ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (287)
  • 2000-2004  (287)
  • 1980-1984
  • 2002  (287)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Jones first suggested that the inverse covariation of initial epsilon (Nd-143) and Sr-87/Sr-86 of the shergottites could be explained by interaction between mantle-derived magmas with another isotopic reservoir(s) (i.e., assimilation or contamination). In that model, magmas were generated in a source region that was isotopically similar to the Nakhla source and the second reservoir(s) was presumed to be crust. The text also permitted the second reservoir to be another type of mantle, but I can confirm that a second mantle reservoir was never seriously considered by that author. Other features of this model were that (i) it occurred at a particular time, 180 m.y. ago, and (ii) the interacting reservoirs had been separated at approximately 4.5 b.y. In a later paper Jones explored this mixing model more quantitatively and concluded that magmas from a Nakhla-like source region at 180 m.y. would fall on or near an isotopic Nd-Sr-Pb hyperplane defined by the shergottites. This criterion was a necessary prerequisite for the parent magma(s) of the shergottites to have initially been Nakhla-like isotopically. At this juncture, it is perhaps worthwhile to note that this mixing model was not presented to explain geochemical variations but as a justification for a 180 m.y. crystallization age for the shergottites and a 1.3 b.y. crystallization age for the nakhlites. In the mid-1980's crystallization ages estimated for Nakhla ranged from approximately 1.3 b.y to 4.5 b.y. Similarly, preferred crystallization ages for the shergottites ranged from 360 m.y., to 1.3 b.y., to 4.5 b.y. In all these models, the 180 m.y. event seen in the shergottites was deemed to be metamorphic. The fit between the Nakhla-like source region and the shergottite hyperplane was a validation both of the 1.3 b.y. igneous age of Nakhla and the 180 m.y. igneous age of the shergottites.
    Keywords: Astrophysics
    Type: Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites; 27-28; LPI-Contrib-1134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Radar is a powerful source of information about the physical and dynamical properties of solar system bodies. Radar-detected targets include the Moon, Mercury, Mars, Venus, Phobos, Io, Europa, Ganymede, Callisto, Titan, Iapetus, Saturn's rings, eight comets, and 179 asteroids (75 main-belt and 104 near-Earth). This talk offers a perspective on the disc-integrated radar properties of solar system bodies and then turns to what radar remote sensing can tell us about asteroids using spatially-resolved measurements.
    Keywords: Astrophysics
    Type: Solar System Remote Sensing; 59-60; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: In the past two decades, photometric models developed by Bruce Hapke have been fit to a wide range of bodies in the Solar System: The Moon, Mercury, several asteroids, and many icy and rocky satellites. These models have enabled comparative descriptions of the physical attributes of planetary surfaces, including macroscopic roughness, particle size and size-distribution, the single scattering albedo, and the compaction state of the optically active portion of the regolith. One challenging type of body to observe and model, a cometary nucleus, awaited the first space based mission to obtain images unobscured by coma. The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family comet 19/P Borrelly on September 22, 2001, about 8 days after perihelion. Prior to its closest approach of 2171 km, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet, representing the first closeup, unobscured view of a comet's nucleus. At closest approach, corresponding to a resolution of 47 meters per pixel, the intensity of the coma was less than 1% of that of the nucleus. An unprecedented range of high solar phase angles (52-89 degrees), viewing geometries that are in general attainable only when a comet is active, enabled the first quantitative and disk-resolved modeling of surface photometric physical parameters.
    Keywords: Astrophysics
    Type: Solar System Remote Sensing; 7; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-23
    Description: We use Monte Carlo methods to simulate impacts of ecliptic comets on the synchronously rotating satellites of giant planets. We reconfirm the long-standing prediction that the cratering rate should be much higher on the leading hemispheres than on the trailing hemisphere; indeed we find that previously published analytical formulations modestly underestimate the degree of apex-antapex asymmetry to be expected. We then compare our results to new mapping of impact craters on Ganymede, Callisto, and Triton. Ganymede reveals a pronounced apex-antapex asymmetry that is nonetheless much less than predicted. All of Triton's confirmed impact craters are clustered toward the apex of motion, far exceeding the predicted asymmetry. No asymmetry is observed on Callisto. In each case at least one of our basic assumptions must be wrong. Likely candidates include the following: (i) the surfaces of all but the most sparsely cratered satellites are saturated or nearly saturated with impact craters; (ii) these satellites have rotated nonsynchronously over geological time; (iii) most of the craters are made not by heliocentric (Sun-orbiting) comets and asteroids but rather by planetocentric (planet-orbiting) debris of indeterminate origin; or (iv) pathological endogenic resurfacing has created illusions of structure. Callisto's surface is readily classified as nearly saturated. Ganymede's bright terrains, although less heavily cratered than those of Callisto, can also be explained by crater densities approaching saturation on a world where endogenic processes were active. The leading alternative is nonsynchronous rotation, an explanation supported by the distribution of catenae (crater chains produced by impact of tidally disrupted comets). Triton's craters can be explained by planetocentric debris or by capricious resurfacing, but both hypotheses are inherently improbable.
    Keywords: Astrophysics
    Type: Icarus (ISSN 0019-1035); Volume 153; 111-129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-23
    Description: We report the discovery with the Proportional Counter Array on board the Rossi X-Ray Timing Explorer of a 450 Hz quasi-periodic oscillation (QPO) in the hard X-ray flux from the Galactic microquasar GRO J1655-40. This is the highest frequency QPO modulation seen to date from a black hole. The QPO is detected only in the hard X-ray band above approx. 13 keV. It is both strong and narrow, with a typical rms (root mean square) amplitude of 4.5% in the 13-27 keV range and a width of approx. 40 Hz (FWHM). For two observations in which we detect the 450 Hz QPO, a previously known approx. 300 Hz QPO is also observed in the 2-13 keV band. We show that these two QPOs sometimes appear simultaneously, thus demonstrating the first detection of a pair of high-frequency QPOs in a black hole system. Prior to this, pairs of high-frequency QPOs have been detected only in neutron star systems. GRO J1655-40 is one of only a handful of black hole systems with a good dynamical mass constraint. For a nonrotating black hole with mass between 5.5 and 7.9 solar masses, the innermost stable circular orbit (ISCO) ranges from 45 to 70 km. For any mass in this range the radius at which the orbital frequency reaches 450 Hz is less than the ISCO radius, indicating that, if the modulation is caused by Kepler motion, the black hole must have appreciable spin. If the QPO frequency is set by the orbital frequency of matter at the ISCO, then for this mass range the dimensionless angular momentum lies in the range 0.15 〈 j 〈 0.5. Moreover, if the modulation is caused by oscillation modes in the disk or Lense-Thirring precession, then this would also require a rapidly rotating hole. We briefly discuss the implications of our findings for models of X-ray variability in black holes and neutron stars.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 552; L49-L53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-23
    Description: We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.
