free-play. Although most small spacecraft do not experience large disturbances, very low stiffness appendages or free-play can couple with even small disturbances and lead to unacceptably large attitude errors which may involve the introduction of a flexible-body control system. A class of structures referred to as 'rigidized structures' offers significant promise in providing deployable elements that will meet these needs for small spacecraft. The purpose of this paper is to introduce several rigidizable concepts and to develop a design methodology which permits a rational comparison of these elements to be made with alternate concepts.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199240 , NAS 1.26:199240
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-06-28
    Description: Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-200046 , NAS 1.26:200046 , ES41 , NIPS-96-07322
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-28
    Description: Proper modeling of the Global Positioning System (GPS) satellite yaw attitude is important in high-precision applications. A new model for the GPS satellite yaw attitude is introduced that constitutes a significant improvement over the previously available model in terms of efficiency, flexibility, and portability. The model is described in detail, and implementation issues, including the proper estimation strategy, are addressed. The performance of the new model is analyzed, and an error budget is presented. This is the first self-contained description of the GPS yaw attitude model.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: The Telecommunications and Data Acquisition Progress Report 42-123; p 37-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-28
    Description: A detailed analysis was conducted to determine the sensitivity of spacecraft navigation errors to the accuracy and timeliness of Earth orientation calibrations. Analyses based on simulated X-band (8.4-GHz) Doppler and ranging measurements acquired during the interplanetary cruise segment of the Mars Pathfinder heliocentric trajectory were completed for the nominal trajectory design and for an alternative trajectory with a longer transit time. Several error models were developed to characterize the effect of Earth orientation on navigational accuracy based on current and anticipated Deep Space Network calibration strategies. The navigational sensitivity of Mars Pathfinder to calibration errors in Earth orientation was computed for each candidate calibration strategy with the Earth orientation parameters included as estimated parameters in the navigation solution. In these cases, the calibration errors contributed 23 to 58% of the total navigation error budget, depending on the calibration strategy being assessed. Navigation sensitivity calculations were also performed for cases in which Earth orientation calibration errors were not adjusted in the navigation solution. In these cases, Earth orientation calibration errors contributed from 26 to as much as 227% of the total navigation error budget. The final analysis suggests that, not only is the method used to calibrate Earth orientation vitally important for precision navigation of Mars Pathfinder, but perhaps equally important is the method for inclusion of the calibration errors in the navigation solutions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: The Telecommunications and Data Acquisition Progress Report 42-123; p 1-29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-28
    Description: The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NIPS-95-05524 , NASA-TM-111115 , NAS 1.15:111115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-06-28
    Description: A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198190 , NAS 1.26:198190
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-28
    Description: The transition region and coronal explorer (TRACE) NASA small explorer mission and instrument are presented. The TRACE scientific investigation explores the relationships between fine-scale magnetic fields and the associated solar plasma structures. The instrument collects images of solar plasmas at temperatures from 10(exp 4) to 10(exp 7) K with one arcsec spatial resolution. The design specifications of the trace instrument are presented.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 505-508
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-06-28
    Description: Hundreds of satellites have been launched to date. Some have operated extremely well and others have not. In order to learn from past operating experiences, a study was conducted to determine the conditions under which space mechanisms (mechanically moving components) have previously worked or failed. The study consisted of an extensive literature review that included both government contractor reports and technical journals, communication and visits (when necessary) to the various NASA and DOD centers and their designated contractors (this included contact with project managers of current and prior NASA satellite programs as well as their industry counterparts), requests for unpublished information to NASA and industry, and a mail survey designed to acquire specific mechanism experience. The information obtained has been organized into two volumes. Volume 1 provides a summary of the lesson learned, the results of a needs analysis, responses to the mail survey, a listing of experts, a description of some available facilities, and a compilation of references. Volume 2 contains a compilation of the literature review synopsis.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-107047 , NAS 1.15:107047 , E-9892 , NIPS-96-07705
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-06-28
