ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-03-01
    Print ISSN: 1046-5928
    Electronic ISSN: 1096-0279
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2007-02-01
    Print ISSN: 0006-2960
    Electronic ISSN: 1520-4995
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: This paper discusses the development and design of an experimental test cell for ground-based testing to provide requirements for the Spaceflight Holography Investigation in a Virtual Apparatus (SHIVA) experiment. Ground-based testing of a hardware breadboard set-up is being conducted at Marshall Space Flight Center in Huntsville, Alabama. SHIVA objectives are to test and validate new solutions of the general equation of motion of a particle in a fluid, including particle-particle interaction, wall effects, motion at higher Reynolds Number, and a motion and dissolution of a crystal moving in a fluid. These objectives will be achieved by recording a large number of holograms of particle motion in the International Space Station (ISS) glove box under controlled conditions, extracting the precise three- dimensional position of all the particles as a function of time, and examining the effects of all parameters on the motion of the particles. This paper will describe the mechanistic approach to enabling the SHIVA experiment to be performed in a ISS glove box in microgravity. Because the particles are very small, surface tension becomes a major consideration in designing the mechanical method to meet the experiments objectives in microgravity, To keep a particle or particles in the center of the test cell long enough to perform and record the experiment and to preclude contribution to particle motion, requires avoiding any initial velocity in particle placement. A Particle Injection Mechanism (PIM) designed for microgravity has been devised and tested to enable SHIVA imaging. Also, a test cell capture mechanism, to secure the test cell during vibration on a specially designed shaker table for the SHIVA experiment will be described. Concepts for flight design are also presented.
    Keywords: Instrumentation and Photography
    Type: 41st Aerospace Sciences Meeting and Exhibit; Jan 06, 2003 - Jan 09, 2003; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: To NASA unfunded & planned missions: This new capability to sense proximity, flexibly align to, and attractively grip and capture practically any object in space without any pre-designed physical features or added sensors or actuators will enable or enhance many of MSFC's strategic emphasis areas in space transportation, and space systems such as: 1. A Flexible Electrostatic gripper can enable the capture, gripping and releasing of an extraterrestrial sample of different minerals or a sample canister (metallic or composite) without requiring a handle or grapple fixture.(B) 2. Flexible self-aligning in-space capture/soft docking or berthing of ISS resupply vehicles, pressurized modules, or nodes for in-space assembly and shielding, radiator, and solar Array deployment for space habitats (C) 3. The flexible electrostatic gripper when combined with a simple steerable extendible boom can grip, position, and release objects of various shapes and materials with low mass and power without any prior handles or physical accommodations or surface contamination for ISS experiment experiments and in-situ repair.(F)(G) 4. The Dexterous Docking concept previously proposed to allow simple commercial resupply ships to station-keep and capture either ISS or an Exploration vehicle for supply or fluid transfer lacked a self-sensing, compliant, soft capture gripper like FETCH that could retract and attach to a CBM. (I) 5. To enable a soft capture and de-orbit of a piece of orbital debris will require self-aligning gripping and holding an object wherever possible (thermal coverings or shields of various materials, radiators, solar arrays, antenna dishes) with little or no residual power while adding either drag or active low level thrust.(K) 6. With the scalability of the FETCH technology, small satellites can be captured and handled or can incorporate FETCH gripper to dock to and handle other small vehicles and larger objects for de-orbiting or mitigating Orbital debris (L) 7. Many of previous MSFC and NASA proposals or concepts can now be realized or simplified by the development of the this initial and future FETCH grippers including commercial resupply, Exploration vehicle assembly, Satellite servicing, and orbital debris removal since a major part of these missions is to align to and capture some handle. Completed Project (2013 - 2014) Flexible Electrostatic Technology for Capture & Handling Project Center Innovation Fund: MSFC CIF Program | Space Technology Mission Directorate (STMD) For more information visit techport.nasa.gov Some NASA technology projects are smaller (for example SBIR/STTR, NIAC and Center Innovation Fund), and will have less content than other, larger projects. Newly created projects may not sensors or injection of permanent adhesives. With gripping forces estimated between 0.5 and 2.5 pounds per square inch or 70-300 lb./sq. ft. of surface contact, the FETCH can turn-on and turn-off rapidly and repeatedly to enable sample handling, soft docking, in-space assembly, and precision relocation for accurate anchor adhesion.