    Keywords: Astrophysics
    Type: The Astrophysical Journal Supplement Series; Volume 139; 539-563
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-29
    Description: I discuss recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. I also discuss the connections between these topics.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-29
    Description: We report on ASCA observations of the coronally active companion star in the post-common envelope binary V471 Tau. While it would be prudent to check the following results with grating spectroscopy, we find that a single-temperature plasma model does not fit the data. Two temperature models with variable abundances indicate that Fe is underabundant compared to the Hyades photospheric mean, whereas, the high first ionization potential element Ne is overabundant. This is indicative of the inverse first ionization effect, believed to result from the fractionation of ionized material by the magnetic field in the upper atmosphere of the star. Evolutionary calculations indicate that there should be no peculiar abundances on the companion star resulting from the common envelope epoch. Indeed, we find no evidence for peculiar abundances, although uncertainties are high.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-29
    Description: The most straightforward manner of determining masses and radii of neutron stars is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere; such a measurement would provide direct constraints on the mass-to-radius ratio of the neutron star, and therefore on the equation of state for neutron star matter. Using data taken with the Reflection Grating Spectrometer on board the XMM-Newton observatory we identify, for the first time, significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO 0748-676. The most significant features are consistent with the Fe XXVI and XXV n=2-3 and O VIII n=1-2 transitions, with a redshift of z=0.35, identical within small uncertainties for the different transitions. This constitutes the first direct and unambiguous measurement of the gravitational redshift in a neutron star.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-08-29
    Description: We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (〈 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external check on the UV estimates of the star formation rates, and on the use of X-ray luminosities to infer these rates in rapidly starforming galaxies at high redshift.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-08-29
    Description: Using the exact solution of the axisymmetric pulsar magnetosphere derived in a previous publication and the conservation laws of the associated MHD flow, we show that the Lorentz factor of the outflowing plasma increases linearly with distance from the light cylinder. Therefore, the ratio of the Poynting to particle energy flux, generically referred to as sigma, decreases inversely proportional to distance, from a large value (typically approx. greater than 10(exp 4)) near the light cylinder to sigma approx. = 1 at a transition distance R(sub trans). Beyond this distance the inertial effects of the outflowing plasma become important and the magnetic field geometry must deviate from the almost monopolar form it attains between R(sub lc), and R(sub trans). We anticipate that this is achieved by collimation of the poloidal field lines toward the rotation axis, ensuring that the magnetic field pressure in the equatorial region will fall-off faster than 1/R(sup 2) (R being the cylindrical radius). This leads both to a value sigma = a(sub s) much less than 1 at the nebular reverse shock at distance R(sub s) (R(sub s) much greater than R(sub trans)) and to a component of the flow perpendicular to the equatorial component, as required by observation. The presence of the strong shock at R = R(sub s) allows for the efficient conversion of kinetic energy into radiation. We speculate that the Crab pulsar is unique in requiring sigma(sub s) approx. = 3 x 10(exp -3) because of its small translational velocity, which allowed for the shock distance R(sub s) to grow to values much greater than R(sub trans).
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-08-29
    Description: Asteroid 951 Gaspra appears to be in an obliquity resonance with its spin increasing due to the YORP effect. Gaspra, an asteroid 5.8 km in radius, is a prograde rotator with a rotation period of 7.03 hours. A three million year integration indicates its orbit is stable over at least this time span. From its known shape and spin axis orientation and assuming a uniform density, Gaspra's axial precession period turns out to be nearly commensurate with its orbital precession period, which leads to a resonance condition with consequent huge variations in its obliquity. At the same time its shape is such that the Yarkovsky-O'Keefe-Radzievskii-Paddack effect (YORP effect for short) is increasing its spin rate. The YORP cycle normally leads from spin-up to spin-down and then repeating the cycle; however, it appears possible that resonance trapping can at least temporarily interrupt the YORP cycle, causing spin-up until the resonance is exited. This behavior may partially explain why there is an excess of fast rotators among small asteroids. YORP may also be a reason for small asteroids entering resonances in the first place.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-08-29
    Description: We present the results of an investigation of the effects of Far Ultraviolet (FUV) radiation (6.0eV 〈 hv 〈 13.6eV) from hot early type OB stars on clumps in star-forming molecular clouds. Clumps in FUV-illuminated regions (or photodissociation regions or PDRs) undergo external heating and photodissociation as they are exposed to the FUV field, resulting in a loss of cold, molecular lump mass as it is converted to warm atomic gas. The heating, if rapid, creates strong photoevaporative mass flows off the clump surfaces, and drives shocks into the clumps, compressing them to high densities. The clumps lose mass on relatively short timescales. The evolution of an individual clump is found to be sensitive to three dimensionless parameters: Nc0, the ratio of the initial column density of the clump to the column N(0) approx. 10(exp 21) cm(exp -2) of a warm FUV-heated surface region; upsilon, the ratio of the sound speed in the heated surface to that in the cold clump material: and t(FUV)t(c), the ratio of the "turn-on time" t(FUV) of the heating flux on a clump to its initial sound crossing-time t(c). The evolution also depends on whether a confining interclump medium exists, or whether the interclump region has negligible pressure, as is the case for turbulence-generated clumps. In this paper, we use spherical 1-D numerical hydrodynamic models as well as approximate analytical models to study the dependence of clump photoevaporation on the physical parameters of the clump, and to derive the dynamical evolution, mass loss rates and photoevaporative timescales of a clump for a variety of astrophysical situations. Turbulent clumps evolve so that their column densities are equal to a critical value determined by the local FUV field, and typically have short photo evaporation timescales, approx. 10(exp 4-5) years for a 1 M(solar mass) clump in a typical star-forming region (Nc0 = 10, upsilon = 10). Clumps with insufficient magnetic pressure support, and in strong FUV fields may be driven to collapse by the compressional effect of converging shock waves. We also estimate the rocket effect on photoevaporating clumps and find that it is significant only for the smallest clumps, with sizes much less than the extent of the PDR itself. Clumps that are confined by all interclump medium may either get completely photoevaporated, or may preserve a shielded core with a warm, dissociated, protective shell that, absorbs the incident FUV flux. We compare our results with observations of some well studied PDRs: the Orion Bar, M17SW NGC 2023 and the Rosette Nebula. The data are consistent with both interpretations of clump origin. turbulence and pressure confinement, with a slight indication for favouring the turbulent model for clumps over pressure-confined
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-08-29
    Description: We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-08-29
    Description: The primary ultrahigh energy particles which produce giant extensive air showers in the Earth atmosphere present an intriguing mystery from two points of view: (1) How are the base particles produced with such astounding energies, eight orders of magnitude higher than those produced by the best man-made terrestrial accelerators? (2) Since they are most likely extragalactic in origin, how do they reach us from extragalactic distances without suffering the severe losses expected from interactions with the 2.7 K thermal cosmic background photons, the so called GZK effect? The answers to these questions may involve new physics: violations of special relativity, grand unification theories, and quantum gravity theories involving large extra dimensions. They may involve new astrophysical sources, "zevatrons". Or some heretofore totally unknown physics or astrophysics may hold the answer. I will discuss here the mysteries involving the production and extragalactic propagation of ultrahigh energy cosmic rays and some suggested possible solutions.