    Description: PLATSIM is a software package designed to provide efficient time and frequency domain analysis of large-order generic space platforms implemented with any linear time-invariant control system. Time domain analysis provides simulations of the overall spacecraft response levels due to either onboard or external disturbances. The time domain results can then be processed by the jitter analysis module to assess the spacecraft's pointing performance in a computationally efficient manner. The resulting jitter analysis algorithms have produced an increase in speed of several orders of magnitude over the brute force approach of sweeping minima and maxima. Frequency domain analysis produces frequency response functions for uncontrolled and controlled platform configurations. The latter represents an enabling technology for large-order flexible systems. PLATSIM uses a sparse matrix formulation for the spacecraft dynamics model which makes both the time and frequency domain operations quite efficient, particularly when a large number of modes are required to capture the true dynamics of the spacecraft. The package is written in MATLAB script language. A graphical user interface (GUI) is included in the PLATSIM software package. This GUI uses MATLAB's Handle graphics to provide a convenient way for setting simulation and analysis parameters.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-3519 , L-17437 , NAS 1.60:3519
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-06-28
    Description: The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-RP-1368 , M-786 , NAS 1.61:1368
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-06-28
    Description: Three NASA centers: Marshall Space Flight Center (MSFC), Langley Research Center (LaRC), and Johnson Space Center (JSC) are currently involved in studying a family of single-stage- and two-stage-to-orbit (SSTO/TSTO) vehicles to serve as the next generation space transportation system (STS). A rocketed winged-body is the current focus. The configuration (WB001) is a vertically-launched, horizontally-landing system with circular cross-section. Preliminary aerodynamic data was generated by LaRC and is a combination of wind-tunnel data, empirical methods, and Aerodynamic Preliminary Analysis System-(APAS) generated values. JSC's efforts involve descent trajectory design, stability analysis, and flight control system synthesis. Analysis of WB001's static stability indicates instability in 'tuck' (C(sub mu) less than 0: Mach = 0.30, alpha greater than 3.25 deg; Mach = 0.60, alpha greater than 8.04), an unstable dihedral effects (C(sub l(beta)) greater than 0: Mach = 30,alpha less than 12 deg.; Mach = 0.60, alpha less than 10.00 deg.), and, most significantly, an unstable weathercock stability derivative, C(sub n(beta)), at all angles of attack and subsonic Mach numbers. Longitudinal trim solutions for Mach = 0.30 and 0.60 indicate flight path angle possibilities ranging from around 12 (M = 0.30) to slightly over 20 degrees at Mach = 0.60. Trim angles of attack increase from 6.24 at Mach 0.60 and 10,000 feet to 17.7 deg. at Mach 0.30, sea-level. Lateral trim was attempted for a design cross-wind of 25.0 knots. The current vehicle aerodynamic and geometric characteristics will only yield a lateral trim solution at impractical tip-fin deflections (approximately equal to 43 deg.) and bank angles (21 deg.). A study of the lateral control surfaces, tip-fin controllers for WB001, indicate increased surface area would help address these instabilities, particularly the deficiency in C(sub n(beta)), but obviously at the expense of increased vehicle weight. Growth factors of approximately 7 were determined using a design C(sub n(beta)) of 0.100/radian (approximate subsonic values for the orbiter).
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Johnson Space Center, National Aeronautics and Space Administration (NASA)(American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, Volume 1 14 p (SEE N95-32418; NASA. Johnson Space
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-06-28
    Description: One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198188 , NAS 1.26:198188
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-06-28
    Description: Although pyrotechnic devices have been singularly responsible for the success of many of the critical mechanical functions in aerospace programs for over 30 years, ground and in-flight failures continue to occur. Subsequent investigations reveal that little or no quantitative information is available on measuring the effects on performance of system variables or on determining functional margins. Pyrotechnics are considered to be readily available and, therefore, can be managed by any subsystem in which they are applied, such as structure, propulsion, electric power, or life support. The primary purpose of this manual is to alter the concept that the use of pyrotechnics is an art and refute 'justifications' that applications do not need to be understood by providing information on pyrotechnic design, development, and qualification on an engineering basis. Included are approaches to demonstrate functional reliability with less than 10 units, how to manage pyrotechnic-unique requirements, and methods to assure that the system is properly assembled and will perform the required tasks.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110172 , NAS 1.15:110172
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-28
    Description: A key component in the development of the Advanced Communications Technology Satellite (ACTS) ultra small aperture terminal (USAT) earth station is the low noise downconverter (NLD). NASA Lewis Research Center (LeRC) has tested a version of an LND designed by Electrodyne Systems Corporation. A number of tests were conducted to characterize the radio frequency performance of the LND over temperature. The test results presented in this paper are frequency response, noise figure, gain, group delay, power transfer characteristics, image rejection, and spurious product suppression. The LND was one of several critical microwave subsystems developed and tested for the ACTS USAT earth stations.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-106892 , E-9536 , NAS 1.15:106892
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-3560 , M-784 , NAS 1.60:3560
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-28
