ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (975)
  • Electronics and Electrical Engineering  (863)
  • 2000-2004  (1,838)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.
    Keywords: Man/System Technology and Life Support
    Type: IEEE Sens J (ISSN 1530-437X); Volume 4; 3; 337-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.
    Keywords: Man/System Technology and Life Support
    Type: MRS bulletin / Materials Research Society (ISSN 0883-7694); Volume 29; 10; 714-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.
    Keywords: Man/System Technology and Life Support
    Type: HortScience : a publication of the American Society for Horticultural Science (ISSN 0018-5345); Volume 39; 7; 1546-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1483-93
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The cost of keeping people alive in space is assessed from a theoretical viewpoint and using two actual designs for plant growth systems. While life support is theoretically not very demanding, our ability to implement life support is well below theoretical limits. A theoretical limit has been calculated from requirements and the state of the art for plant growth has been calculated using data from the BIO-Plex PDR and from the Cornell CEA prototype system. The very low efficiency of our current approaches results in a high mission impact, though we can still see how to get a significant reduction in cost of food when compared to supplying it from Earth. Seeing the distribution of costs should allow us to improve our current designs. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1502-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: System-level analyses for Advanced Life Support require mathematical models for various processes, such as for biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of specific processes. However, implementing such models at the system level may not always be practicable because of their complexity. For the area of biomass production, explanatory models were used to generate parameters and multivariable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling for both nominal and off-nominal growing conditions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1528-38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1539-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1546-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: In designing innovative space plant growth facilities (SPGF) for long duration space flight, various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating on board resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M x (EBI)2/(V x E x T], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1612-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment. Copyright 2004 Springer-Verlag.
    Keywords: Man/System Technology and Life Support
    Type: Microbial ecology (ISSN 0095-3628); Volume 47; 2; 137-49
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-07-13
    Description: This summer I have been working with the Non-destructive evaluation (NDE) group and NASA Glenn Research Center. As this is my second summer with the group, I was able to begin working as soon as I arrived. My first task was to develop a system to acquire an impedance analyzer. The basic setup of the system is as follows: a piezo- electric patch is attached to a sample, and a lead is attached to that patch. Another lead is attached directly to the sample, and the leads are connected to the impedance analyzer. The system then puts a voltage through the material over a range of frequencies, and the corresponding impedances are measured for each frequency. After data is collected, it can be compared to another data set, and through a series of calculations a damage parameter is produced. For the time being, we are using a correlation calculation to find the damage parameter. The hope for this project is that a baseline measurement can be taken, and then sometime later another measurement could be taken, and the damage parameter would determine how much damage had been done to the sample. To test this hypothesis, we took baseline data from a sample, and then sent it out to have a notch cut into it. When it was returned, we again took measurements on the sample, and the damage parameter was significantly lower. Another project that I have been working on pertains to the group's newly acquired acoustography system. This system creates a full field ultrasonic signal on one side of a sample, and an acousto-optic sensor is placed on the other side of the sample.
    Keywords: Electronics and Electrical Engineering
    Type: Interm Summary Reports
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-07-13
    Description: This summer I am continuing my project from the previous two summers. My work involves ohmic contacts to N-type silicon carbide (Sic) devices. My mentor, Dr. Robert Okojie, is developing the technology behind high performance sensors and actuators for harsh environments. Sic is useful because it is able to operate at temperatures up to 600 C and it is resistant to radiation damage. This allows sensors and electronics to be placed in new locations, such as inside a jet engine or in space application without using heavy shielding. Ultimately this results in more efficient, smarter engine technology, reduced launch weights for spacecraft, and high power and high temperature electronics. A fundamental part of Sic devices is the ohmic contact. The contact is the interface between the semiconductor (Sic) and external circuitry. The current flowing in and out the devices is through the contact. Ensuring that these contacts remain ohmic (linear I-V behavior) allows us to fabricate devices that do not waste power at the metallurgical junction. Another key part is maintaining a low contact resistance. It is desired to maintain minimum energy loss by avoiding a rectifying electrical characteristic. My project is to develop and implement a testing procedure for measuring the contact resistance while the device is operating at high temperature. It is important to measure the contacts while simulating the true operating environment as closely as possible. For this reason, measurements are taken while the device is heated at intervals up to 600 C in air. To test the long tern reliability of the devices, the high temperature measurements are repeated after heating the sample for long intervals in air. A new set of data is gathered after heating for a total of 100, 200 and then 400 hours. The current as a function of voltage and the contact resistance was measured using the four point probe technique. The four point probe method is chosen because it measures contact resistance while eliminating error due to wire resistance and calibration issues.
    Keywords: Electronics and Electrical Engineering
    Type: Interm Summary Reports
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.
    Keywords: Man/System Technology and Life Support
    Type: Habitation (Elmsford, N.Y.) (ISSN 1542-9660); Volume 10; 1; 49-59
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the space suit of the future, specifically for productive work on planetary surfaces. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Switched reluctance motors typically consist of pairs of poles protruding outward from a central rotor, surrounded by pairs of coils protruding inward from a stator. The pairs of coils, positioned a short distance from opposing sides of the rotor, are connected in series. A current runs through the coils, generating a magnetic flux between the coils. This attracts the protruding poles on the rotor, and just as the poles on the rotor approach the coils, the current to the coils is inverted, repelling the rotor s poles as they pass the coils. This current switching, back and forth, provides a continuous rotational torque to the rotor. reliability, durability, low cost, and operation in adverse environments such as high temperatures, extreme temperature variations, and high rotational speeds. However, because rotors are often manufactured with minute flaws due to imperfections in the machining process, traditional switched reluctance motors often suffer from substantial amounts of vibration. In addition, the current in the coils imparts a strong radial magnetic force on the rotor; the continuous alternating of the direction of this force also causes vibration. As a result, switched reluctance motors require bearings that, run at high speeds, can require lubrication apparatus and are subject to problems with heat and wear. My mentor s recent invention, the "Bearingless" Switched Reluctance Motor, actually uses magnetic bearings instead of traditional physical bearings. Sensors are used to continuously determine the position of the rotor. A computer reads the position sensor input, performs calculations, and outputs a current to a set of extra coils (in addition to the coils rotating the rotor). This current provides a magnetic force that counters and damps the vibration. The sense-calculate-update loop iterates more than thirty thousand times per second. For now, our goal is to have the rotor rotate at about 6000 rprn, and at that speed, the magnetic bearing is adjusting the rotor s position more than 300 times per rotation. and vibration-suppression capacity for the switched reluctance motor. Traditional switched reluctance motors possess many positive traits, including It is hoped that this new invention will increase load-carrying capacity, stiffness, and vibration-suppression capacity for the switched reluctance motor.
    Keywords: Electronics and Electrical Engineering
    Type: Interm Summary Reports
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-08-29
    Description: Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Description: InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE Transactions On Nuclear Science (ISSN 0018-9499); Volume 51; No. 6; 3572-3578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-12
    Description: The electrical characteristics of electro optic polymer waveguide modulators are often described by the bulk reactance of the individual layers. However, the resistance and capacitance between the layers can significantly alter the electrical performance of a waveguide modulator. These interface characteristics are related to the boundary charge density and are strongly affected by the adhesion of the layers in the waveguide stack. An electrical reactance model has been derived to investigate this phenomenon at low frequencies. The model shows the waveguide stack frequency response has no limiting effects below the microwave range and that a true DC response requires a stable voltage for over 1000 hours. Thus, reactance of the layers is the key characteristic of optimizing the voltage across the core layer, even at very low frequencies (〉 10(exp -6) Hz). The results of the model are compared with experimental data for two polymer systems and show quite good correlation.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: Systems Engineering and Risk Management processes can work synergistically to defend against the causes of many mission ending failures. Defending against mission ending failures is facilitated by fostering a team that has a healthy respect for Murphy's Law and a team with a of curiosity for how things work, how they can fail, and what they need to know. This curiosity is channeled into making the unknowns known or what is uncertain more certain. Efforts to assure mission success require the expenditure of energy in the following areas: 1. Understanding what defines Mission Success as guided by the customer's needs, objectives and constraints. 2. Understanding how the system is supposed to work and how the system is to be produced, fueled by the curiosity of how the system should work and how it should be produced. 3. Understanding how the system can fail and how the system might not be produced on time and within cost, fueled by the curiosity of how the system might fail and how production might be difficult. 4. Understanding what we need to know and what we need learn for proper completion of the above three items, fueled by the curiosity of what we might not know in order to make the best decisions.
    Keywords: Man/System Technology and Life Support
    Type: Space Systems Engineering and Risk Management Symposium; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-05
    Description: This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.