    Keywords: Astrophysics
    Type: 7th Paris Cosmology Colloquium on High Energy Astrophysics for and from Space; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-08-29
    Description: A pulse timing orbit has been obtained for the X-ray binary XTEJ1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of approximately 16 solar mass together with the detection of an extended near-total eclipse confirm that the primary star is supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A.= 18 hr 55 min 31.3 sec, decl.= -02 deg 36 min 24.0 sec (2000) with an estimated systematic uncertainty of less than 12 min. A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-08-29
    Description: We report the discovery with the Proportional Counter Array on board the Rossi X-ray Timing Explorer of highly coherent 582 Hz pulsations during the February 22, 2001 (UT) 'superburst' from 4U 1636-53. The pulsations are detected during an 800 s interval spanning the flux maximum of the burst. Within this interval the barycentric oscillation frequency increases in a monotonic fashion from 581.89 to 581.93 Hz. The predicted orbital motion of the neutron star during this interval is consistent with such an increase as long as optical maximum corresponds roughly with superior conjunction of V801 Arae, the optical companion to the neutron star in 4U 1636-53. We show that a range of circular orbits with 90 〈 v(sub ns) sin i 〈 175 km/s and 0.336 〉 phi(sub 0) 〉 0.277 for the neutron star can provide an excellent description of the frequency and phase evolution. The brevity of the observed pulse train with respect to the 3.8 hour orbital period unfortunately does not allow more precise constraints. The average pulse profile is sinusoidal and the time averaged pulsation amplitude, as inferred from the half amplitude of the sinusoid is 1%, smaller than typical for burst oscillations observed in normal thermonuclear bursts. We do not detect any higher harmonics nor the putative subharmonic near 290 Hz. The 90% upper limits on signal amplitude at the subharmonic and first harmonic are 0.1 and 0.06%, respectively. The highly coherent pulsation, with a Q = v(sub 0)/delta-v 〉 4.5 x 10(exp 5) provides compelling evidence for a rapidly rotating neutron star in 4U 1636-53, and further supports the connection of burst oscillation frequencies with the spin frequencies of neutron stars. Our results provide further evidence that some millisecond pulsars are spun up via accretion in LMXBs. We also discuss the implications of our orbital velocity constraint for the masses of the components of 4U 1636-53.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-08-29
    Description: Three protoplanetary disks in the giant H II region NGC 3603, originally found by HST (Hubble Space Telescope) + VLT (Very Large Telescope), have been detected with the ATCA (Australia Telescope Compact Array) at 3 and 6 cm. All three ProPlyDs (protoplanetary disks) are clearly resolved, showing a head-tail extent of approx. 4 inches. Proplyd 3 shows the most pronounced head-tail structure with a 3 cm flux density ratio between head and tail of about 10:1. The tail is very well defined and at least 2 inches long, pointing away from the central star cluster. Unfortunately, ProPlyD 3 is rather faint in the low-sensitivity HST broad band image shown by Brandner et al.; it is located outside the region of their high sensitivity HST H(alpha) image.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-08-29
    Description: Chandra observations of the core of the nearby starburst galaxy NGC 253 reveal a heavily absorbed source of hard X-rays embedded within the nuclear starburst region. The source has an unabsorbed, 2 to 10 keV luminosity of greater than or equal to 10(exp 39) erg per s and photoionizes the surrounding gas. We observe this source through a dusty torus with a neutral absorbing column density of N(sub eta) approximately 2 x 10(exp 23)cm (exp -2). The torus is hundreds of pc across and collimates the starburst-driven nuclear outflow. We suggest that the ionizing source is an intermediate-mass black hole or a weakly accreting supermassive black hole, which may signal the beginnings or endings of AGN (active galactic nuclei) activity.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-08-29
    Description: We combine ASCA and RXTE data of V1062 Tau to confirm the presence of a 62-min X-ray pulsation. We show that the pulsation is caused largely by the variation of dense partial absorption, in keeping with current models of accretion onto magnetic white dwarfs. Further parameterisation of the spin pulse is, however, hampered by ambiguities in the models.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-29
    Description: X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six ultraluminous binaries in the nearby spiral galaxy, M101, obtained with Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-08-29
    Description: The burst oscillations seen during Type 1 X-ray bursts from low mass X-ray binaries (LMXB) typically evolve in period towards an asymptotic limit that likely reflects the spin of the underlying neutron star. If the underlying period is stable enough, measurement of it at different orbital phases may allow a detection of the Doppler modulation caused by the motion of the neutron star with respect to the center of mass of the binary system. Testing this hypothesis requires enough X-ray bursts and an accurate optical ephemeris to determine the binary phases at which they occurred. We present here a study of the distribution of asymptotic burst oscillation periods for a sample of 26 bursts from 4U 1636-53 observed with the Rossi X-ray Timing Explorer (RXTE). The burst sample includes both archival and proprietary data and spans more than 4.5 years. We also present new optical light curves of V801 Arae, the optical counterpart of 4U 1636-53, obtained during 1998-2001. We use these optical data to refine the binary period measured by Augusteijn et al. to 3.7931206(152) hours. We show that a subset of approx. 70% of the bursts form a tightly clustered distribution of asymptotic periods consistent with a period stability of approx. 1 x 10(exp -4). The tightness of this distribution, made up of bursts spanning more than 4 years in time, suggests that the underlying period is highly stable, with a time to change the period of approx. 3 x 10(exp 4) yr. This is comparable to similar numbers derived for X-ray pulsars. We investigate the period and orbital phase data for our burst sample and show that it is consistent with binary motion of the neutron star with v(sub ns) sin i 〈 38 and 50 km/s at 90 and 99% confidence, respectively. We use this limit as well as previous radial velocity data to constrain the binary geometry and component masses in 4U 1636-53. Our results suggest that unless the neutron star is significantly more massive than 1.4 solar masses the secondary is unlikely to have a mass as large as 0.36 solar masses, the mass estimated assuming it is a main sequence star which fills its Roche lobe. We show that a factor of 3 increase in the number of bursts with asymptotic period measurements should allow a detection of the neutron star velocity.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-23
    Description: We describe the first intercontinental planetary radar test performed in Italy observing the near Earth asteroid (NEA) 33342 (1998 WT24) in December 2001 by means of the bistatic configurations Goldstone (California, USA)-Medicina (Italy) and Evpatoria (Ukraine)-Medicina. The experiment goal was to characterize the system for realtime radar follow-up observations of NEAs and artificial orbiting debris, in the framework of a feasibility study which aims at using the Sardinia Radio Telescope, at present under construction, also as a planetary radar facility. We report the preliminary results of the radar observations carried out by the IRA-CNR (Instituto di Radioastronomia - Consiglio Nazionale delle Ricerche) and the OATo (Osservatorio Astronomico di Torino) groups, aimed at exploring the scientific potentials of a new space radar program, using the existing facilities in Italy. The planetary radar technique is uniquely capable of investigating geometry and surface properties of various solar system objects, demonstrating advantages over the optical methods in its high spatial resolution and ability to obtain three-dimensional images. A single radar detection allows to obtain extremely accurate orbital elements, improving the instantaneous positional uncertainties by orders of magnitude with respect to an optically determined orbit. Radar is a powerful means to spatially resolve NEAs by measuring the distribution of the echo power in time delay (range) and Doppler frequency (line-of-sight velocity) with extreme precision in each coordinate, as it provides detailed information about the target physical properties like size, shape, rotation, near-surface bulk density and roughness and internal density distribution. The Medicina 32m antenna had been successfully used for the first time as the receiving part of a bistatic configuration during a test experiment (September 2001) held to check the capabilities of the entire data acquisition system. This test was possible thanks to the collaboration undertaken with the Evpatoria radar station, and consisted in the observation of the ETALON-1 low orbit satellite
    Keywords: Astrophysics
    Type: Solar System Remote Sensing; 65; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-08-29
    Description: The infrared and ultraviolet spectra of planetary nebula NGC 2440 is presented. The observations were made respectively by the Infrared Space Observatory (ISO) and International Ultraviolet Explorer (IUE) These data, in conjunction with published optical observations have been used to derive electron temperature and density. A trend of electron temperature with ionization potential is found. In particular the electron temperature increases from 11000 to 18000 K with increasing IBM. The electron density has a constant value of 4500/cu cm in agreement with previous determination. The chemical abundance has been derived for the following elements; helium, carbon, nitrogen, oxygen, neon, sulfur and argon. The ionization correction factor turns out to be very small (almost unnecessary) for all species except sulfur.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-08-29
    Description: The ISO and IUE spectra of the elliptical nebula NGC 5315 is presented. These spectra axe combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous determinations. The HST Nicmos observations of the nebula in 3 emission lines are also presented. These observations are used to determine the helium abundance as a function of position in the nebula. A discussion is given of possible evolutionary effects.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-08-29
    Description: This paper discusses the development of a linear control algorithm for formations in the vicinity of the L2 sun-Earth libration point. The development of a simplified extended Kalman filter is included as well. Simulations are created for the analysis of the stationkeeping and various formation maneuvers of the Stellar Imager mission. The simulations provide tracking error, estimation error, and control effort results. For formation maneuvering, the formation spacecraft track to within 4 meters of their desired position and within 1.5 millimeters per second of their desired zero velocity. The filter, with few exceptions, keeps the estimation errors within their three-sigma values. Without noise, the controller performs extremely well, with the formation spacecraft tracking to within several micrometers. Each spacecraft uses around 1 to 2 grams of propellant per maneuver, depending on the circumstances.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: American Astronomical Society 199th Meeting; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-08
    Description: Using second-epoch HST imaging of the unusual, bipolar jet source Hen 2-90, we have discovered proper motions of 0.03 arcsec yr-1 in the jet knots.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-08
    Description: We compute the spectral correlation function (SCF) of CO J=1-0 maps of moleculary cloud complexes. The SCF is a power law over approximately an order of magnitude in spatial separation in every map. The power law slope of the SCF, its normalization, and the spectral line width averaged over the whole map, are computed for all the observational maps.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-08
    Description: We find that our analytic model reproduces the observed X-ray luminosity of HH 2, and we propose that HH 80/81 is a good candidate for future observations with Chandra.