    Description: The purpose of this report is to characterize the process of Human-Rating as employed by NASA for human spaceflight. An Agency-wide committee was formed in November 1992 to develop a Human-Rating Requirements Definition for Launch Vehicles based on conventional (historical) methods. The committee members were from NASA Headquarters, Marshall Space Flight Center, Kennedy Space Center, Stennis Space Center, and Johnson Space Center. After considerable discussion and analysis, committee members concluded that Human-Rating is the process of satisfying the mutual constraints of cost, schedule, mission performance, and risk while addressing the requirements for human safety, human performance, and human health management and care.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-SP-6104 , S-798 , NAS 1.21:6104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-28
    Description: The NASA Microgravity Science and Applications Division (MSAD) sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with microgravity acceleration measurements. In the past, SAMS was flown exclusively on the NASA Orbiters. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit installed on the Mir space station. On 25 August 1994, the SAMS unit was launched on a Russia Progress vehicle to the Mir space station. The SAMS unit will support science experiments from the U.S. and Russia in a manner similar to the Orbiter missions by measuring the microgravity environments during the experiment operations. In October 1994, the SAMS unit recorded data on Mir for over fifty-three hours in seven different time periods to survey possible locations for future experiments. This report presents a quick look at the data and the microgravity environment during the time periods in which SAMS data were acquired. The Mir acceleration data were examined to ascertain gross attributes of the data. This report does not present an exhaustive examination of all possible activities due to the short time available to prepare this quick look report and due to the absence of complete timeline information during the SAMS recording time periods. Appendices A, B and C provide plots of the SAMS data for an overview of the microgravity environment at the times that data were recorded. Appendix D describes the procedures to access SAMS data by file transfer protocol (ftp) utilizing the internet. Appendix E contains a user comment sheet.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-106835 , E-9396 , NAS 1.15:106835
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: The post flight presentation for the Mir 18 Mission is featured on this video, with both the American astronauts and Russian Cosmonauts present for the press conference. They included: Gibson; Precourt; Baker; Harbough; Dunbar; Strekalov; Dezhurov; and Thagard. Film footage and photographic slides of the various activities performed aboard the Mir Space Station and the spaceborne experiments accomplished during the flight mission are presented. Each of the operations are explained by the cosmonauts, with brief views of the Atlantis-Mir Earth orbital rendezvous over the Red Sea included.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110657 , JSC-1516 , NONP-NASA-VT-95-59072
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-06-28
    Description: A preliminary investigation of a lunar-comet rendezvous mission using a solar electric propulsion (SEP) spacecraft was performed in two phases.The first phase involved exploration of the moon and the second involved rendezvous with a comet. The initial phase began with a chemical propulsion translunar injection and chemical insertion into a lunar orbit, followed by a low thrust SEP transfer to a circular, polar, low-lunar orbit. After collecting scientific data at the moon, the SEP spacecraft performed a spiral lunar escape maneuver to begin the interplanetary leg of the mission. After escape from the Earth-moon system, the SEP spacecraft maneuvered in interplanetary space and performed a rendezvous with a comet.The immediate goal of this study was to demonstrate the feasibility of using a low-thrust SEP spacecraft for orbit transfer to both the moon and a comet. Another primary goal was to develop a computer optimization code which would be robust enough to obtain minimum-fuel rendezvous trajectories for a wide range of comets.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198920 , NAS 1.26:198920
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-28
    Description: This report describes conceptual thermal design study for an Electronically Scanned Thinned Array Radiometer (ESTAR). ESTAR is an instrument concept for the measurement of soil moisture from space using synthetic aperture radiometry. The thermal design goal is to minimize the orbital temperature variation of the radiometer receivers using established materials and techniques. Two design approaches have been investigated; the first uses the waveguide as a heat sink, and the second uses a nadir facing radiator on the receiver assembly. The second approach minimizes the receiver's impact on the waveguide temperatures. Predicted temperatures for all receivers are presented for the two cases indicating the transient thermal environments the receivers would experience during an orbit. In addition, the effects of the receiver heat dissipation on the waveguide temperatures are shown.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110173 , NAS 1.15:110173
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-28
    Description: The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-188372 , NAS 1.26:188372 , CSDL-T-1253
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-28