    Keywords: Man/System Technology and Life Support
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-05
    Description: All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the recycling of oxygen, carbon dioxide, and water for long-duration human presence in space. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-05
    Description: In an era of increasing automation, it is important to design displays and input devices that minimize human error. In this context, information concerning the human response to the detection of incongruous information is important. Such incongruous information can be operationalized as unexpected (perhaps erroneous) information on which a decision by the human or operation by an automated system is based. In the aviation environment, decision making when faced with inadequate, incomplete, or incongruous information may occur in a failure scenario. An additional challenge facing the human operator in automated environments is maintaining alertness or vigilance. The vigilance issue is of particular concern as a factor that may interact with performance when faced with inadequate, incomplete, or incongruous information. From the literature on eye-scan behavior we know that the time spent looking at a particular display or indicator is a function of the type of information one is trying to discern from the display. For example, quick glances are all it takes for confirming that an indicator is in a normal position or range, whereas a continuous look of several seconds may be required for confirmation that a complex control input is having the desired effect. Important to consider is that while an extended look takes place, visual input from other sources may be missed. Much like an extended look, the interpretation of incongruous information may require extra time. The present experiment was designed to explore the performance consequences of a decision making task when incongruous information was presented. For this experiment a display incongruity was created on a subset of trials of a clock reading laboratory task. Display incongruity was made possible through presentation of 'impossible' times (e.g. 1:65 or 11:90). Subjects made 'same' 'different' decisions and keyboard responses to pairings of Analog-Analog (AA), Digital-Digital (DD), and Analog- Digital (AD), display combinations. For trials during which display incongruities were not presented, based on prior research comparing digital and analog clock displays, it would be expected that the Digital-Digital condition would result in the shortest response times and the Analog-Analog and Analog-Digital conditions would have longer response times. The performance consequence expected on trials with incongruous times would be very long response times.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-05
    Description: The detection of fatigue cracks under installed fasteners has been a major goal of the aging aircraft NDE community. The Sliding Probe, Magneto-Optic Imager, Rotating Self-Nulling Probe, Low Frequency Eddy Current Array, and Eddyscan systems are among the instruments developed for this inspection. It has been verified that the detection of fatigue cracks under flush head aluminum and titanium fasteners can be accomplished with a high resolution by the above techniques. The detection of fatigue cracks under ferromagnetic and protruding head fasteners, however, has been found to be much more difficult. For the present work, the inspection for fatigue cracks under SAE 4340 Steel Hi-Lok fasteners is explored. Modifications to the Rotating Self-Nulling Eddy Current Probe System are presented which enable the detection of fatigue cracks hidden under the protruding head of the ferromagnetic fastener. Inspection results for samples with varying length EDM notches are shown, as well as a comparison between the signature from an EDM notch and an actual fatigue crack. Finite Element Modeling is used to investigate the effect of the ferromagnetic fastener on the induced eddy current distribution in order to help explain the detection characteristics of the system. This paper will also introduce a modification to the Rotating Probe System designed specifically for the detection of deeply buried flaws in multilayer conductors. The design change incorporates a giant magnetoresistive (GMR) sensor as the pickup device to improve the low frequency performance of the probe. The flaw detection capabilities of the GMR based Self- Nulling Probe are presented along with the status of the GMR based Rotating Probe System for detection of deeply buried flaws under installed fasteners.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Viewgraphs on Advanced Life Support (ALS) Systems are presented. The topics include: 1) Fundamental Need for Advanced Life Support; 2) ALS organization; 3) Requirements and Rationale; 4) Past Integrated tests; 5) The need for improvements in life support systems; 6) ALS approach to meet exploration goals; 7) ALS Projects showing promise to meet exploration goals; and 9) GRC involvement in ALS.
    Keywords: Man/System Technology and Life Support
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 45-68; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.
    Keywords: Man/System Technology and Life Support
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 164-186; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: This paper will review the historical record of NASA's regenerative life support systems flight hardware with emphasis on the complexity of spiral development of technology as related to the International Space Station program. A brief summary of what constitutes ECLSS designs for human habitation will be included and will provide illustrations of the complex system/system integration issues. The new technology areas which need to be addressed in our future Code T initiatives will be highlighted. The development status of the current regenerative ECLSS for Space Station will be provided for the Oxygen Generation System and the Water Recovery System. In addition, the NASA is planning to augment the existing ISS capability with a new technology development effort by Code U/Code T for CO2 reduction (Sabatier Reactor). This latest ISS spiral development activity will be highlighted in this paper.
    Keywords: Man/System Technology and Life Support
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 637-694; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-02
    Description: Venus having an average surface temperature of 460 degrees Celsius (about 860 degrees Fahrenheit) and an atmosphere 150 times denser than the Earth's atmosphere, designing a robot to merely survive on the surface to do planetary exploration is an extremely difficult task. This temperature is hundreds of degrees higher than the maximum operating temperature of currently existing microcontrollers, electronic devices, and circuit boards. To meet the challenge of Venus exploration, researchers at the NASA Glenn Research Center studied methods to keep a pressurized electronics package cooled, so that the operating temperature within the electronics enclosure would be cool enough for electronics to run, to allow a mission to operate on the surface of Venus for extended periods.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-02
    Description: Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-02
    Description: In this paper a design modification to the Very-Low Frequency GMR Based Self-Nulling Probe has been presented to enable improved signal to noise ratio for deeply buried flaws. The design change consists of incorporating a feedback coil in the center of the flux focusing lens. The use of the feedback coil enables cancellation of the leakage fields in the center of the probe and biasing of the GMR sensor to a location of high magnetic field sensitivity. The effect of the feedback on the probe output was examined, and experimental results for deep flaw detection were presented. The experimental results show that the modified probe is capable of clearly identifying flaws up to 1 cm deep in aluminum alloy structures.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-02
    Description: The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: It is common practice within NASA to test electronic parts at the manufacturing lot level to demonstrate, statistically, that parts from the lot tested will not fail in service using generic application conditions. The test methods and the generic application conditions used have been developed over the years through cooperation between NASA, DoD, and industry in order to establish a common set of standard practices. These common practices, found in MIL-STD-883, MIL-STD-750, military part specifications, EEE-INST-002, and other guidelines are preferred because they are considered to be effective and repeatable and their results are usually straightforward to interpret. These practices can sometimes be unavailable to some NASA projects due to special application conditions that must be addressed, such as schedule constraints, cost constraints, logistical constraints, or advances in the technology that make the historical standards an inappropriate choice for establishing part performance and reliability. Alternate methods have begun to emerge and to be used by NASA programs to test parts individually or as part of a system, especially when standard lot tests cannot be applied. Four alternate screening methods will be discussed in this paper: Highly accelerated life test (HALT), forward voltage drop tests for evaluating wire-bond integrity, burn-in options during or after highly accelerated stress test (HAST), and board-level qualification.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2015-05-11
    Description: Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter (ARC), which uses a heat-wait-search mode until an exothermic reaction is detected. After an exotherm is found the calorimeter maintains an adiabatic environment around a bomb which holds the test sample. The ARC will help identify important reactions and what temperature these exothermic reactions take place at. In order fully understand the battery, we are first going to take apart the battery and test the individual components of the battery using the ARC. I will first conduct a test on the electrolyte solution by itself. We will then test the electrolyte solution with the anode. We would like to see how the electrolyte solution reacts with the anode and its binder material. The next would be the same test using the cathode instead of the anode. By comparing the results of the electrolyte, electrolyte with anode, and the electrolyte with the cathode we can determine the reactions that are taking place due to each component. Using the heat capacity of the each individual sample and the temperature by which the sample increases, kinetic and thermo-dynamical information can then be found. A Gas chromatograph could be used to help with the task of identifying the by-products at the end of each test. One way of increasing the cycle life is to increase the stability of the materials inside the
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-05-11
    Description: The Vision Research Lab at NASA John Glenn Research Center is headed by Dr. Rafat Ansari. Dr. Ansari and other researchers have developed technologies that primarily use laser and fiber optics to non-invasively detect different ailments and diseases of the eye. One of my goals as a LERCIP intern and ACCESS scholar for the 2004 summer is to inform other NASA employees, researchers and the general public about these technologies through the development of a website. The website incorporates the theme that the eye is a window to the body. Thus by investigating the processes of the eye, we can better understand and diagnosis different ailments and diseases. These ailments occur in not only earth bound humans, but astronauts as well as a result of exposure to elevated levels of radiation and microgravity conditions. Thus the technologies being developed at the Vision Research Lab are invaluable to humans on Earth in addition to those astronauts in space. One of my first goals was to research the technologies being developed at the lab. The first several days were spent immersing myself in the various articles, journals and reports about the theories behind Dynamic Light Scattering, Laser Doppler Flowmetry, Autofluoresence, Raman Spectroscopy, Polarimetry and Oximetry. Interviews with the other researchers proved invaluable to help understand these theories as well gain hands on experience with the devices being developed using these technologies. The rest of the Vision Research Team and I sat down and discussed how the overall website should be presented. Combining this information with the knowledge of the theories and applications of the hardware being developed, I worked out different ideas to present this information. I quickly learned Paint Shop Pro 8 and FrontPage 2002, as well as using online tutorials and other resources to help design an effective website. The Vision Research Lab website incorporates the anatomy and physiology of the eye, different diseases that affect the eye and the technologies being develop at the lab to help diagnosis these diseases. It also includes background information on Dr. Ansari as well as other researchers involved in the lab and it includes segments on patents, awards and achievements. There are links to help viewers navigate to internal and external websites to further investigate different ideas and hrther understand the implications of these technologies at being developed.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and several bubble filter designs are being evaluated.