    Keywords: Astrophysics
    Type: Astrophysical Journal Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-08
    Description: We present results of numerical simulations carried out with a 2D radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M star.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-08
    Description: We investigate the number of physical companion galaxies for a sample of relatively isolated elliptical galaxies. The NASA/IPAC Extragalactic Database (NED) has been usedto reinvestigate the incidence of satellite galaxies for a sample of 34 elliptical galaxies, firstinvestigated by Bothun & Sullivan (1977) using a visual inspection of Palomar Sky Survey prints out to a projected search radius of 75 kpc. We have repeated their original investigation usingdata cataloged data in NED. Nine of these ellipticals appear to be members of galaxy clusters:the remaining sample of 25 galaxies reveals an average of +1.0 f 0.5 apparent companions per galaxy within a projected search radius of 75 kpc, in excess of two equal-area comparisonregions displaced by 150-300 kpc. This is nearly an order of magnitude larger than the +0.12+/- 0.42 companions/galaxy found by Bothun & Sullivan for the identical sample. Making use of published radial velocities, mostly available since the completion of the Bothun-Sullivan study,identifies the physical companions and gives a somewhat lower estimate of +0.4 companions per elliptical. This is still a factor of 3x larger than the original statistical study, but giventhe incomplete and heterogeneous nature of the survey redshifts in NED, it still yields a firmlower limit on the number (and identity) of physical companions. An expansion of the searchradius out to 300 kpc, again restricted to sampling only those objects with known redshifts in NED, gives another lower limit of 4.3 physical companions per galaxy. (Excluding fiveelliptical galaxies in the Fornax cluster this average drops to 3.5 companions per elliptical.)These physical companions are individually identified and listed, and the ensemble-averagedradial density distribution of these associated galaxies is presented. For the ensemble, the radial density distribution is found to have a fall-off consistent with p c( R^-0.5 out to approximately150 kpc. For non-Fornax cluster companions the fall-off continues out to the 300-kpc limit of thesurvey. The velocity dispersion of these companions is found to be constant with projected radial distance from the central elliptical, holding at a value of approximately +/- 300-350 km/sec overall.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-08
    Description: The strong propensity of the SOHO sungrazing comets for clustering is a product of their runaway fragmentation throughout the orbit about the Sun.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: Applied Superconductivity Conference 2002; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-08
    Description: We present three sets of ROSAT PSPC and four sets of ASCA observations of the supernova remnant (SNR) W28. The overall shape of x-ray emission in W28 is elliptical, dominated by a centrally-concentrated interior emission, sharply peaked at the center. There are also partial northeastern and southwestern shells, and both central and shell x-ray emission is highly patchy.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-08
    Description: In this paper, the polarized intensity measurements of the Fe XIII 10747 A line described by Arnaud are placed, for the first time, in the context of the corresponding pB images from the HAO Mauna Loa MkIII K-Coronameter, which first became available in 1980. It is shown how the predominance of the radial direction of the coronal magnetic field at solar maximum is consistent with radially expanding magnetic field lines coexisting with the large-scale structures associated with streamers.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-08
    Description: Supernova remnants may exhibit both thermal and nonthermal X-ray emission. In a previous study with ASCA data, we found that the middle-aged supernova remnant RCW 86 showed evidence for both processes, and predicted that observations with much higher spatial resolution would distinguish harder X-rays, which we proposed were primarily synchrotron emission, from softer, thermal X-rays. Here we describe Chandra observations which amply confirm our predictions.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-08
    Description: Optical broad-band polarimetry is presented for near-infrared color-selected active galactic nuclei (AGN) classified as quasi-stellar objects (QSOs) based on their Ks-band luminosity.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-11
    Description: HERO's are objects which are very red in NIR colors. We report the discovery of a HERO in the field which includes a known radio galaxy, 53WOO2, and a possible cluster of glaxies both at z = 2.39.
    Keywords: Astrophysics
    Type: Astrophysical Journal Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: Astrophysical systems present an intriguing set of challenges for laboratory chemists. Chemistry occurs in regions considered an excellent vacuum by laboratory standards and at temperatures that would vaporize laboratory equipment. Outflows around Asymptotic Giant Branch (AGB) stars have timescales ranging from seconds to weeks depending on the distance of the region of interest from the star and, on the way significant changes in the state variables are defined. The atmospheres in normal stars may only change significantly on several billion-year timescales. Most laboratory experiments carried out to understand astrophysical processes are not done at conditions that perfectly match the natural suite of state variables or timescales appropriate for natural conditions. Experimenters must make use of simple analog experiments that place limits on the behavior of natural systems, often extrapolating to lower-pressure and/or higher-temperature environments. Nevertheless, we argue that well-conceived experiments will often provide insights into astrophysical processes that are impossible to obtain through models or observations. This is especially true for complex chemical phenomena such as the formation and metamorphism of refractory grains under a range of astrophysical conditions. Data obtained in our laboratory has been surprising in numerous ways, ranging from the composition of the condensates to the thermal evolution of their spectral properties. None of this information could have been predicted from first principals and would not have been credible even if it had.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 213-216; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on measurements of photoelectric emission and radiation pressure on single isolated 0.2 to 6.6 micron size silica particles exposed to UV radiation at 120-200 nm and green laser light at 532 nm are presented.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 180-184; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-06
    Description: Much of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. Their low temperatures preclude most chemical reactions, but ionizing radiation can drive reactions that produce a suite of new species, many of which are complex organics. The Astrochemistry Lab at NASA Ames studies the UV radiation processing of interstellar ice analogs to better identify the resulting products and establish links between interstellar chemistry, the organics in meteorites, and the origin of life on Earth. Once identified, the spectral properties of the products can be quantified to assist with the search for these species in space. Of particular interest are findings that UV irradiation of interstellar ice analogs produces molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 198-200; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-06
    Description: The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --〉 O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 117-119; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: 200th AAS Meeting; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: SC2002; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: Winds, Bubbles and Explosions; Patzcuaro, Michoacan; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: The Physics of Relativistic Jets in the CHANDRA and XMM Era; Bologna; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: Supersonic turbulence fragments the interstellar medium into dense sheets, filaments, cores and large low density voids, thanks to a complex network of highly radioactive shocks. The turbulence is driven on the large scale predominantly by super novae. While on large scale the magnetic energy is in approximate equipartition with the kinetic energy of the turbulence, on the scale of a few pc the turbulent kinetic energy exceeds the magnetic energy.