    Description: Many of the IDE metal-oxide-silicon (MOS) capacitor-discharge impact sensors remained active during the entire Long Duration Exposure Facility (LDEF) mission. An optical survey of impact sites on the active surfaces of these sensors has been extended to include all sensors from the low-flux sides of LDEF (i.e. the west or trailing side, the earth end, and the space end) and 5-7 active sensors from each LDEF's high-flux sides (i.e. the east or leading side, the south side, and the north side). This survey was facilitated by the presence of a relatively large (greater than 50 micron diameter) optical signature associated with each impact site on the active sensor surfaces. Of the approximately 4700 impacts in the optical survey data set, 84% were from particles in the 0.5 to 3 micron size range. An estimate of the total number of hypervelocity impacts on LDEF from particles greater than 0.5 micron diameter yields a value of approximately 7 x 10(exp 6). Impact feature dimensions for several dozen large craters on MOS sensors and germanium witness plates are also presented. Impact fluxes calculated from the IDE survey data closely matched surveys of similar size impacts (greater than or equal to 3 micron diameter craters in Al, or marginal penetrations of a 2.4 micron thick Al foil) by other LDEF investigators. Since the first year IDE data were electronically recorded, the flux data could be divided into three long term time periods: the first year, the entire 5.8 year mission, and the intervening 4.8 years (by difference). The IDE data show that there was an order of magnitude decrease in the long term microparticle impact flux on the trailing side of LDEF, from 1.01 to 0.098 x 10(exp -4) m(exp 2)/s, from the first year in orbit compared to years 2-6. The long term flux on the leading edge showed an increase from 8.6 to 11.2 x 10(exp -4) m(exp -2)/s over this same time period. (Short term flux increases up to 10,000 times the background rate were recorded on the leading side during LDEF's first year in orbit.) The overall east/west ratio was 44, but during LDEF's first year in orbit the ratio was 8.5, and during years 2-6 the ratio was 114. Long term microparticle impact fluxes on the space end decreased from 1.12 to 0.55 x 10(exp -4) m(exp -2)/s from the first year in orbit compared to years 2-6. The earth end showed the opposite trend with an increase from 0.16 to 0.38 x 10(exp -4) m(exp -2)/s. Fluxes on rows 6 and 12 decreased from 6.1 to 3.4 and 6.7 to 3.7 x 10(exp -4) m(exp -2)/s, respectively, over the same time periods. This resulted in space/earth microparticle impact flux ratios of 7.1 during the first year and 1.5 during years 2-6, while the south/north, space/north and space/south ratios remained constant at 1.1, 0.16 and 0.17, respectively, during the entire mission. This information indicates the possible identification of long term changes in discrete microparticle orbital debris component contributions to the total impact flux experienced by LDEF. A dramatic decrease in the debris population capable of striking the trailing side was detected that could possibly be attributed to the hiatus of western launch activity experienced from 1986-1989. A significant increase in the debris population that preferentially struck the leading side was also observed and could possibly be attributed to a single breakup event that occurred in September of 1986. A substantial increase in the microparticle debris population that struck the earth end of LDEF, but not the space end, was also detected and could possibly be the result of a single breakup event at low altitude. These results point to the importance of including discrete orbital debris component contribution changes in flux models in order to achieve accurate predictions of the microparticle environment that a particular spacecraft will experience in earth orbit. The only reliable, verified empirical measurements of these changes are reported in this paper. Further time-resolved in-situ measurements of these debris populations are needed to accurately assess model predictions and mitigation practices.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 323-336
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-28
    Description: A preliminary study comparing twelve unidirectional-fiber composite systems to five metal materials conventionally used in momentum wheels is presented. Six different fibers are considered in the study: E-Glass, S-Glass, Boron, AS, T300, and Kevlar. Because of the possibility of high momentum requirements, and thus high stresses, only two matrix materials are considered: a high-modulus (HM) and a intermediate-modulus-high-strength (IMHS) matrix. Each of the six fibers are coupled with each of the two matrix materials. In an effort to optimize the composite system, each composite is considered while varying the fiber volume ratio from 0.0 to 0.7 in increments of 0.1. For fiber volume ratios above 0.2, all twelve unidirectional-fiber composite systems meet the study's requirements with higher factors of safety and less mass than the five conventional isotropic (metal) materials. For example, at a fiber volume ratio of 0.6, the Kevlar/IMHS composite system has a safety factor 4.5 times greater than that of a steel (maraging) system and an approximately 10 percent reduction in weight.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-106911 , E-9613 , NAS 1.15:106911
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-06-28
    Description: In order to deploy large flexible space structures it is necessary to develop support systems that are strong and lightweight. The most recent example of this aerospace design need is vividly evident in the space station solar array assembly. In order to accommodate both weight limitations and strength performance criteria, ABLE Engineering has developed the Folding Articulating Square Truss (FASTMast) support structure. The FASTMast is a space truss/mechanism hybrid that can provide system support while adhering to stringent packaging demands. However, due to its slender nature and anticipated loading, stability characterization is a critical part of the design process. Furthermore, the dire consequences surely to result from a catastrophic instability quickly provide the motivation for careful examination of this problem. The fundamental components of the space station solar array system are the (1) solar array blanket system, (2) FASTMast support structure, and (3) mast canister assembly. The FASTMast once fully deployed from the canister will provide support to the solar array blankets. A unique feature of this structure is that the system responds linearly within a certain range of operating loads and nonlinearly when that range is exceeded. The source of nonlinear behavior in this case is due to a changing stiffness state resulting from an inability of diagonal members to resist applied loads. The principal objective of this study was to establish the failure modes involving instability of the FASTMast structure. Also of great interest during this effort was to establish a reliable analytical approach capable of effectively predicting critical values at which the mast becomes unstable. Due to the dual nature of structural response inherent to this problem, both linear and nonlinear analyses are required to characterize the mast in terms of stability. The approach employed herein is one that can be considered systematic in nature. The analysis begins with one and two-dimensional failure models of the system and its important components. From knowledge gained through preliminary analyses a foundation is developed for three-dimensional analyses of the FASTMast structure. The three-dimensional finite element (FE) analysis presented here involves a FASTMast system one-tenth the size of the actual flight unit. Although this study does not yield failure analysis results that apply directly to the flight article, it does establish a method by which the full-scale mast can be evaluated.