    Keywords: Electronics and Electrical Engineering
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 307-308; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .
    Keywords: Man/System Technology and Life Support
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 587-611; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-06
    Description: The coupling between the desired CPW mode and the unwanted coupled slotline mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Finite-Difference Time-Domain analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. It is shown that the ratio of the slotline mode to the CPW mode can be as high as 18 dB. The use of airbridges is shown to reduce the slotline mode by 15 dB, but that the slotline mode fully reestablishes itself after 2000 microns. Furthermore, these results are independent of frequency.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-05
    Description: The International Space Station's (ISS) electric power system (EPS) employs nickel-hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged, providing station power, during eclipse. The batteries are designed to operate at a maximum 35-percent depth of discharge during normal operation. Thirty-eight individual pressure vessel Ni-H2 battery cells are series-connected and packaged in an orbital replacement unit (ORU), and two ORUs are series-connected, using a total of 76 cells, to form one battery. When the ISS is in its assembly-complete form, the electrical power system will have a total of 24 batteries (48 ORUs) on-orbit. The ISS is the first application for low-Earth-orbit cycling of this quantity of series-connected cells.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-05
    Description: Novel transistors and logic devices based on nanotechnology concepts are under intense development. The potential for ultra-low-power circuitry makes nanotechnology attractive for applications such as digital electronics and sensors. For NASA applications, nanotechnology offers tremendous opportunities for increased onboard data processing, and thus autonomous decisionmaking ability, and novel sensors that detect and respond to environmental stimuli with little oversight requirements. Polyaniline/polyethylene oxide (PANi/PEO) nanofibers are of interest because they have electrical conductivities that can be changed from insulating to metallic by varying the doping levels and conformations of the polymer chain. At the NASA Glenn Research Center, we have observed field effect transistor (FET) behavior in electrospun PANi/PEO nanofibers doped with camphorsulfonic acid. The nanofibers were deposited onto Au electrodes, which had been prepatterned onto oxidized silicon substrates. The preceding scanning electron image shows the device used in the transistor measurements. Saturation channel currents are observed at surprisingly low source/drain voltages (see the following graph). The hole mobility in the depletion regime is 1.4x10(exp -4)sq cm/V sec, whereas the one-dimensional charge density (at zero gate bias) is calculated to be approximately 1 hole per 50 two-ring repeat units of polyaniline, consistent with the rather high channel conductivity (approx.10(exp -3) S/cm). Reducing or eliminating the PEO content in the fiber is expected to enhance device parameters. Electrospinning is thus proposed as a simple method of fabricating one-dimensional polymer FET's.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-05
    Description: Improvements in individual piezoelectric transformer (PT) performance and the combination of these PTs in a unique modular topology under a Phase I contract with the NASA Glenn Research Center have enabled for the first time the simultaneous achievement of both high voltage and high power at much higher levels than previously obtained with any PT. Feasibility was demonstrated by a prototype transformer (called a Tap-Soner), which is shown in the preceding photograph as part of a direct-current to direct-current (dc-dc) converter having two outputs rated at 1.5 kV/5 W and 4.5 kV/20 W. The power density of 3.5 W/cm3 is significantly lower than for magnetic transformers with the same voltage and power output. This development, which is being done under a Small Business Innovation Research (SBIR) contract by Face Electronics, LC (Norfolk, VA), is based on improvements in the materials and design of Face's basic patented Transoner-T3 PT, shown in the left in the following figure. The T3 PT is most simply described as a resonant multilayer transducer where electrical energy at the input section is efficiently mechanically coupled to the output section, which then vibrates in a fundamental longitudinal mode to generate a high gain in voltage. The piezoelectric material used is a modified lead-zirconium-titanate-based ceramic. One of the significant improvements in PT design was the incorporation of a symmetrical double input layer, shown on the right in the following figure, which eliminated the lossy bending vibration modes characteristic of a single input layer. The performance of the improved PT was optimized to 1.5 kV/5 W. The next step was devising a way to combine the individual PTs in a modular circuit topology needed to achieve the desired high voltage and power output. Since the optimum performance of the individual PT occurs at resonance, the most efficient operation of the modular transformer was achieved by using a separate drive circuit for each PT. The output section consists of a separate output rectifier for each PT connected in series.
    Keywords: Electronics and Electrical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-05
    Description: This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.
    Keywords: Electronics and Electrical Engineering
    Type: International Conference on Advances in the Internet, Processing, Systems and Interdisciplinary Research (IPSI-2004)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-05
    Description: Two-micron detectors are critical for atmospheric carbon dioxide profiling using the lidar technique. The characterization results of a novel infrared AlGaAsSb/ InGaAsSb phototransistor are reported. Emitter dark current variation with the collector-emitter voltage at different temperatures is acquired to examine the gain mechanism. Spectral response measurements resulted in responsivity as high as 2650 A/W at 2.05 microns wavelength. Bias voltage and temperature effects on the device responsivity are presented. The detectivity of this device is compared to InGaAs and HgCdTe devices.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-08
    Description: In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.
    Keywords: Electronics and Electrical Engineering
    Type: GOMACTech-2003: Countering Asymmetric Threats; Tampa, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-12
    Description: A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-27
    Description: This paper discusses the construction of solid-state frequency multiplier chains utilized far teraherz receiver applications such as the Herschel Space Observatory . Emphasis will he placed on the specific requirements to be met and challenges that were encountered. The availability of high power amplifiers at 100 GHz makes it possible to cascade frequency doublers and triplers with sufficient RF power to pump heterodyne receivers at THz frequencies. The environmental and mechanical constraints will be addressed as well as reliability issues.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the data suggest that 5% hydrogen peroxide reduces the shelf life of the vegetable. A dip of either 1 % or 3% hydrogen peroxide helps reduce the microbial total count while not adversely affecting the quality of the vegetable.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-8304 , Habitation 2004 Conference; Jan 04, 2004 - Jan 07, 2004; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-18
    Description: At the United Nations Millennium Summit in September of 2000, the world leaders agreed on an ambitious agenda for reducing poverty and improving lives: the Millennium Development Goals (MDGs), a list of issues they consider highly pernicious, threatening to human welfare and, thereby, to global security and prosperity. Among the eight goals are included fundamental human needs such as the eradication of extreme poverty and hunger, the promotion of gender equality, the reduction of child mortality and improvement of maternal health, and ensuring the sustainability of our shared environment. In order to help focus the efforts to meet these goals, the United Nations (UN) has established a set of eighteen concrete targets, each with an associated schedule. Among these is Target 10: "By 2015, reduce by half the proportion of people without access to safe drinking water." A closely related target of equal dignity was agreed at the World Summit on Sustainable Development (Johannesburg, September 2002): "By 2015, reduce by half the proportion of people without access to basic sanitation." One of the greatest successes in the development of Exploration-class technologies for closed-loop, sustainable support of long-duration human space missions has been the work both ESA and NASA have done in bioregenerative water reclamation (WRS), and secondarily, in solid-waste management. Solid-waste and WRS systems tend to be combined in the commercial world into the field of sanitation, although as we will see, the most essential principles of sustainable terrestrial sanitation actually insist upon the separation of solid and liquid excreta. Seeing the potential synergy between the space program ALS technologies developed for Mars and the urgent needs of hundreds of millions of people for secure access to clean water here on Earth, we set out to organize the adaptation of these technologies to help the United Nations Development Programme (UNDP) meet Target 10. In this paper, we will summarize the issues and results of the first "Water for Two Worlds" summit held in January of this year, describe,the status of the sustainable sanitation systems that are on the table for adaptation to widespread terrestrial use, and present fundamental strategies for forward work.
    Keywords: Man/System Technology and Life Support
    Type: SAE-041CES-275 , International Conference on Environmental Systems; Jul 19, 2004 - Jul 22, 2004; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-18
    Description: The quality factor used in radiation protection is defined as a function of LET, Q(sub ave)(LET). However, tissue equivalent proportional counters (TEPC) measure the average quality factors as a function of lineal energy (y), Q(sub ave)(Y). A model of the TEPC response for charged particles considers energy deposition as a function of impact parameter from the ion s path to the volume, and describes the escape of energy out of sensitive volume by delta-rays and the entry of delta rays from the high-density wall into the low-density gas-volume. A common goal for operational detectors is to measure the average radiation quality to within accuracy of 25%. Using our TEPC response model and the NASA space radiation transport model we show that this accuracy is obtained by a properly calibrated TEPC. However, when the individual contributions from trapped protons and galactic cosmic rays (GCR) are considered; the average quality factor obtained by TEPC is overestimated for trapped protons and underestimated for GCR by about 30%, i.e., a compensating error. Using TEPC's values for trapped protons for Q(sub ave)(y), we obtained average quality factors in the 2.07-2.32 range. However, Q(sub ave)(LET) ranges from 1.5-1.65 as spacecraft shielding depth increases. The average quality factors for trapped protons on STS-89 demonstrate that the model of the TEPC response is in good agreement with flight TEPC data for Q(sub ave)(y), and thus Q(sub ave)(LET) for trapped protons is overestimated by TEPC. Preliminary comparisons for the complete GCR spectra show that Q(sub ave)(LET) for GCR is approximately 3.2-4.1, while TEPC measures 2.9-3.4 for QQ(sub ave)(y), indicating that QQ(sub ave)(LET) for GCR is underestimated by TEPC.