    Keywords: Astrophysics
    Type: Simulations of MHD Turbulence in Astrophysics: Recent Achievements and Perspectives; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-08
    Description: In this paper we present optical long-slit spectroscopy and imaging of the protoplanetary nebula CRL 618. The optical lobes of CRL 618 consist of shock-excited gas, which emits many recombination and forbidden lines, and dust, which scatters light from the innermost regions.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 578; 269-289
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-06
    Description: Tremendous strides have been made in the understanding of interstellar material over the past twenty years thanks to significant, parallel developments in two closely related areas: observational IR astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely unknown and the notion of abundant, gas phase, polycyclic aromatic hydrocarbons (PAHs) anywhere in the interstellar medium (ISM) considered impossible. Today the dust composition of the diffuse and dense ISM is reasonably well constrained and the spectroscopic case for interstellar PAHs, impossibly large molecules by early interstellar chemistry standards, is very strong. PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. Aromatic carbon-rich materials ranging in size from PAHs and PAH nanoclusters, to sub-micron and micron-sized dust grains represent an important component of the ISM. These species: (1) dominate the heating and cooling of interstellar clouds via energetic photoelectron ejection and infrared (IR) emission; (2) moderate the ionization balance in photodissociation regions and molecular clouds; (3) moderate the composition of the gas phase and play an important role in determining the chemistry of the ISM; (4) contribute to the interstellar extinction in the near IR, visible, and UV spectral regions; and (5) convert UV, visible, and near-IR radiation to mid- and far-IR radiation in the ISM and, as such, are responsible for the well known, widespread family of mid-IR emission features with major components near 3.3, 6.2, 7.7, 8.6, and 11.3 microns.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 131-134; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-06
    Description: Using XMM-Newton spatially resolved X-ray imaging spectroscopy we obtain the temperature, density, entropy, gas mass, and total mass profiles for two groups of galaxies out to approximately 0.3 R(sub vir)(R(sub vir), the virial radius). Our density profiles agree well with those derived previously, and the temperature data are broadly consistent with previous results but are considerably more precise. Both of these groups are at the mass scale of 2x10(exp 13) M(solar mass), but have rather different properties. Both have considerably lower gas mass fractions at r 〈 0.3 R(sub vir), than the rich clusters. NGC2563, one of the least luminous groups for its X-ray temperature, has a very low gas mass fraction of approximately 0.004 inside 0.1 R(sub vir), which increases with radius. NGC4325, one of the most luminous groups at the same average temperature, has a higher gas mass fraction of 0.02. The entropy profiles and the absolute values of the entropy as a function of virial radius also differ, with NGC4325 having a value of approximately 100 keV cm(exp -2) and NGC2563 a value of approximately 300 keV cm(exp -2) at r approximately 0.1 R(sub vir). For both groups the profiles rise monotonically with radius and there is no sign of an entropy 'floor'. These results are inconsistent with pre-heating scenarios that have been developed to explain a possible entropy floor in groups, but are broadly consistent with models of structure formation that include the effects of heating and/or the cooling of the gas. The total entropy in these systems provides a strong constraint on all models of galaxy and group formation, and on the poorly defined feedback process that controls the transformation of gas into stars and thus the formation of structure in the universe.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-06
    Description: Near-IR observations reveal that N2-rich ice containing small amounts of CH4, and CO, is abundant on the surfaces of Triton, a moon of Neptune, and Pluto. N2-rich ices may also exist, in interstellar environments. To investigate the radiation chemistry of such ices we performed a systematic IR study of ion-irradiated Nz-rich mixtures containing CH4 and CO. Irradiation of N2 + CH4 mixtures at 12 K, showed that HCN, HNC, diazomethane, and NH3 were produced. We also found that UV photolysis of these ices produced detectable HCN and HNC. Intrinsic band strengths, A(HCN) and A(HNC), were measured and used to calculate yields of HCN and HNC. Similar results were obtained on irradiation of N2 + CH4 + CO ices at 12 K, with the main difference being the formation of HNCO. In all cases we observed changes on warming. For example, when the temperature of irradiated Nz + CH4 + CO was raised from 12 to 30 K, HCN, HNC, and HNCO reacted with NH3, and OCN-, CN-, N3-, and NH4+ were produced. These ions, appearing at 30 K, are expected to form and survive on the surfaces of Triton, Pluto, and interstellar grains. Our results have astrobiological implications since some of these radiation products are involved in the syntheses of biomolecules such as amino acids and peptides.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 208-212; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-06
    Description: We measured the infrared (IR) nu(sub CH) absorption bands around 3.4 microns (2800 - 3000 cm(sup -1) in large laboratory-grown magnesium oxide (MgO) and natural olivine single crystals that crystallized from CO/CO2/H2O saturated melts. These bands are very similar to those from many astronomical sources, such as from dust in the diffuse interstellar medium (ISM), from the outflow of evolved stars, etc., and they are characteristic of aliphatic -CH2- and -CH3 entities. In our laboratory single crystals the VCH bands arise from C-H entities that were introduced by a solid solution process, and that are imbedded in the mineral matrix in form of polyatomic C(sub n) entities with C atoms bonded to O and to H. Heating breaks the C-H bonds, causing hydrogen to disperse in the mineral matrix. C-H bonds are re-established rapidly during annealing. We propose that dust grains probably contain the same type of internal C(sub n)-H entities in solid matrix rather than an external organic layer covering the grain surfaces. Thermodynamical arguments show that the concentration of organics in solid solution in small grains can be comparable to that found in astronomical environments.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 204-207; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-06
    Description: Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 83-84; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-06
    Description: Recent studies have proposed that the presence or absence of an interaction with a preceding coronal mass ejection (CME) or other coronal structure within approximately 50R(sub s), of the Sun discriminates large, fast CMEs associated with major solar energetic particle (SEP) events from those that are not. We conclude that there is no compelling evidence that, if such interactions take place, they play an important role in SEP acceleration. Reasons include: The reported statistical results are consistent with a chance association between interacting CMEs and SEP events; Energetic SEPs are detected at Earth typically before or around the time when the primary CME enters the LASCO C2 field of view - interactions higher in the corona cannot play a role in acceleration of these particles; For approximately 60% of major SEP events in 1997-2001, the preceding CME fades into the background corona or is relatively narrow (less than 40 deg), suggesting any interaction will be weak; Radio signatures attributed to CME interaction occur after SEP acceleration has commenced.
    Keywords: Astrophysics
    Type: (ISSN 0094-8276)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-06
    Description: LMC X-3 and Cyg X-2 show large amplitude X-ray fluctuations that have been attributed to a warped accretion disk. Cyg X-3 displays high amplitude, apparently non-periodic oscillations. We reanalyze these systems using RXTE ASM data and time-frequency decomposition techniques. We find that the long-term variations in Cyg X-2 can be completely characterized by excursions whose durations are integer multiples of the orbital period, including one essentially identical to the reported "period" of 78 days. Cyg X-3 can be characterized in terms of integer multiples of a 71-day fundamental period unrelated to the 4.8 day orbital period, but suggestively close to the approximately equal to greater than 60 day reported precession period of the relativistic jet inferred from recent radio observations. The long-term excursions of LMC X-3 are related to each other by rational fractions, suggesting the characteristic time scale is 10.594 days, shorter than any observed excursion to date. We explore the phase space evolution of the light curves using a natural embedding and find that all three systems possess two rotation centers that organize the phase space trajectories, one of low luminosity and the other of high luminosity. The implications of this repeatable behavior on generic models of accretion disk dynamics and mass transfer variability are explored.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-06
    Description: Using a large quantity of Rossi X-Ray Timing Explorer data presented in the literature, I offer a detailed investigation into the accuracy of the quasi-periodic oscillation (QPO) frequency determination. The QPO phenomenon seen in X-ray binaries is possibly a result of the resonance of the intrinsic (eigen) oscillations and harmonic driving forces of the system. I show that the resonances, in the presence of the damping of oscillations, occur at frequencies that are systematically and randomly shifted with respect to the eigenfrequencies of the system. The shift value strongly depends on the damping rate that is measured by the half-width of the QPO feature. Taking into account this effect, I analyze the QPO data for four Z sources, Scorpius X-I, GX 340+0, GX 5-1, and GX 17+2, and two atoll sources, 4U 1728-34 and 4U 0614+09. The transition-layer model (TLM) predicts the existence of the invariant quantity delta, an inclination angle of the magnetospheric axis with respect to the normal to the disk. I calculate delta and the error bars of delta using the resonance shift, and I find that the inferred delta-values are consistent with constants for these four Z sources, in which horizontal-branch oscillation and kilohertz frequencies have been detected and correctly identified. It is shown that the inferred delta are in the range between 5.5 deg and 6.5 deg. I conclude that the TLM seems to be compatible with the data.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 578; No. 1; L71-L74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-06
    Description: DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-06
    Description: As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-06
    Description: The Cosmic Microwave Background (CMB) spectral results of the FIRAS instrument are summarized. Some questions that have been raised about the calibration accuracy are also addressed. Finally we comment on the potential for major improvements with new measurement approaches. The measurement of the deviation of the CMB spectrum from a 2.725 plus or minus 0.001 K blackbody form made by the COBE-FIRAS could be improved by two orders of magnitude.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-06
    Description: I describe a unique, 20-year-long timing program for the binary pulsar B0655+64, the stalwart control experiment for measurements of gravitational radiation damping in relativistic neutron-star binaries. Observed limits on evolution of the B0655+64 orbit provide new bounds on the existence of dipolar gravitational radiation, and hence on violation of the Strong Equivalence Principle.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: NASA Laboratory Astrophysics Workshop; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: Huntsville 2002 Workshop; Chattanooga, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-08
    Description: We present the discovery of two T dwarf binaries, 2MASS 1225-2739AB and 2MASS 1534-2952AB, identified in a sample of ten T dwarfs imaged with the Huble Space Telescope Wide Field Planetary Camera 2.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: Texas in Tuscany: XXI Symposium on Relativistic Astrophysics; Florence; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: Astrophysical Tides: Effects in the Solar System; Nanjing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-18
    Description: We present spectroscopic observations of 16 asteroids from 1.9-3.6 microns, collected from the United Kingdom Infrared Telescope (UKIRT) from 1996-2000. Of these 16 asteroids, 11 show some evidence of a 3-micron hydrated mineral absorption feature greater than 2 sigma at 2.9 microns. Using relations first recognized for carbonaceous chondrite powders by Miyamoto and Zolensky (1994) and Sato et al. (1997), we have determined the hydrogen/silicon ratio for these asteroids and calculated their equivalent water contents, assuming all the hydrogen was in water. The asteroids split into two groups, roughly defined as equivalent water contents of greater than approx. 7% (eight asteroids) and less than approx. 3 % (the remaining eight asteroids). This latter group includes some asteroids for which there is a small but statistically significant 3-micron band of non-zero depth. The G-class asteroids in the survey have higher water contents, consistent with CM chondrites. This strengthens the connection between CM chondrites and G asteroids that was proposed by Burbine (1998). We find that the 0.7-micron and 3-micron band depths are correlated for the population of target objects.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-18
    Description: The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.