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-106944 , E-9679 , NAS 1.15:106944
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-06-28
    Description: Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-104806-VOL-1 , S-786-VOL-1 , NAS 1.15:104806-VOL-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-3494 , L-17413 , NAS 1.60:3494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-197687 , NAS 1.26:197687 , SSD95D0069-VOL-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-28
    Description: This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-197685 , NAS 1.26:197685 , SSD95D0069-VOL-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-28
    Description: The Geostationary Operational Environmental Satellite (GOES)-8 spacecraft was launched on April 13, 1994, at 06:04:02 coordinated universal time (UTC), with separation from the Atlas-Centaur launch vehicle occurring at 06:33:05 UTC. The launch was followed by a series of complex, intense operations to maneuver the spacecraft into its geosynchronous mission orbit. The Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) was responsible for GOES-8 attitude, orbit maneuver, orbit determination, and station acquisition support during the ascent phase. This paper summarizes the efforts of the FDF support teams and highlights some of the unique challenges the launch team faced during critical GOES-8 mission support. FDF operations experience discussed includes: (1) The abort of apogee maneuver firing-1 (AMF-1), cancellation of AMF-3, and the subsequent replans of the maneuver profile; (2) The unexpectedly large temperature dependence of the digital integrating rate assembly (DIRA) and its effect on GOES-8 attitude targeting in support of perigee raising maneuvers; (3) The significant effect of attitude control thrusting on GOES-8 orbit determination solutions; (4) Adjustment of the trim tab to minimize torque due to solar radiation pressure; and (5) Postlaunch analysis performed to estimate the GOES-8 separation attitude. The paper also discusses some key FDF GOES-8 lessons learned to be considered for the GOES-J launch which is currently scheduled for May 19, 1995.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Flight Mechanics(Estimation Theory Symposium 1995; p 369-378
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-28
    Description: The objective of the study was to identify and model major sources of short-term pointing jitter for a free-flying, full performance 2 micron LAWS system and evaluate the impact of the short-term jitter on wind-measurement performance. A fast steering mirror controls system was designed for the short-term jitter compensation. The performance analysis showed that the short-term jitter performance of the controls system over the 5.2 msec round-trip time for a realistic spacecraft environment was = 0.3 micro rad, rms, within the specified value of less than 0.5 micro rad, rms, derived in a 2 micron LAWS System Study. Disturbance modes were defined for: (1) the Bearing and Power Transfer Assembly (BAPTA) scan bearing, (2) the spacecraft reaction wheel torques, and (3) the solar array drive torques. The scan bearing disturbance was found to be the greatest contributing noise source to the jitter performance. Disturbances from the fast steering mirror reaction torques and a boom-mounted cross-link antenna clocking were also considered but were judged to be small compared to the three principal disturbance sources above and were not included in the final controls analysis.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-195012 , NAS 1.26:195012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-28
    Description: The erection and deployment of large flexible structures having thousands of degrees of freedom requires controllers based on new techniques of eigenvalue assignment that are computationally stable and more efficient. Scientists at NASA Langley Research Center have developed a novel and efficient algorithm for the eigenvalue assignment of large, time-invariant systems using full-state and output feedback. The objectives of this research were to improve upon the output feedback version of this algorithm, to produce a toolbox of MATLAB functions based on the efficient eigenvalue assignment algorithm, and to experimentally verify the algorithm and software by implementing controllers designed using the MATLAB toolbox on the phase 2 configuration of NASA Langley's controls-structures interaction evolutionary model, a laboratory model used to study space structures. Results from laboratory tests and computer simulations show that effective controllers can be designed using software based on the efficient eigenvalue assignment algorithm.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110155 , NAS 1.15:110155
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199333 , NAS 1.26:199333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198639 , NAS 1.26:198639 , LC-95-18686
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The three topics are summarized as follows: (1) dynamics and control of the satellite SEDSAT; (2) tethered multi-probe for thermospheric research; and (3) analysis of SEDS-2 flight data.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198653 , NAS 1.26:198653