    Keywords: Man/System Technology and Life Support
    Type: 9th Workshop on Radiation Monitoring for the International Space Station; Sep 08, 2004 - Sep 10, 2004; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-18
    Description: LEO life cycle testing of Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) nickel-hydrogen cell packs have been sponsored by the NASA Aerospace Flight Battery Program. The cell packs have cycled under both 35% and 60% depth-of- discharge and temperature conditions of -5 C and +lO C. The packs have been on test since as early as 1992 and have generated a substantial database. This report will provide insight into performance trends as a function of the specific cell configuration and manufacturer for eight separate nickel-hydrogen battery cell packs.
    Keywords: Electronics and Electrical Engineering
    Type: Aerospace Corporation Space Power Workshop 2004; Apr 19, 2004 - Apr 22, 2004; Manhattan Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-18
    Description: With the increase in demand for wireless communication services, most of the operating frequency bands have become very congested. The increase of wireless costumers is only fractional contribution to this phenomenon. The demand for more services such as video streams and internet explorer which require a lot of band width has been a more significant contributor to the congestion in a communication system. One way to increase the amount of information or data per unit of time transmitted with in a wireless communication system is to use a higher radio frequency. However in spite the advantage available in the using higher frequency bands such as, the Ka-band, higher frequencies also implies short wavelengths. And shorter wavelengths are more susceptible to rain attenuation. Until the Advanced Communication Technology Satellite (ACTS) was launched, the Ka- band frequency was virtually unused - the majority of communication satellites operated in lower frequency bands called the C- and Ku- bands. Ka-band is desirable because its higher frequency allows wide bandwidth applications, smaller spacecraft and ground terminal components, and stronger signal strength. Since the Ka-band is a high frequency band, the millimeter wavelengths of the signals are easily degraded by rain. This problem known as rain fade or rain attenuation The Advanced Communication Technology Satellite (ACTS) propagation experiment has collected 5 years of Radio Frequency (RF) attenuation data from December 1993 to November 1997. The objective of my summer work is to help develop the statistics and prediction techniques that will help to better characterize the Ka Frequency band. The statistical analysis consists of seasonal and cumulative five-year attenuation statistics for the 20.2 and 27.5 GHz. The cumulative five-year results give the link outage that occurs for a given link margin. The experiment has seven ground station terminals that can be attributed to a unique rain zone climate. The locations are White Sands, NM, Tampa, Fly Clarksburg, MD, Norman, OK, Ft. Collins, COY Vancouver, BC, and Fairbanks, AK. The analysis will help us to develop and define specific parameters that will help system engineers develop the appropriated instrumentation and structure for a Ka-band wireless communication systems and networks.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Aviation Environmental Technical Branch produces many various types of aeronautical research that benefits the NASA mission for space exploration and in turn, produces new technology for our nation. One of the present goals of the Aviation Environmental Technical Branch is to create better engines for airplanes by testing supersonic jet propulsion and safe fuel combustion. During the summer of 2004, I was hired by Vincent Sattenvhite Chief executive of the Aviation Environmental Technical Branch to Assist Yves Lamothe with a fuel igniter circuit. Yves Lamothe is an electrical engineer who is currently working on safe fuel combustion testing. This testing is planned to determine the minimum ignition energy for fuel and air vapors of current and alternative fuels under simulated flight conditions. An air temperature bath will provide simulated flight profile temperatures and the heat fluxes to the test chamber. I was assigned with Yves to help complete the igniter circuit which consists of a 36k voltage supply an oscilloscope, and a high voltage transistor switch. During my tenure in the L.E.C.I.R.P. program I studied the basics of electricity and circuitry along with two other projects that I completed. In the beginning of my internship, I devote all of my time to research the aspects of circuitry so that I would be prepared for the projects that I was assigned to do. I read about lessons on; the basic physical concepts of electronics, Electrical units, Basic dc circuits, direct current circuit analysis, resistance and cell batteries, various types of magnetism , Alternating current basics, inductance, and power supplies. I received work sheets and math equations from my Mentor so that I could be able to apply these concepts into my work. After I complete my studies, I went on to construct a LED chaser circuit which displays a series of light patterns using a 555 timer. I incorporated a switch and motion detector into the circuit to create basic alarm system. This project challenged my ability to interpret a schematic and expand it. While I was still completing the LED chaser circuit I Also was given A Basic Stamp Toddler Robot to build and program. The Toddler robot can walk in 36 various styles using advanced robotics. I used many different programs to create movement and direction of the robot. Also the Toddler can use infrared vision to sense objects. This enables the robot to maneuver indefinitely without running into objects. During my tenure at the NASA Glen Research Center I definite utilized the NASA mission to educate. I learned valuable information to help in my up coming year as a freshman in college.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for participation on a variety of other projects, including aero-gels and carbon graphite mat en als. The goals of the polymer electrolyte research are to improve the physical properties of the polymers. This includes improving conductivity, durability, and expanding the temperature range over which it is effective. Currently, good conductivity is only present at high temperatures. My goals are to experiment with different arrangements of rods and coils to achieve these desirable properties. Some of my experiments include changing the number of repeat units in the polymer, the size of the diamines, and the types of coil. Analysis of these new polymers indicates improvement in some properties, such as lower glass transition temperature; however, they are not as flexible as desired. With further research we hope to produce polymers that encompass all of these properties to a high degree.
    Keywords: Electronics and Electrical Engineering
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-18
    Description: In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.
    Keywords: Electronics and Electrical Engineering
    Type: 2004 Conference on Advances in Internet Technologies and Applications (CAITA); Jul 08, 2004 - Jul 11, 2004; West Lafayette, IN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: In this talk we will address the two primary issues of ring current (RC) electrodynamic coupling: 1. RC self-consistent coupling with electromagnetic ion cyclotron (EMIC) waves (small scale electrodynamic coupling); and 2. RC self-consistent magnetosphere-ionosphere coupling that includes calculation of the magnetospheric electric field (large scale electrodynamic coupling). Our study will be based on two RC models that we have recently developed in our group. The first model by Khazanov et al. [2002, 20031 couples the system of two kinetic equations: one equation which describes the RC ion dynamics and another equation which describes the energy density evolution of EMIC waves. The second model by Khazanov et al. [2003] deals with large scale electrodynamic coupling processes and provides a self-consistent simulation of RC ions, electrons and the magnetospheric electric field. There is presently no model that addresses both of these issues simultaneously in a self-consistent calculation. However, the need exists for such a model, because these two processes directly influence each other, with the mesoscale coupling changing the drift paths of the thermal and energetic particle populations in the inner magnetosphere, thereby changing the wave interactions, and the microscale coupling altering the pitch angle distributions and ionospheric conductivities (through increased precipitation), thus changing the field-aligned currents and electric potential structure. The initial thrust of the work will be the development of a combined kinetic model of micro- and meso-scale RC electrodynamic coupling processes and to examine their interactions with each other on a global scale. We also discuss the nonlinear coupling of EMIC and lower hybrid waves in the RC region during the May 2-7, 1998 storm period.
    Keywords: Electronics and Electrical Engineering
    Type: 35th COSPAR; Jul 18, 2004 - Jul 24, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-18
    Description: Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still. internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-18
    Description: The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: Wireless sensors for high temperature applications such as oil drilling and mining, automobiles, and jet engine performance monitoring require circuits built on wide bandgap semiconductors. In this paper, the characteristics of microwave transmission lines on 4H-High Purity Semi-Insulating SiC and 6H, p-type SiC is presented as a function of temperature and frequency. It is shown that the attenuation of 6H, p-type substrates is too high for microwave circuits, large leakage current will flow through the substrate, and that unusual attenuation characteristics are due to trapping in the SiC. The 4H-HPSI SiC is shown to have low attenuation and leakage currents over the entire temperature range.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE MTT-S International Microwave Symposium; Jun 06, 2004 - Jun 11, 2004; Fort Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: Wireless communication in jet engines and high temperature industrial applications requires FD integrated circuits (RFICs) on wide bandgap semiconductors such as Silicon Carbide (SiC). In this paper, thin-film NiCr resistors, MIM capacitors, and spiral inductors are fabricated on a high purity semi-insulating 4H-SiC substrate. The devices are experimentally characterized through 50 GHz at temperatures of up to 500 C and the equivalent circuits are deembedded from the measured data. It is shown that the NiCr resistors are stable within 10% to 300 C while the capacitors have a value stable within 10% through 500 C.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE International Microwave Symposium; Jun 06, 2004 - Jun 11, 2004; Fort Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Si/Ge/Si n-type modulation doped field effect structures and transistors (n-MODFET's) have been fabricated on r-plane sapphire substrates. Mobilities as high as 1380 cm(exp 2)/Vs were measured at room temperature. Excellent carrier confinement was shown by Shubnikov-de Haas measurements. Atomic force microscopy indicated smooth surfaces, with rm's roughness less than 4 nm, similar to the quality of SiGe/Si n-MODFET structures made on Si substrates. Transistors with 2 micron gate lengths and 200 micron gate widths were fabricated and tested.