    Keywords: Astrophysics
    Type: SPIE Meeting/Astronomical Telescopes and Instrumentation; Aug 22, 2002 - Aug 28, 2002; Waikoloa, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-18
    Description: During the 2001 Leonid storm, Marshall Space Flight Center, with the cooperation of the University of Western Ontario and the United States Air Force, deployed 6 teams of observers equipped with intensified video systems to sites located in North America, the Pacific, and Mongolia. The campaign was extremely successful, with the entire period of enhanced Leonid activity (over 16 hours) captured on video tape in a consistent manner. We present the first results from the analysis of this unique, 2 terabyte data set and discuss the problems involved in reducing large amounts of video meteor data. In particular, the question of how to determine meteor masses though photometric analysis will be re-examined, and new techniques will be proposed that eliminate some of the deficiencies suffered by the techniques currently employed in video meteor analysis.
    Keywords: Astrophysics
    Type: Asteroids, Comets and Meteors 2002 Conference; Jul 29, 2002 - Aug 02, 2002; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-18
    Description: Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-18
    Description: Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, the presence of ices in interstellar clouds ignored, and the notion that large, gas phase, carbon rich molecules might be abundant and widespread throughout the interstellar medium (ISM) considered impossible. Today, the composition of dust in the ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these cold dust particles secrete mantles of mixed molecular ices whose compositions are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by the standards of interstellar chemistry, the telltale infrared spectral signature of which is now recognized throughout the Universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the currently accepted abundance and ubiquity of PANs in the ISM. We will then look at a few specific examples which illustrate how experimental and theoretical data can be applied to interpret the interstellar spectra and track how the PAN population evolves as it passes from its formation site in the circumstellar outflows of dying stars, through the various phases of the ISM, and into forn~iing planetary systems. Nevertheless, despite the fact that PANs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered "biogenic" molecules. Although interesting from a chemical and astrophysical standpoint, in the absence of a mechanism by which this population can be dislodged from the precipitous thermodynamic well afforded by their extensive aromatic networks, they are of little Astrobiological significance. Consequently, for the remainder of the talk, we will consider the photochemical evolution of PANS under conditions similar to those found in the ISM and in proto-planetary systems with an eye toward means by which this rich repository of pre-biotic organic "ore" might be converted into materials of greater importance to Astrobiology.
    Keywords: Astrophysics
    Type: 34th COSPAR Scientific Assembly; Oct 10, 2002 - Oct 19, 2002; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-18
    Description: Small bodies in the outer Solar System OSS, exhibit a range of color, or slope of the reflectance in the photovisual spectral region, ranging from neutral to very red, sometimes with and sometimes without distinct absorption bands. These objects range in geometric albedo from 0.03 to 1.0, with the higher albedo objects typically showing clear evidence of water ice. Water ice has also been found in a few objects with albedo 0. 1 or less. We explore here the identification of the material or materials that color these icy and non-icy surfaces through scattering models that incorporate minerals, meteoritic material, and organic solids (tholins) produced ID the laboratory by energy deposition in ices and gases. These models must match not only the color in the photovisual region, but the spectral reflectance properties throughout the near-infrared. Among some classes of objects, such as Kuiper Belt objects, the coloring agent may be a single material that is present in greater or lesser abundance, thus accounting for the range in color from neutral to very red. This may also apply to the Centaur objects, the Jovian Trojans, and the outer-main belt asteroids, each taken as a separate class. If so, each class may be colored to varying degrees by a different material, or they all might be colored by a common material that is widespread throughout the OSS, from 3 to 50 AU, and beyond. In this paper, we model the reflectances of "Kuiper Belt objects, Centaurs, Trojans, outer ARAB asteroids, and planetary satellites. Our models show that the reddest surfaces cannot be colored by minerals or meteoritic materials, but can be matched throughout the photovisual and near-infrared by organic solids, specifically certain tholins.
    Keywords: Astrophysics
    Type: DPS Conference; Oct 01, 2002; Birmingham, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-18
    Description: Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Today, the composition of dust in the ISM is reasonably well constrained to cold, micron-sized particles of various refractory materials. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these particles secrete mantles of mixed molecular lees whose major components are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), whose telltale infrared signature I is now recognized throughout the Universe. However, of what significance is this scenario to the origin of life in our solar system--or any other? The major components of the icy materials observed in interstellar clouds and in our own solar system are uniformly quite simple. In addition, despite the fact that PAHs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered "biogenic" molecules. Although interesting from a chemical and astrophysical standpoint, in the absence of a mechanism by which these materials can be transformed into more biochemically significant structures, they are of little Astrobiological significance. In this talk, we will begin with a brief review of the nature and abundance of the "raw" population of PAHs and PAH-related materials in the ISM. From there, we will move on to explore our laboratory simulations of the photochemical evolution of realistic mixed molecular ices under conditions which simulate those encountered in the ISM and in evolving planetary systems. Particular attention will be paid to the surprisingly complex array of organic species that are produced in these ices from such a deceptively simple inventory of starting materials. In addition, we will explore the chemistry of PAHs under these conditions and consider its potential for transforming that rich repository of pre-biotic organic "ore" into materials of greater importance to Astrobiology.
    Keywords: Astrophysics
    Type: 34th COSPAR Scientific Assembly; Oct 10, 2002 - Oct 19, 2002; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-18
    Description: During the 2001 Leonid storm, Marshall Space Flight Center, with the cooperation of the University of Western Ontario and the United States Air Force, deployed 6 teams of observers equipped with intensified video systems to sites located in North America, the Pacific, and Mongolia. The campaign was extremely successful, with the entire period of enhanced Leonid activity (over 16 hours) captured on video tape in a consistent manner. We present the first results from the analysis of this unique, 2 terabyte data set and discuss the problems involved in reducing large amounts of video meteor data. In particular, the question of how to determine meteor masses though photometric analysis will be re-examined, and new techniques will be proposed that eliminate some of the deficiencies suffered by the techniques currently employed in video meteor analysis.