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: This report documents trade studies conducted from the perspective of a small spacecraft developer to determine and quantify the structures and structural materials technology development needs for future commercial and NASA small spacecraft to be launched in the period 1999 to 2005. Emphasis is placed on small satellites weighing less than 1800 pounds for two focus low-Earth orbit missions: commercial communications and remote sensing. The focus missions are characterized in terms of orbit, spacecraft size, performance, and design drivers. Small spacecraft program personnel were interviewed to determine their technology needs, and the results are summarized. A systems-analysis approach for quantifying the benefits of inserting advanced state-of-the-art technologies into a current reference, state-of-the-practice small spacecraft design is developed and presented. This approach is employed in a set of abbreviated trade studies to quantify the payoffs of using a subset of 11 advanced technologies selected from the interview results The 11 technology development opportunities are then ranked based on their relative payoff. Based on the strong potential for significant benefits, recommendations are made to pursue development of 8 and the 11 technologies. Other important technology development areas identified are recommended for further study.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198166 , NAS 1.26:198166
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-63. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-63, and the resulting effect on the space shuttle program.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110649 , NAS 1.15:110649
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The heritage of the major Mir complex hardware elements is described. These elements include Soyuz-TM and Progress-M; the Kvant, Kvant 2, and Kristall modules; and the Mir base block. Configuration changes and major mission events of the Salyut 6, Salyut 7, and Mir multiport space stations are described in detail for the period 1977-1994. A comparative chronology of U.S. and Soviet/Russian manned spaceflight is also given for that period. The 68 illustrations include comparative scale drawings of U.S. and Russian spacecraft as well as sequential drawings depicting missions and mission events.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-RP-1357 , S-789 , NAS 1.61:1357
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-104806-VOL-2 , S-786-VOL-2 , NAS 1.15:104806-VOL-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: The analysis of exposed surfaces on LDEF since its retrieval in 1990 has revealed a wide range of meteoroid and debris (M&D) impact features in the sub-micron to millimeter size range, ranging from quasi-infinite target cratering in LDEF metallic structural members (e.g. inter-costals, tray clamps, etc.) to non-marginal perforations in metallic experimental surfaces (e.g. thin foil detectors, etc.). Approximately 34,000 impact features are estimated to exist on the exposed surfaces of LDEF. The vast majority of impact craters in metal substrates exhibit circular footprints, with approximately 50 percent retaining impactor residues in varying states of shock processing. The fundamental goals of this project were to duplicate and analyze meteoroid impact damage on spacecraft metallic materials with a view to quantifying the residue retention and oblique impact morphology characteristics. Using the hypervelocity impact test facility established at Auburn University a series of impact tests (normal and oblique incidence) were executed producing consistently high (11-12 km/s) peak impact velocities, the results of which were subsequently analyzed using Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS) facilities at Auburn University.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199425 , NAS 1.26:199425
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4661-PT-1 , NAS 1.26:4661-PT-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This is the second in a series of semi-annual reports that describe the technology areas being advanced under this contract and the progress achieved to date. The last technology report concentrated on the spacecraft. This report places greater emphasis on the payloads. White papers by several of the payload providers are attached. These are HSI, UCB, PRKE, and CAFE. This report covers the period from January 1995 through June 1995.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NIPS-95-05614 , NASA-CR-199619 , NAS 1.26:199619
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: The Plasma Motor Generator (PMG) flight of June 26, 1993 has been the most sophisticated and most successful mission that has been carried out thus far with an electrodynamic tether. Three papers from the Smithsonian Astrophysical Observatory, Washington, DC concerned with the PMG, submitted at the Fourth International Space Conference on Tethers in Space, in Washington, DC, in April 1995, are contained in this document. The three papers are (1) Electromagnetic interactions between the PMG tether and the magneto-ionic medium of the Ionosphere; (2) Tether-current-voltage characteristics, as determined by the Hollow Cathode Operation Modes; and (3) Hawaii-Hilo ground observations on the occasion for the PMG flight of June 23, 1993.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199523 , NAS 1.26:199523
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4661-PT-2 , NAS 1.26:4661-PT-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-14
    Description: In addition to its scientific and life sciences experimental programs, NASA conducts flight experiments directed at development of space systems technologies. The experiments are conducted to obtain research data, to evaluate the performance or operation of experimental hardware in the space environment, or to validate components, subsystems, or systems prior to application in future spacecraft or missions. The requirements for specific technology experiments, and the priority assigned to them, vary significantly depending on the maturity of the technology. Some of the flight experiments address technologies still in the early research stage, while others are conducted to validate technology at relatively advanced levels of maturity. This paper discusses the overall technology flight experiments program and reports in some detail on four current or recently flown experiments ranging from research to technology validation at the system prototype level.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AGARD, Space Systems Design and Development Testing; 9 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110554 , NAS 1.15:110554