    Keywords: Electronics and Electrical Engineering
    Type: Materials Research Society Spring 2004 Conference; Apr 10, 2004 - Apr 14, 2004; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: A novel micromachined resonator at 45 GHz based on a defect in a periodic electromagnetic bandgap structure (EBG) and a two-pole Tchebysbev filter with 1.4% 0.15 dB equiripple bandwidth and 2.3 dB loss employing this resonator are presented in this letter. The periodic bandgap structure is realized on a 400 micron thick high-resistivity silicon wafer using deep reactive ion etching techniques. The resonator and filter can be accessed via coplanar waveguide feeds.
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: The Advanced Life Support (ALS) Metric is the predominant tool for predicting the cost of ALS systems. Metric goals for the ALS Program are daunting, requiring a threefold increase in the ALS Metric by 2010. Confounding the problem, the rate new ALS technologies reach the maturity required for consideration in the ALS Metric and the rate at which new configurations are developed is slow, limiting the search space and potentially giving the perspective of a ALS technology, the ALS Metric may remain elusive. This paper is a sequel to a paper published in the proceedings of the 2003 ICES conference entitled, "Managing to the metric: an approach to optimizing life support costs." The conclusions of that paper state that the largest contributors to the ALS Metric should be targeted by ALS researchers and management for maximum metric reductions. Certainly, these areas potentially offer large potential benefits to future ALS missions; however, the ALS Metric is not the only decision-making tool available to the community. To facilitate decision-making within the ALS community a combination of metrics should be utilized, such as the Equivalent System Mass (ESM)-based ALS metric, but also those available through techniques such as life cycle costing and faithful consideration of the sensitivity of the assumed models and data. Often a lack of data is cited as the reason why these techniques are not considered for utilization. An existing database development effort within the ALS community, known as OPIS, may provide the opportunity to collect the necessary information to enable the proposed systems analyses. A review of these additional analysis techniques is provided, focusing on the data necessary to enable these. The discussion is concluded by proposing how the data may be utilized by analysts in the future.
    Keywords: Man/System Technology and Life Support
    Type: 34rd International conference on Environmental Systems; Jul 19, 2004 - Jul 22, 2004; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. A plasmoid is a plasma with an imbedded closed magnetic field structure. The shape and magnetic field structure of the translating plasmoids have been measured with of an array of magnetic field probes. Six sets of two B-dot probes were constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes are wound on a square G10 form, and have an average (calibrated) NA of 9.37 x l0(exp -5) square meters, where N is the number of turns and A is the cross-sectional area. The probes were calibrated with a Helmholtz coil, driven by a high-voltage pulser to measure NA, and by a signal generator to determine the probe's frequency response. The plasmoid electron number density n(sub e) electron temperature T(sub e), and velocity ratio v/c(sub m), (where v is the bulk plasma flow velocity and c(sub m), is the ion thermal speed) have also been measured with a quadruple Langmuir probe. The Langmuir probe tips are 10 mm long, 20-mil diameter stainless steel wire, housed in a 6-inch long 4-bore aluminum rod. Measurements on PTX with argon and hydrogen from the magnetic field probes and quadruple Langmuir probe will be presented in this paper.
    Keywords: Electronics and Electrical Engineering
    Type: Joint Propulsion Conference; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: The objective of this study is to understand the causes of the nickel hydrogen (NiH2) cell degradetion: storage, cycling, and reversal.
    Keywords: Electronics and Electrical Engineering
    Type: Space Power Workshop; Apr 19, 2004 - Apr 22, 2004; Manhattan Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: This slide presentation presents an overview of work system requirements, extravehicular activity system evolution, key issues, future needs, and a summary. Key issues include pressure suits, life support systems, system integration, biomedical requirements, and work and mobility aids.
    Keywords: Man/System Technology and Life Support
    Type: Speech at Naval Undersea Museum; Apr 21, 2004; Silverdale, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Type: KSC-2004-060 , 41st Space Congress; Apr 28, 2004; Cape Canaveral, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
    Keywords: Electronics and Electrical Engineering
    Type: KSC-2004-002 , ISA/IEEE SIcon Conference; Jan 27, 2004 - Jan 29, 2004; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: A novel catastrophic breakdown mode in reversed biased Silicon carbide diodes has been seen for low LET particles. These particles are too low in LET to induce SEB, however SEB was seen from particles of higher LET. The low LET mechanism correlates with second breakdown in diodes due to increase leakage and assisted charge injection from incident particles. Percolation theory was used to predict some basic responses of the devices, but the inherent reliability issue with silicon carbide have proven challenging.
    Keywords: Electronics and Electrical Engineering
    Type: 2004 IEEE Nuclear and Space Radiation Effects Conference; Jul 19, 2004 - Jul 23, 2004; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering
    Type: KSC-2004-113 , National Nanotechnology JnitiativeGrand-Challenge Workshop; Aug 24, 2004 - Aug 26, 2004; Palo Alto, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The National Aeronautics and Space Administration (NASA) seeks to license its Advanced Tire and Strut Pressure Monitor (TSPM) technology. The TSPM is a handheld system to accurately measure tire and strut pressure and temperature over a wide temperature range (20 to 120 OF), as well as improve personnel safety. Sensor accuracy, electronics design, and a simple user interface allow operators quick, easy access to required measurements. The handheld electronics, powered by 12-VAC or by 9-VDC batteries, provide the user with an easy-to-read visual display of pressure/temperature or the streaming of pressure/temperature data via an RS-232 interface. When connected to a laptop computer, this new measurement system can provide users with automated data recording and trending, eliminating the chance for data hand-recording errors. In addition, calibration software allows for calibration data to be automatically utilized for the generation of new data conversion equations, simplifying the calibration processes that are so critical to reliable measurements. The design places a high-accuracy pressure sensor (also used as a temperature sensor) as close to the tire or strut measurement location as possible, allowing the user to make accurate measurements rapidly, minimizing the amount of high-pressure volumes, and allowing reasonable distance between the tire or strut and the operator. The pressure sensor attaches directly to the pressure supply/relief valve on the tire and/or strut, with necessary electronics contained in the handheld enclosure. A software algorithm ensures high accuracy of the device over the wide temperature range. Using the pressure sensor as a temperature sensor permits measurement of the actual temperature of the pressurized gas. This device can be adapted to create a portable calibration standard that does not require thermal conditioning. This allows accurate pressure measurements without disturbing the gas temperature. In-place calibration can save considerable time and money and is suitable in many process applications throughout industry.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2004-026
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-12
    Description: Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2005-023
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-12
    Description: The figure depicts an apparatus for mechanical testing of nuts. In the original application for which the apparatus was developed, the nuts are of a frangible type designed for use with pyrotechnic devices in spacecraft applications in which there are requirements for rapid, one-time separations of structures that are bolted together. The apparatus can also be used to test nonfrangible nuts engaged without pyrotechnic devices. This apparatus was developed to replace prior testing systems that were extremely heavy and immobile and characterized by long setup times (of the order of an hour for each nut to be tested). This apparatus is mobile, and the setup for each test can now be completed in about five minutes. The apparatus can load a nut under test with a static axial force of as much as 6.8 x 10(exp 5) lb (3.0 MN) and a static moment of as much as 8.5 x 10(exp 4) lb in. (9.6 x 10(exp 3) N(raised dot)m) for a predetermined amount of time. In the case of a test of a frangible nut, the pyrotechnic devices can be exploded to break the nut while the load is applied, in which case the breakage of the nut relieves the load. The apparatus can be operated remotely for safety during an explosive test. The load-generating portion of the apparatus is driven by low-pressure compressed air; the remainder of the apparatus is driven by 110-Vac electricity. From its source, the compressed air is fed to the apparatus through a regulator and a manually operated valve. The regulated compressed air is fed to a pneumatically driven hydraulic pump, which pressurizes oil in a hydraulic cylinder, thereby causing a load to be applied via a hydraulic nut (not to be confused with the nut under test). During operation, the hydraulic pressure is correlated with the applied axial load, which is verified by use of a load cell. Prior to operation, one end of a test stud (which could be an ordinary threaded rod or bolt) is installed in the hydraulic nut. The other end of the test stud passes through a bearing plate; a load cell is slid onto that end, and then the nut to be tested is threaded onto that end and tightened until the nut and load cell press gently against the bearing plate.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23159 , NASA Tech Briefs, September 2004; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-12