    Keywords: Astrophysics
    Type: International Conference ASTEROIDS, COMETS, METEORS: ACM2002; Jul 29, 2002 - Aug 02, 2002; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-18
    Description: We studied the X-ray emission in a sample of clusters using the BeppoSAX PDS instrument in the 20 -- 80 keV energy band. We estimated the non-thermal cluster emission (HXR) by modeling the thermal contribution from the cluster gas and the non-thermal contamination from the AGN in the field, and propagating the corresponding uncertainties. We also evaluated and propagated the systematic uncertainties due to the background fluctuations. The resulting non-thermal component is detected at a sigma level in approx. 50 % of the non-significantly AGN-contaminated clusters, i.e. in clusters A2142, A2256, A3376, Coma, Ophiuchus and Virgo. Furthermore, Virgo is detected at a 4 sigma level. All the clusters detected at a 2 sigma level exhibit some degree of merger signatures, i.e. deviations from the azimuthally symmetric brightness and temperature distributions, while the relaxed clusters are detected at a lower confidence. The data are consistent with a scenario whereby relaxed clusters have no non-thermal hard X-ray component, whereas merger clusters do, with a 20 -- 80 keV luminosity of approx. 10(exp 42-44)((h(sub 50))(exp -2))(erg/s). Consistent with merger boosting of cluster temperatures, the non-thermal luminosity increases by 2-3 orders of magnitude between the average cluster temperatures 2 and 10 keV, as L(sub NTE) is proportional to T(sup j) with j = 2.4+/-0.3. These results corroborate the assumption which is the essential element in most non-thermal hard X-ray emission models. The co-added spectrum of all non-significantly AGN-contaminated clusters indicates a power-law spectrum for the non-thermal component with a photon index of 1.5+/-0.25 at 1 sigma confidence level. Unless there is a high energy cut-off in the electron velocity distribution, the total spectrum implies that Inverse Compton scatter of Cosmic Microwave Background photons from electron population dominates over the non-thermal bremsstrahlung in producing hard X-rays in clusters on the merger shock acceleration of electrons in clusters.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-18
    Description: Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.
    Keywords: Astrophysics
    Type: American Astronomical Society Meeting; Jan 05, 2002 - Jan 09, 2002; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.
    Keywords: Astrophysics
    Type: Rept-1 , Austin, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-18
    Description: The cosmic deuterium to hydrogen (D/H) ratio is of key importance from a cosmological and stellar evolution perspective since deuterium originates from big-bang nucleosynthesis and is destroyed by stellar thermonuclear reactions. Further, from the interstellar perspective, the galactic distribution of deuterium and the D/H ratio among various molecular species also traces interstellar chemical evolution. Over the past few decades, radio observations have enabled the study of a handful of small, deuterated interstellar species. However, the number of deuterated species detected and environments probed are limited, raising issues of selection effects that hamper generalization and applications to other environments. Infrared spectroscopy of the interstellar medium offers a distinct advantage in this regard as the extent of deuteration of entire chemical families, rather than one species, can be probed. These observations require spaceborne telescopes because the molecular vibrations involving D which produce the strongest IR bands fall in spectral regions which are obscured by terrestrial CO2 absorption. Here we report the tentative detection of the C-D stretching vibration from deuterated interstellar polycyclic aromatic hydrocarbons in the Orion nebula. Since the PAH emission features are widespread and probe many different types of cosmic environments, follow up observations of deuterated PAHs will provide fundamental, far reaching new insight and perspective into galactic and extragalactic processes.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-18
    Description: The dynamical evolution of the protoplanetary nebula is investigated using analytical solutions of the surface density transport equations. Constant and beta viscosity turbulence models are compared with a functional analytical model and the well-known alpha viscosity formulation. The beta viscosity model, heretofore used for steady-state disks, is shown to be a viable tool for separating dynamic and thermodynamic properties of an evolving disk.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-18
    Description: The gas-phase electronic absorption spectra of the naphthalene (C10H8(+)) and acenaphthene (C12H10(+)) cations have been measured in the visible range in a free 10 jet planar expansion in an attempt to collect data in an astrophysically relevant environment. The direct absorption spectra of two out of four bands measured of the gas-phase cold naphthalene cation along with the gas-phase vibronic absorption spectrum of the cold acenaphthene cation are reported for the first time. The study has been carried out using the ultrasensitive and versatile technique of cavity ringdown spectroscopy (CRDS) coupled to a pulsed discharge slit nozzle (PDN). The new CRDS-PDN set up is described and its characteristics are evaluated. The direct-absorption spectra of the PAH ions are discussed and compared to the gas-phase and solid-phase data available in the literature. The analysis of the results show that cold, free flying PAH ions are generated in the argon discharge primarily through soft Penning ionization. This enables the intrinsic band profiles to be measured, a key requirement for astrophysical applications.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Results from initial testing of micro-meteoroid testing and analysis will be shown. The micro-meteoroid environment at L2 encompasses particles whose size range from about 0.5micrometers to a few millimeters and whose velocities can and do exceed 20km/s. The particle flux ranges from about 2600/sq m/yr for 0.5um particles to 1 particle/sq m every 1700 yrs for 1 mm size particles. The major concern is not that the unprotected optics will be physically damaged; although if that did happen it would be a very localized effect. The real concern is that after many years, all of the particles that hit the optical and non-optical surfaces [after the 10 year lifetime of NGST, there may be one particle hit every 5mm] may cause the optics to deform, some of which may be uncorrectable. No previous study was found which looked at optic deformations. Many studies looked at reduced glass strength over time and in fact glass strength did fall greater than 25% in many cases. The reduction is strength can be attributed to the surface fractures caused by particle damage.
    Keywords: Astrophysics
    Type: 2nd Annual Technology Days; May 22, 2002 - May 24, 2002; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: One of the striking findings of the International Solar Terrestrial Physics (ISTP) program is the detection of electron holes by several satellites in different regions of the magnetosphere, near the bow shock, and in the solar wind. These measurements have come from FAST (Fast Auroral Snapshot Explorer), Polar, Geotail, and Wind satellites. Using a 2-D (two dimensional) PIC (particle in cell) code we investigate the parameters of one and two electron beams on the evolution, structure, and stability of electron phase-space holes.
    Keywords: Astrophysics
    Type: Geospace Environment Modeling Workshop; Jun 23, 2002 - Jun 26, 2002; Telluride, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-18
    Description: The Space Telescope Imaging Spectrograph has been used to study the emission and absorption spectra of ejecta surrounding Eta Carinae. Discussion will be presented on the overall structure of the Homunculus, the Weigelt blobs and the Strontium filament. Three visits have been accomplished with the Position Angle precisely the same and covering the Central Source and Weigelt Blobs B and D. Deep spectra have been done at several positions to obtain the overall velocity structure of the Homunculus and the disk region. Mapping has been done with the STIS medium dispersion gratings set near H beta and H alpha. We have obtained full coverage of the strontium filament from 1640 Angstroms to 10300 Angstroms. The structure and physical properties will be described.
    Keywords: Astrophysics
    Type: Eta Carinae Conference/Workshop; Jul 11, 2002 - Jul 13, 2002; Mount Rainier, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-18
    Description: Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the disk to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived from the nonlinear simulation data and correlated with analytical dispersion relations from the linearized Euler and energy equations.