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-08-24
    Description: This paper addresses the design considerations and strategies for astrophysical observations as key elements of an international solar system exploration program. Emphasis is placed on the technical and programmatic challenges and opportunities associated with an evolving program of lunar-based astronomy. Both robotic and human tended facilities are discussed ranging from relatively small meter-class transit telescopes to large interferometer and filled-aperture systems.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Space Technology - Industrial and Commercial Applications (ISSN 0892-9270); 14; 6; p. 355-365
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-08-24
    Description: A method is presented by which measured modes and frequencies from a modal test can be used to determine the location and magnitude of damage in a space struss structure. The damage is located by computing the Euclidean distances between the measured mode shapes and the best achievable eigenvectors. The best achievable eigenvectors are the projection of the measured mode shapes onto the subspace defined by the refined analytical model of the structure and the measured frequencies. Loss of both stiffness and mass properties can be located and quantified. To examine the performance of the method when experimentally measured modes are employed, various damage detection studies using a laboratory eight-bay truss structure were conducted. The method performs well even though the measurement errors inevitably make the damage location more difficult.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA Journal (ISSN 0001-1452); 32; 5; p. 1049-1057
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Following the project's first major design review, some unresolved technical issues, mainly centered on details of how to integrate Russian hardware into the U.S./international space station, remain. No 'show stoppers' were found in the review. Specific open technical issues are discussed in this article.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Aviation Week & Space Technology (ISSN 0005-2175); 140; 13; p. 26-27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-08-24
    Description: A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 31; 3; p. 421-428
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Advanced Satellite for Cosmology and Astrophysics (ASCA) is a high-throughput X-ray astronomy observatory which is capable of simultaneous imaging and spectroscopic observations over a wide energy range 0.5-10 keV. The scientific capabilities of ASCA and some aspects related to its operation and observations are briefly described.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: PASJ: Publications of the Astronomical Society of Japan (ISSN 0004-6264); 46; 3; p. L37-L41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-08-24
    Description: We examine the electromagnetic (EM) bias by using retracked TOPEX altimeter data. In contrast to previous studies, we use a parameterization of the EM bias which does not make stringent assumptions about the form of the correction or its global behavior. We find that the most effective single parameter correction uses the altimeter-estimated wind speed but that other parameterizations, using a wave age related parameter of significant wave height, may also significantly reduce the repeat pass variance. The different corrections are compared, and their improvement of the TOPEX height variance is quantified.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,971-24,979
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-08-24
    Description: Monthly Ku band sigma(sub 0) and significant wave height (SWH) histograms from the NASA altimeter on the TOPEX/POSEIDON satellite are preseneted for January through June 1993 for three latitude bands between +/- 60 degrees. The data are compared to distributions from the Geosat mission for the same months in 1987-1989. Generally, the distributions agree quite well, although there are some seasonal/hemispherical differences. The sigma(sub 0) comparison reveals an overall bias between the two altimeters with the TOPEX sigma(sub 0) higher by about 0.7 dB, which is consistent with algorithm improvements for TOPEX. The SWH distributions show strong hemispherical/seasonal changes. The seasonal/hemispherical differences between TOPEX and Geosat are consistent for SWH and sigma(sub 0). The joint distribution of sigma(sub 0) and SWH is extremely stable friom month to month. The typical SWH is independent of sigma(sub 0) for sigma(sub 0) greater than 11.3 dB. The minimum SWH grows exponentially with wind speed. This joint distribution may be useful for understanding electromagnetic bias in altimeter measurements. Finally, altimeter data are compared to buoy values from 21 overflights of the NASA verification site near Pt. Conception, California. Wave heights agree well with an root mean square (RMS) difference of only 0.2 m. Altimeter sigma(sub 0) values are compared to buoy wind speeds. The results are consistent with the -0.7 dB sigma(sub 0) offset from the histogram comparisons.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 25,015-25,024
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-08-24
    Description: To assess the accuracy of the TOPEX altimeter data, we have reprocessed the raw altimeter waveform data using more sophisticated algorithms than those implemented in the altimeter hardware. We discuss systematic contamination of the waveform which we have observed and its effect on very long wavelength errors. We conclude that these systematic errors are responsible for a very long wavelength error whose peak-to-peak magnitude for the Ku band altimeter is of the order of 1 cm. We also examine the ability of retracked data to reduce the repeat pass variance and correct for significant wave height (SWH) and acceleration dependent errors. We find that the ground postprocessing contains SWH dependent biases which depend on the altimeter fine height correction.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,957-24,969