    Description: A proposed technique for locating concealed objects (especially small antipersonnel land mines) involves the acquisition and processing of spectral signatures over broad microwave frequency bands. This technique was conceived to overcome the weaknesses of older narrow- band electromagnetic techniques like ground-probing radar and low-frequency electromagnetic induction. Ground-probing radar is susceptible to false detections and/or interference caused by rocks, roots, air pockets, soil inhomogeneities, ice, liquid water, and miscellaneous buried objects other than those sought. Moreover, if the radar frequency happens to be one for which the permittivity of a sought object matches the permittivity of the surrounding soil or there is an unfavorable complex-amplitude addition of the radar reflection at the receiver, then the object is not detected. Low-frequency electromagnetic induction works well for detecting metallic objects, but the amounts of metal in plastic mines are often too small to be detectable. The potential advantage of the proposed technique arises from the fact that wideband spectral signatures generally contain more relevant information than do narrow-band signals. Consequently, spectral signatures could be used to make better decisions regarding whether concealed objects are present and whether they are the ones sought. In some cases, spectral signatures could provide information on the depths, sizes, shapes, and compositions of objects. An apparatus to implement the proposed technique (see Figure 1) could be assembled from equipment already in common use. Typically, such an apparatus would include a radio-frequency (RF) transmitter/receiver, a broad-band microwave antenna, and a fast personal computer loaded with appropriate software. In operation, the counter would be turned on, the antenna would be aimed at the ground or other mass suspected to contain a mine or other sought object, and the operating frequency would be swept over the band of interest.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22839 , NASA Tech Briefs, September 2004; 23-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-12
    Description: Simple, passive instruments have been developed for measuring the exposure of material specimens to vacuum ultraviolet (VUV) radiation from the Sun. Each instrument contains a silicon photodiode and a coulometer. The photocharge generated in the photodiode is stored in the coulometer. The accumulated electric charge measured by use of the coulometer is assumed to be proportional to the cumulative dose of VUV radiation expressed in such convenient units as equivalent Sun hours (ESH) [defined as the number of hours of exposure to sunlight at normal incidence]. Intended originally for use aboard spacecraft, these instruments could also be adapted to such terrestrial uses as monitoring the curing of ultraviolet-curable epoxies. Each instrument includes a photodiode and a coulometer assembly mounted on an interface plate (see figure). The photodiode assembly includes an aluminum housing that holds the photodiode, a poly(tetrafluoroehylene) cosine receptor, and a narrow-band optical filter. The cosine receptor ensures that the angular response of the instrument approximates the ideal angular response (proportional to the cosine of the angle of incidence). The filter is chosen to pass the ultraviolet wavelength of interest in a specific experiment. The photodiode is electrically connected to the coulometer. The factor of proportionality between the charge stored in the coulometer and ultraviolet dosage (in units of ESH) is established, prior to use, in calibration experiments that involve the use of lamps and current sources traceable to the National Institute of Standards and Technology.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31316-1 , NASA Tech Briefs, September 2004; 27-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-12
    Description: A prototype improved external cavity laser (ECL) was demonstrated in the second phase of a continuing effort to develop wavelength-agile lasers for fiber-optic communications and trace-gas-sensing applications. This laser is designed to offer next-generation performance for incorporation into fiber-optic networks. By eliminating several optical components and simplifying others used in prior designs, the design of this laser reduces costs, making lasers of this type very competitive in a price-sensitive market. Diode lasers have become enabling devices for fiber optic networks because of their cost, compactness, and spectral properties. ECLs built around diode laser gain elements further enhance capabilities by virtue of their excellent spectral properties with significantly increased (relative to prior lasers) wavelength tuning ranges. It is essential to exploit the increased spectral coverage of ECLs while simultaneously insuring that they operate only at precisely defined communication channels (wavelengths). Heretofore, this requirement has typically been satisfied through incorporation of add-in optical components that lock the ECL output wavelengths to these specific channels. Such add-in components contribute substantially to the costs of ECL lasers to be used as sources for optical communication networks. Furthermore, the optical alignment of these components, needed to attain the required wavelength precision, is a non-trivial task and can contribute substantially to production costs. The design of the present improved ECL differs significantly from the designs of prior ECLs. The present design relies on inherent features of components already included within an ECL, with slight modifications so that these components perform their normal functions while simultaneously effecting locking to the required discrete wavelengths. Hence, add-in optical components and the associated cost of alignment can be eliminated. The figure shows the locking feedback signal, and the frequency locking achieved by use of this signal, as a mirror is tilted through a range of angles to tune the ECL through 48 channels. The data for the frequency plot were obtained, simultaneously with the data for the locking-signal plot, by using a scanning Michelson interferometer to precisely determine the ECL wavelength (and, hence, frequency). Given the ability of the Michelson interferometer to obtain highly precise readings, the frequency plot can be taken to be a reliable indication of single-mode operation. The discontinuities in the frequency plot signify the switching of the ECL between channels; in other words, they indicate tuning with locking to discrete frequencies. The peaks of the feedbacklocking signal correspond to the centers, or near centers, of the mirror angle scan through the corresponding channels. Thus, it is clear that when the feedback-locking signal is at a local maximum, the ECL is operating at single frequency at or near the middle frequency of the selected channel. This is all that is required for precisely locking the ECL output wavelength. The locking is achieved without additional external optical components.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17313-1 , NASA Tech Briefs, September 2004; 28-29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: ION is a system of ground support software for the ion and neutral mass spectrometer (INMS) instrument aboard the Cassini spacecraft. By incorporating commercial off-the-shelf database, Web server, and Java application components, ION offers considerably more ground-support-service capability than was available previously. A member of the team that operates the INMS or a scientist who uses the data collected by the INMS can gain access to most of the services provided by ION via a standard pointand click hyperlink interface generated by almost any Web-browser program running in almost any operating system on almost any computer. Data are stored in one central location in a relational database in a non-proprietary format, are accessible in many combinations and formats, and can be combined with data from other instruments and spacecraft. The use of the Java programming language as a system-interface language offers numerous capabilities for object-oriented programming and for making the database accessible to participants using a variety of computer hardware and software.
    Keywords: Man/System Technology and Life Support
    Type: NPO-40282 , NASA Tech Briefs, September 2004; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-12
    Description: A paper describes a demonstration of the X-38 bolt-retractor system (BRS) on a spacecraft-simulating apparatus, called the Large Mobility Base, in NASA's Flight Robotics Laboratory (FRL). The BRS design was proven safe by testing in NASA's Pyrotechnic Shock Facility (PSF) before being demonstrated in the FRL. The paper describes the BRS, FRL, PSF, and interface hardware. Information on the bolt-retraction time and spacecraft-simulator acceleration, and an analysis of forces, are presented. The purpose of the demonstration was to show the capability of the FRL for testing of the use of pyrotechnics to separate stages of a spacecraft. Although a formal test was not performed because of schedule and budget constraints, the data in the report show that the BRS is a successful design concept and the FRL is suitable for future separation tests.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31874 , NASA Tech Briefs, September 2004; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-12
    Description: A document proposes that lightweight, deployable, large-aperture, controllable curved mirrors made of reflectively coated thin electroactive-polymer (EAP) films be developed for use in spaceborne microwave and optical systems. In these mirrors, the EAP films would serve as both structures and actuators. EAPs that are potentially suitable for such use include piezoelectric, electrostrictive, ferroelectric, and dielectric polymers. These materials exhibit strains proportional to the squares of applied electric fields. Utilizing this phenomenon, a curved mirror according to the proposal could be made from a flat film, upon which a nonuniform electrostatic potential (decreasing from the center toward the edge) would be imposed to obtain a required curvature. The effect would be analogous to that of an old-fashioned metalworking practice in which a flat metal sheet is made into a bowl by hammering it repeatedly, the frequency of hammer blows decreasing with distance from the center. In operation, the nonuniform electrostatic potential could be imposed by use of an electron gun. Calculations have shown that by use of a single- layer film made of a currently available EAP, it would be possible to control the focal length of a 2-m-diameter mirror from infinity to 1.25 m.
    Keywords: Man/System Technology and Life Support
    Type: NPO-40275 , NASA Tech Briefs, September 2004; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-12
    Description: A digital averaging phasemeter has been built for measuring the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. This phasemeter performs well enough to enable interferometric measurements of distance with accuracy of the order of 100 pm and with the ability to track distance as it changes at a speed of as much as 50 cm/s. This phasemeter is unique in that it is a single, integral system capable of performing three major functions that, heretofore, have been performed by separate systems: (1) measurement of the fractional-cycle phase difference, (2) counting of multiple cycles of phase change, and (3) averaging of phase measurements over multiple cycles for improved resolution. This phasemeter also offers the advantage of making repeated measurements at a high rate: the phase is measured on every heterodyne cycle. Thus, for example, in measuring the relative phase of two signals having a heterodyne frequency of 10 kHz, the phasemeter would accumulate 10,000 measurements per second. At this high measurement rate, an accurate average phase determination can be made more quickly than is possible at a lower rate.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30866 , NASA Tech Briefs, September 2004; 24-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-12
    Description: In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).