    Keywords: Spacecraft Design, Testing and Performance
    Type: CIF 14-025 , M15-4811
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: This thesis will evaluate a passively cooled cylindrical spectrometer array in lunar orbit characterizing the thermal response in order to provide context for decision-making to scientists and engineers. To provide perspective on thermal issues and controls of space science instruments, a background search of historical lunar missions is provided. Next, a trial science mission is designed and analyzed which brings together the elements of the background search, lunar orbit environment and passive cooling. Finally, the trial science mission analysis results are provided along with the conclusions drawn. Scintillators are materials that when struck by particle radiation, absorb the particle energy which is then reemitted as light in or near the visible range. Nuclear astrophysics utilizes scintillating materials for observation of high-energy photons which are generated by sources such as solar flares, supernovae and neutron stars. SPMs are paired with inorganic scintillators to detect the light emitted which is converted into electronic signals. The signals are captured and analyzed in order to map the number and location of the high-energy sources. The SPM is utilized as it has single photon sensitivity, low voltage requirements and a fast response. SPMs are also compact, relatively inexpensive and allow the usage of lower-cost scintillating materials within the spectrometer. These characteristics permit large-area arrays while lowering cost and power requirements. The ability of a spectrometer to record and identify the interaction of high-energy photons for scientific return is not a trivial matter. Background noise is generated when particles that have not originated from the desired distant source impact the spectrometer. Additionally, thermally induced electrical signals are randomly generated within the SPM even in the absence of light which is referred to as dark current. Overcoming these obstacles requires greater light emittance and energy resolution with reduced dark current. Strong scintillation photon emittance ensures that low energy impacts will produce enough visible photons to be detected by the SPM. Higher energy resolution will ensure that single photon impacts can be distinguished from others of similar wavelength and energy; reduced dark current decreases the generation of random signals not associated with a photon impact. Increasing efficiency in each of these properties in a spectrometer comprised of inorganic scintillators and SPMs requires low temperatures. Low temperature maintenance in a lunar environment presents many unique challenges of its own. Even with the accumulated successes of past missions, the lunar environment remains a thermal challenge for engineers. The lunar orbit thermal environment is driven by radiation from three sources, direct solar radiation, reflected solar radiation from the lunar surface (albedo) and lunar radiation (Clawson 2002). Direct solar radiation values are consistent with those seen in Earth orbit (1325 W/m2) (Clawson 2002). The percentage of solar radiation reflected from the moon is consistently very low with the moon's dark regolith covered surface absorbing nearly 90% of the incident light (Clawson 2002). Yet, it is this absorption that gives the lunar orbit environment one of its most difficult thermal attributes as the absorbed solar radiation is released from the lunar surface as infrared radiation (IR). IR is of a wavelength that is readily absorbed by surfaces designed to function as radiation emitters. It is practical to therefore "choose radiator locations and spacecraft attitude to minimize radiator views to the lunar surface, when possible...pointing the radiator towards the sun to some extent, to minimize its view to the lunar surface, is frequently preferable. (Clawson 2002)" Additionally, the amount of direct solar radiation, lunar IR and albedo an orbiting satellite receives varies from one side of the moon to the other as the moon blocks the sun from view. This environment produces large temperature variations in a satellite's instrumentation, control electronics and propulsion systems which must be understood to characterize operating temperature envelopes.
    Keywords: Space Sciences (General); Astrophysics
    Type: M14-3252
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A paper describes a demonstration of the X-38 bolt-retractor system (BRS) on a spacecraft-simulating apparatus, called the Large Mobility Base, in NASA's Flight Robotics Laboratory (FRL). The BRS design was proven safe by testing in NASA's Pyrotechnic Shock Facility (PSF) before being demonstrated in the FRL. The paper describes the BRS, FRL, PSF, and interface hardware. Information on the bolt-retraction time and spacecraft-simulator acceleration, and an analysis of forces, are presented. The purpose of the demonstration was to show the capability of the FRL for testing of the use of pyrotechnics to separate stages of a spacecraft. Although a formal test was not performed because of schedule and budget constraints, the data in the report show that the BRS is a successful design concept and the FRL is suitable for future separation tests.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31874 , NASA Tech Briefs, September 2004; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...