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-08-24
    Description: The routine ground processing of data from the NASA radar altimeter of TOPEX/POSEIDON includes instrument corrections for the effects of significant wave height and attitude angle changes on the altimeter's estimates of range, backscattered power, and significant wave height. This paper describes how these instrument corrections were generated and how they are applied. Detailed waveform fitting to telemetered waveform samples is use to assess the effectiveness of the corrections. There are several altimeter hardware-caused small waveform departures from the model waveforms and these departures, designated waveform 'features', are described in detailed. A consequence of the waveform features, and their positioning relationship to range rate, is that range data for ground tracks moving toward the equator may differ systematically by about a centimeter compared to range data for ground tracks moving away from the equator. The results and discussion are limited to side A of the redundant altimeter, as only side A has been operated on orbit.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,941-24,955
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-08-24
    Description: Results of the in-flight calibration and performance evaluation campaign for the TOPEX/POSEIDON microwave radiometer (TMR) are presented. Intercomparisons are made between TMR and various sources of ground truth, including ground-based microwave water vapor radiometers, radiosondes, global climatological models, special sensor microwave imager data over the Amazon rain forest, and models of clear, calm, subpolar ocean regions. After correction for preflight errors in the processing of thermal/vacuum data, relative channel offsets in the open ocean TMR brightness temperatures were noted at the approximately = 1 K level for the three TMR frequencies. Larger absolute offsets of 6-9 K over the rain forest indicated a approximately = 5% gain error in the three channel calibrations. This was corrected by adjusting the antenna pattern correction (APC) algorithm. AS 10% scale error in the TMR path delay estimates, relative to coincident radiosondes, was corrected in part by the APC adjustment and in part by a 5% modification to the value assumed for the 22.235 FGHz water vapor line strength in the path delay retrieval algorithm. After all in-flight corrections to the calibration, TMR global retrieval accuracy for the wet tropospheric range correction is estimated at 1.1 cm root mean square (RMS) with consistent peformance under clear, cloudy, and windy conditions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,915-24,926
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-24
    Description: The NASA altimeter on board TOPEX/POSEIDON exploits the difference in the delays of the Ku and C band radar pulses to estimate an ionosphere correction to the range measurement. The dependence of the ionosphere correction on ocean and satellite parameters is less than 1 cm. The standard deviation of the 1-s averaged ionosphere correction depends on the height of the ocean waves and ranges from 5 to 14 mm. The accuracy of the ionosphere correction is better than 1 cm at the 1 sigma confidence level. The ionosphere correction should be averaged over 140 km (20 s) along track in order to minimize its noise without sacrificing its accuracy. Ionosphere models must achieve an independent sample spacing of 900 km or less in order to allow a single-frequency altimeter to have an ionosphere correction comparable in accuracy to that of the NASA dual-frequency altimeter.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,895-24,906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-08-24
    Description: Estimates of the effectiveness of an altimetric correction, and interpretation of sea level variability as a response to atmospheric forcing, both depend upon assuming that residual errors in altimetric corrections are uncorrelated among themselves and with residual sea level, or knowing the correlations. Not surprisingly, many corrections are highly correlated since they involve atmospheric properties and the ocean surface's response to them. The full corrections (including their geographically varying time mean values), show correlations between electromagnetic bias (mostly the height of wind waves) and either atmospheric pressure or water vapor of -40%, and between atmospheric pressure and water vapor of 28%. In the more commonly used collinear differences (after removal of the geographically varying time mean), atmospheric pressure and wave height show a -30% correlation, atmospheric pressure and water vapor a -10% correlation, both pressure and water vapor a 7% correlation with residual sea level, and a bit surprisingly, ionospheric electron content and wave height a 15% correlation. Only the ocean tide is totally uncorrelated with other corrections or residual sea level. The effectiveness of three ionospheric corrections (TOPEX dual-frequency, a smoothed version of the TOPEX dual-frequency, and Doppler orbitography and radiopositioning integrated by satellite (DORIS) is also evaluated in terms of their reduction in variance of residual sea level. Smooth (90-200 km along-track) versions of the dual-frequency altimeter ionosphere perform best both globally and within 20 deg in latitude from the equator. The noise variance in the 1/s TOPEX inospheric samples is approximately (11 mm) squared, about the same as noise in the DORIS-based correction; however, the latter has its error over scales of order 10(exp 3) km. Within 20 deg of the equator, the DORIS-based correction adds (14 mm) squared to the residual sea level variance.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,907-24,914
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...