    Keywords: Man/System Technology and Life Support
    Type: MFS-31834 , NASA Tech Briefs, September 2004; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: 3DGRAPE/AL:V2 denotes version 2 of the Three-Dimensional Grids About Anything by Poisson's Equation with Upgrades from Ames and Langley computer program. The preceding version, 3DGRAPE/AL, was described in Improved 3DGRAPE (ARC-14069) NASA Tech Briefs, Vol. 21, No. 5 (May 1997), page 66. These programs are so named because they generate volume grids by iteratively solving Poisson's Equation in three dimensions. The grids generated by the various versions of 3DGRAPE have been used in computational fluid dynamics (CFD). The main novel feature of 3DGRAPE/AL:V2 is the incorporation of an optional scheme in which anisotropic Lagrange-based trans-finite interpolation (ALBTFI) is coupled with exponential decay functions to compute and blend interior source terms. In the input to 3DGRAPE/AL:V2 the user can specify whether or not to invoke ALBTFI in combination with exponential-decay controls, angles, and cell size for controlling the character of grid lines. Of the known programs that solve elliptic partial differential equations for generating grids, 3DGRAPE/AL:V2 is the only code that offers a combination of speed and versatility with most options for controlling the densities and other characteristics of grids for CFD.
    Keywords: Man/System Technology and Life Support
    Type: LAR-16415 , NASA Tech Briefs, September 2004; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).
    Keywords: Man/System Technology and Life Support
    Type: NPO-30841 , NASA Tech Briefs, September 2004; 11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22907 , NASA Tech Briefs, September 2004; 6-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: A rapid, sensitive test using chemiluminescent oligodeoxynucleotide probes has been developed for detecting, identifying, and enumerating intact cells. The test is intended especially for use in detecting and enumerating bacteria and yeasts in potable water. As in related tests that have been developed recently for similar purposes, the oligodeoxynucleotide probes used in this test are typically targeted at either singlecopy deoxyribonucleic acid (DNA) genes (such as virulence genes) or the multiple copies (10,000 to 50,000 copies per cell) of 16S ribosomal ribonucleic acids (rRNAs). Some of those tests involve radioisotope or fluorescent labeling of the probes for reporting hybridization of probes to target nucleic acids. Others of those tests involve labeling with enzymes plus the use of chemiluminescent or chromogenic substrates to report hybridization via color or the emission of light, respectively. The present test is of the last-mentioned type. The chemiluminescence in the present test can be detected easily with relatively simple instrumentation. In developing the present test, the hybridization approach was chosen because hybridization techniques are very specific. Hybridization detects stable, inheritable genetic targets within microorganisms. These targets are not dependent on products of gene expression that can vary with growth conditions or physiological states of organisms in test samples. Therefore, unique probes can be designed to detect and identify specific genera or species of bacteria or yeast (in terms of rRNA target sequences) or can be designed to detect and identify virulence genes (genomic target sequences). Because of the inherent specificity of this system, there are few problems of cross-reactivity. Hybridization tests are rapid, but hybridization tests now available commercially lack sensitivity; typically, between 10(exp 6) and 10(exp 7) cells of the target organism are needed to ensure a reliable test. Consequently, the numbers of target bacteria in samples are usually amplified by overnight pre-enrichment growth. These tests are usually performed in laboratories by skilled technicians. The present test was designed to overcome the shortcomings of the commercial hybridization tests. The figure summarizes the major steps of the test. It is important to emphasize that the hybridization process used in this test differs from that of other hybridization tests in that it does not extract target nucleic acids. This process is based on intact-cell hybridization (so-called in situ hybridization ), wherein the intact cells act as immobilizing agents. The cells are identified and enumerated by measuring the chemiluminescence emitted from alkaline phosphatase-probe (AP-probe) hybridization; the chemiluminescence is detected or measured by use of photographic film or a luminometer, respectively.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22663 , NASA Tech Briefs, September 2004; 21-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: Discrepancy Reporting Management System (DRMS) is a computer program designed for use in the stations of NASA's Deep Space Network (DSN) to help establish the operational history of equipment items; acquire data on the quality of service provided to DSN customers; enable measurement of service performance; provide early insight into the need to improve processes, procedures, and interfaces; and enable the tracing of a data outage to a change in software or hardware. DRMS is a Web-based software system designed to include a distributed database and replication feature to achieve location-specific autonomy while maintaining a consistent high quality of data. DRMS incorporates commercial Web and database software. DRMS collects, processes, replicates, communicates, and manages information on spacecraft data discrepancies, equipment resets, and physical equipment status, and maintains an internal station log. All discrepancy reports (DRs), Master discrepancy reports (MDRs), and Reset data are replicated to a master server at NASA's Jet Propulsion Laboratory; Master DR data are replicated to all the DSN sites; and Station Logs are internal to each of the DSN sites and are not replicated. Data are validated according to several logical mathematical criteria. Queries can be performed on any combination of data.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30643 , NASA Tech Briefs, September 2004; 14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: Modifications of BN-based coatings that are used as interfacial layers between the fibers and matrices of SiCfiber/SiC-matrix composite materials have been investigated to improve the thermomechanical properties of these materials. Such interfacial coating layers, which are also known as interphases (not to be confused with interphase in the biological sense), contribute to strength and fracture toughness of a fiber/matrix composite material by providing for limited amounts of fiber/matrix debonding and sliding to absorb some of the energy that would otherwise contribute to the propagation of cracks. Heretofore, the debonding and sliding have been of a type called inside debonding because they have taken place predominantly on the inside surfaces of the BN layers that is, at the interfaces between the SiC fibers and the interphases. The modifications cause the debonding and sliding to include more of a type, called outside debonding, that takes place at the outside surfaces of the BN layers that is, at the interfaces between the interphases and the matrix (see figure). One of the expected advantages of outside debonding is that unlike in inside debonding, the interphases would remain on the crack-bridging fibers. The interphases thus remaining should afford additional protection against oxidation at high temperature and should delay undesired fiber/fiber fusion and embrittlement of the composite material. A secondary benefit of outside debonding is that the interphase/matrix interfaces could be made more compliant than are the fiber/interphase interfaces, which necessarily incorporate the roughness of the SiC fibers. By properly engineering BN interphase layers to favor outside debonding, it should be possible, not only to delay embrittlement at intermediate temperatures, but also to reduce the effective interfacial shear strength and increase the failure strain and toughness of the composite material. Two techniques have been proposed and partially experimentally verified as candidate means to promote outside debonding in state-of-the-art SiC/SiC composites.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17240-1 , NASA Tech Briefs, September 2004; 7-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: A proposed computer architecture would exploit the capabilities of commercially available field-programmable gate arrays (FPGAs) to enable computers to detect and recover from bit errors. The main purpose of the proposed architecture is to enable fault-tolerant computing in the presence of single-event upsets (SEUs). [An SEU is a spurious bit flip (also called a soft error) caused by a single impact of ionizing radiation.] The architecture would also enable recovery from some soft errors caused by electrical transients and, to some extent, from intermittent and permanent (hard) errors caused by aging of electronic components. A typical FPGA of the current generation contains one or more complete processor cores, memories, and highspeed serial input/output (I/O) channels, making it possible to shrink a board-level processor node to a single integrated-circuit chip. Custom, highly efficient microcontrollers, general-purpose computers, custom I/O processors, and signal processors can be rapidly and efficiently implemented by use of FPGAs. Unfortunately, FPGAs are susceptible to SEUs. Prior efforts to mitigate the effects of SEUs have yielded solutions that degrade performance of the system and require support from external hardware and software. In comparison with other fault-tolerant- computing architectures (e.g., triple modular redundancy), the proposed architecture could be implemented with less circuitry and lower power demand. Moreover, the fault-tolerant computing functions would require only minimal support from circuitry outside the central processing units (CPUs) of computers, would not require any software support, and would be largely transparent to software and to other computer hardware. There would be two types of modules: a self-checking processor module and a memory system (see figure). The self-checking processor module would be implemented on a single FPGA and would be capable of detecting its own internal errors. It would contain two CPUs executing identical programs in lock step, with comparison of their outputs to detect errors. It would also contain various cache local memory circuits, communication circuits, and configurable special-purpose processors that would use self-checking checkers. (The basic principle of the self-checking checker method is to utilize logic circuitry that generates error signals whenever there is an error in either the checker or the circuit being checked.) The memory system would comprise a main memory and a hardware-controlled check-pointing system (CPS) based on a buffer memory denoted the recovery cache. The main memory would contain random-access memory (RAM) chips and FPGAs that would, in addition to everything else, implement double-error-detecting and single-error-correcting memory functions to enable recovery from single-bit errors.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30806 , NASA Tech Briefs, August 2004; 11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct-capture efficiency of the cartridge. Depending on the application, several cartridges could be connected in a serial or parallel flow arrangement. A parallel arrangement can be used to increase product-capturing and flow capacities while maintaining a low pressure drop. A serial arrangement can be used to obtain high product-capturing capacity; alternatively, series-connected cartridges can be packed with different adsorbents to capture different bioproducts simultaneously.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22863 , NASA Tech Briefs, August 2004; 23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30570 , NASA Tech Briefs, August 2004; 13--14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: Parallel Component Performance Benchmarks is a computer program developed to aid the evaluation of the Common Component Architecture (CCA) - a software architecture, based on a component model, that was conceived to foster high-performance computing, including parallel computing. More specifically, this program compares the performances (principally by measuring computing times) of componentized versus conventional versions of the Parallel Pyramid 2D Adaptive Mesh Refinement library - a software library that is used to generate computational meshes for solving physical problems and that is typical of software libraries in use at NASA s Jet Propulsion Laboratory.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30693 , NASA Tech Briefs, August 2004; 16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22873 , NASA Tech Briefs, August 2004; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.
    Keywords: Man/System Technology and Life Support
    Type: GSC-14746-1 , NASA Tech Briefs, August 2004; 12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: A report describes the personal radiation protection system (PRPS), which has been invented for use on the International Space Station and other spacecraft. The PRPS comprises walls that can be erected inside spacecraft, where and when needed, to reduce the amount of radiation to which personnel are exposed. The basic structural modules of the PRPS are pairs of 1-in. (2.54-cm)-thick plates of high-density polyethylene equipped with fasteners. The plates of each module are assembled with a lap joint. The modules are denoted bricks because they are designed to be stacked with overlaps, in a manner reminiscent of bricks, to build 2-in. (5.08-cm)-thick walls of various lengths and widths. The bricks are of two varieties: one for flat wall areas and one for corners. The corner bricks are specialized adaptations of the flat-area bricks that make it possible to join walls perpendicular to each other. Bricks are attached to spacecraft structures and to each other by use of straps that can be tightened to increase the strengths and stiffnesses of joints.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23330 , NASA Tech Briefs, August 2004; 33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and approximately inversely proportional to an effective radius of the annular space. For a given FBE geometry, one could increase the maximum rate at which gas could be removed by increasing the rate of flow to obtain more centripetal acceleration. In experiments and calculations oriented toward the original microgravitational application, centripetal accelerations between 0.001 and 0.012 g [where g normal Earth gravitation (.9.8 m/s2)] were considered. For operation in normal Earth gravitation, it would likely be necessary to choose the FBE geometry and the rate of flow to obtain centripetal acceleration comparable to or greater than g.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22996 , NASA Tech Briefs, August 2004; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: The Real-Time Control (RTC) Application Framework is a high-level software framework written in C++ that supports the rapid design and implementation of object-oriented application programs. This framework provides built-in functionality that solves common software development problems within distributed client-server, multi-threaded, and embedded programming environments. When using the RTC Framework to develop software for a specific domain, designers and implementers can focus entirely on the details of the domain-specific software rather than on creating custom solutions, utilities, and frameworks for the complexities of the programming environment. The RTC Framework was originally developed as part of a Space Shuttle Launch Processing System (LPS) replacement project called Checkout and Launch Control System (CLCS). As a result of the framework s development, CLCS software development time was reduced by 66 percent. The framework is generic enough for developing applications outside of the launch-processing system domain. Other applicable high-level domains include command and control systems and simulation/ training systems.
    Keywords: Man/System Technology and Life Support
    Type: KSC-12499 , NASA Tech Briefs, August 2004; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: An improved method of calibrating a large directional radio antenna of the type used in deep-space communication and radio astronomy has been developed. This method involves a raster-scanning-and-measurement technique denoted on-the-fly (OTF) mapping, applied in consideration of the results of a systematic analysis of the entire measurement procedure. Phenomena to which particular attention was paid in the analysis include (1) the noise characteristics of a total-power radiometer (TPR) that is used in the measurements and (2) tropospherically induced radiometer fluctuations. The method also involves the use of recently developed techniques for acquisition and reduction of data. In comparison with prior methods used to calibrate such antennas, this method yields an order-of-magnitude improvement in the precision of determinations of antenna aperture efficiency, and improvement by a factor of five or more in the precision of determination of pointing error and beam width. Prerequisite to a meaningful description of the present method is some background information concerning three aspects of the problem of calibrating an antenna of the type in question: In OTF mapping measurements in which a TPR is used, the desired data are the peak temperature corresponding to a radio source, the pointing offset when the antenna is commanded to point toward the source, and the shape of the main lobe of the antenna beam, all as functions of the antenna beam elevation and azimuth angles. These data enable one to calculate the (1) antenna aperture efficiency by comparing the measured peak temperature with that expected for a 100-percent-efficient antenna, (2) the mechanical pointing error resulting from small misalignments of various parts of the antenna structure, and (3) misalignments of the antenna subreflector and other mirrors. For practical reasons having to do with obtaining adequate angular resolution and all-sky coverage, it is necessary to perform azimuth and elevation scans fairly rapidly. Many natural radio sources used in calibrating antennas are only approximately pointlike: some sources subtend angles greater than the beam width of a given antenna. In such a case, the antenna partially resolves the source structure and does not collect all of the radiation emitted by the source. This makes it necessary to estimate how much of the total known radiation from the source would actually be collected by the antenna if it were 100-percent efficient. The resulting estimate, leading to a source-size correction factor, introduces another degree of uncertainty to the measurements. OTF mapping can remove this uncertainty
    Keywords: Man/System Technology and Life Support
    Type: NPO-30648 , NASA Tech Briefs, August 2004; 28-29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A document outlines a computational method that can be incorporated into two prior methods used to invert Global Positioning System (GPS) occultation data [signal data acquired by a low-Earth-orbiting satellite as either this or the GPS satellite rises above or falls below the horizon] to obtain information on altitude-dependent properties of the atmosphere. The two prior inversion methods, known as back propagation and canonical transform, are computationally expensive because for each occultation, they involve numerical evaluation of a large number of diffraction-like spatial integrals. The present method involves an angular-spectrum-based phase-extrapolation approximation in which each data point is associated with a plane-wave component that propagates in a unique direction from the orbit of the receiving satellite to intersect a straight line tangent to the orbit at a nearby point. This approximation enables the use of fast Fourier transforms (FFTs), which apply only to data collected along a straight-line trajectory. The computation of the diffraction-like integrals in the angular-spectrum domain by use of FFTs takes only seconds, whereas previously, it took minutes.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30791 , NASA Tech Briefs, August 2004; 9-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: A novel treatment for retinal degenerative disorders involving transplantation of cells into the eye is currently under development at NASA Ames Research Center and Stanford University School of Medicine. The technique uses bucky paper as a support material for retinal pigment epithelial (RPE) cells, iris pigment epithelial (IPE) cells, and/or stem cells. This technology is envisioned as a treatment for age-related macular degeneration, which is the leading cause of blindness in persons over age 65 in Western nations. Additionally, patients with other retinal degenerative disorders, such as retinitis pigmentosa, may be treated by this strategy. Bucky paper is a mesh of carbon nanotubes (CNTs), as shown in Figure 1, that can be made from any of the commercial sources of CNTs. Bucky paper is biocompatible and capable of supporting the growth of biological cells. Because bucky paper is highly porous, nutrients, oxygen, carbon dioxide, and waste can readily diffuse through it. The thickness, density, and porosity of bucky paper can be tailored in manufacturing. For transplantation of cells into the retina, bucky paper serves simultaneously as a substrate for cell growth and as a barrier for new blood vessel formation, which can be a problem in the exudative type of macular degeneration. Bucky paper is easily handled during surgical implantation into the eye. Through appropriate choice of manufacturing processes, bucky paper can be made relatively rigid yet able to conform to the retina when the bucky paper is implanted. Bucky paper offers a distinct advantage over other materials that have been investigated for retinal cell transplantation - lens capsule and Descemet's membrane - which are difficult to handle during surgery because they are flimsy and do not stay flat.
    Keywords: Man/System Technology and Life Support
    Type: ARC-14940 , NASA Tech Briefs, August 2004; 25-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: A method of rapid, programmable filtering of spectral transmittance, reflectance, or fluorescence data to measure the concentrations of chemical species has been proposed. By programmable is meant that a variety of spectral analyses can readily be performed and modified in software, firmware, and/or electronic hardware, without need to change optical filters or other optical hardware of the associated spectrometers. The method is intended to enable real-time identification of single or multiple target chemical species in applications that involve high-throughput screening of multiple samples. Examples of such applications include (but are not limited to) combinatorial chemistry, flow cytometry, bead assays, testing drugs, remote sensing, and identification of targets. The basic concept of the proposed method is to perform real-time crosscorrelations of a measured spectrum with one or more analytical function(s) of wavelength that could be, for example, the known spectra of target species. Assuming that measured spectral intensities are proportional to concentrations of target species plus background spectral intensities, then after subtraction of background levels, it should be possible to determine target species concentrations from cross-correlation values. Of course, the problem of determining the concentrations is more complex when spectra of different species overlap, but the problem can be solved by use of multiple analytical functions in combination with computational techniques that have been developed previously for analyses of this type. The method is applicable to the design and operation of a spectrometer in which spectrally dispersed light is measured by means of an active-pixel sensor (APS) array. The row or column dimension of such an array is generally chosen to be aligned along the spectral-dispersion dimension, so that each pixel intercepts light in a narrow spectral band centered on a wavelength that is a known function of the pixel position. The proposed method admits of two hardware implementations for computing cross-correlations in real time.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30912 , NASA Tech Briefs, August 2004; 7-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...