    Keywords: Astrophysics
    Type: AGU Meeting; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-18
    Description: Comets and the chodritic, porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3 - 40 micron) reveal the presence of a warm (nearIR) featureless emission modeled by amorphous carbon grains. Broad and narrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Fe and 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IR spectra of CP IDPs dominated by GEMS (0.1 micron silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He' ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (〈5%) , however, to account for the deduced abundance of crystalline silicates in comet dust. An insufficient source of ISM Mg-rich crystals leads to the inference that most Mg-rich crystals in comets are primitive grains processed in the early solar nebula prior to their incorporation into comets. Mg-rich crystals may condense in the hot (approx. 1450 K), inner zones of the early solar nebula and then travel large radial distances out to the comet-forming zone. On the other hand, Mg-rich silicate crystals may be ISM amorphous silicates annealed at approx. 1000 K and radially distributed out to the comet-forming zone or annealed in nebular shocks at approx. 5 - 10 AU. Determining the relative abundance of amorphous and crystalline silicates in comets probes the relative contributions of ISM grains and primitive grains to small, icy bodies in the solar system. The life cycle of dust from its stardust origins through the ISM to its incorporation into comets is discussed.
    Keywords: Astrophysics
    Type: International Astronomical Union Colloquium: Cometary Science After Hale-Bopp; Jan 21, 2002 - Jan 25, 2002; Tenerife; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-18
    Description: We examine the formation of massive stars in the Galaxy, the resultant fluctuating UV (ultraviolet) radiation field, and the effect of this field on the star-forming interstellar medium. There are substantial fluctuations of the UV radiation field in space (scales of 100's of parsecs) and time (time-scales of order 100 million years). The FUV (far ultraviolet) (6 eV less than hv less than 13.6 eV) field and the pressure determines whether the thermal balance of the neutral gas results in cold clouds or warm (T approx. 10(exp 4) K) neutral medium. We show how to calculate the average fractions of the gas in the cold and warm phases when the interstellar gas is subject to this fluctuating FUV field. The knowledge of how these fractions depend on the gas properties and on the FUV sources is a basic step in building a model of the large scale behavior of the ISM (interstellar medium) and the mutual relation between the ISM and the star formation rate.
    Keywords: Astrophysics
    Type: Ecole Normale Superieure on Star Formation; Sep 18, 2002 - Oct 19, 2002; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: We model the thermal balance, the chemistry, and the radiative transfer in dusty disks orbiting young, low mass stars. These models are motivated by observations of infrared and ultraviolet transitions of H2 from protoplanetary disks, as well as millimeter and submillimeter observations of other molecules such as CO, and infrared continuum observations of the dust. The dust grains are heated primarily by the stellar radiation and the infrared radiation field produced by the dust itself. The gas is heated by collisions with warmer dust grains, X-rays from the region close to the stellar surface, UV (ultraviolet) pumping of hydrogen molecules, and the grain photoelectric heating mechanism initiated by UV photons from the central star. We treat cases where the gas to dust ratio is high, because the dust has settled to the midplane and coagulated into relatively large objects. We discuss situations in which the infrared emission from H2 can be detected, and how the comparison of the observations with our models can deduce physical parameters such as the mass and the density and temperature distribution of the gas.
    Keywords: Astrophysics
    Type: Ecole Normale Superieure on Star Formation; Sep 18, 2002 - Oct 19, 2002; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-18
    Description: The first known extrasolar planet system, upsilon Andromedae, was discovered in 1999. The number of stars known to possess more than one planet has been growing rapidly since then. The dynamical interactions among such planets can be quite strong. These interactions can excite the orbital eccentricities of planets, even planets orbiting very close to their stars. Stellar tides can damp the eccentricities of such close-in planets, removing dynamical energy from the system and ultimately affecting the motions of all of the planets. These and other effects of tides in extrasolar multi-planet systems will be discussed.
    Keywords: Astrophysics
    Type: Rept-1 , 189th International Astronomical Union Colloquium; Sep 16, 2002 - Sep 20, 2002; Nanjing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source; 2) close stellar encounters; 3) stellar winds; and 4) photoevaporation by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the inner disk (r approx. or less than 10 AU), while photoevaporation is the principal process of disk dispersal outside of r approx. or greater than 10 AU for low mass stars. Disk dispersal timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed he solar nebula is called into question. Finally, we model the small bright objects ('proplyds') observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV (ultraviolet) photons from the nearby massive star Theta(1)C.
    Keywords: Astrophysics
    Type: Ecole Normale Superieure on Star Formation; Sep 18, 2002 - Oct 19, 2002; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-18
    Description: We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source; 2) close stellar encounters; 3) stellar winds; and 4) photoevaporation by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the inner disk (r approx. 〈= 10 AU), while photoevaporation is the principal process of disk dispersal outside of r approx. 〉= 10 AU for low mass stars. Disk dispersal timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed the solar nebula is called into question. Finally, we study the constraints that the evaporation of the outer disk has on the formation of Kuiper belts in extrasolar planetary systems.
    Keywords: Astrophysics
    Type: Debris Disks and the Formation of Planets: A Symposium in Memory of Fred Gillett; Apr 11, 2002 - Apr 13, 2002; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-18
    Description: We have analyzed multiwavelength data of galactic superluminal sources including GROJ1655-40. Currently there are thirteen X-ray binaries, in which the masses of the invisible and compact objects have been determined to be much higher than three solar masses, the well-known upper limit to the mass of a neutron star. Because no stable and compact objects are believed to exist above this limit, these compact objects are consequently considered as stellar mass black holes, though clean evidence of strong gravity effects around the assumed black holes is very rare. From optical and radio observations, their system inclination angles have been determined to range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity in these systems. However, this peak is reproduced naturally if we model the observed X-ray radiation as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Astrobiology is the study of the origins, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research, linking such endeavors as the search for habitable planets beyond our solar system, exploration missions to Mars and Europa, and efforts to understand the origin and early evolution of life. Astrobiology addresses three fundamental questions: How does life begin and develop? Does life exist elsewhere in the universe? What is the future of life on Earth and beyond? This talk will address our concepts about the definition of life, how life might have begun, and how our blaspheme and planet have co-evolved for billions of years. The talk will explore how the perspectives gained from interdisciplinary research in the biological, geological and space sciences will prepare us to search for habitable environments and biospheres elsewhere in the Universe.
    Keywords: Astrophysics
    Type: Burpee Museum''s Paleo Festival; Feb 22, 2002 - Feb 24, 2002; Rockford, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-18
    Description: The collection of meteorites in Antarctica has greatly stimulated advancement in the field of meteoritics by providing the community with significant numbers of rare and unique meteorites types and by yielding large numbers of meteorites that sample older infall epochs (Grady et al., 1998). The majority of Antarctic meteorites are found on blue ice fields, where they are thought to be concentrated by wind and glacial drift (cf. Cassidy et al., 1992). The basic "ice flow model" describes the concentration of meteorites by the stagnation or slowing of ice as it moves against a barrier located in a zone with low snow accumulation. However, our limited knowledge of the details of the actual concentration mechanisms prevents establishing firm conclusions concerning the past meteorite flux from the Antarctic record (Zolensky, 1998). The terrestrial ages of Antarctic meteorites indicate that their concentration occurs on time scales of tens to hundreds of thousands of years (Nishiizumi et al., 1989). It is a challenge to measure a mechanism that operates so slowly, and since such time scales can span more than one glacial epoch one cannot assume that the snow accumulation rates, ice velocities and directions, etc. that are measured today are representative of those extant over the age of the trap. Testing the basic "ice flow model" therefore requires the careful measurement of meteorite locations, glacialogical ice flow data, ice thicknesses, bedrock and surface topology, ice ablation and snow accumulation rates, and mass transport by wind over an extended period of time in a location where these quantities can be interpreted in the context of past glacialogical history.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-18
    Description: One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.
    Keywords: Astrophysics
    Type: NASA Laboratory Astrophysics Workshop; May 01, 2002 - May 03, 2002; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-18
    Description: We present a brief overview of Chandra observations of supernova remnants and neutron stars, with emphasis on neutron stars in supernova remnants. The Chandra images demonstrate the importance of angular resolution in separating the neutron star emission from the surrounding nebulosity.
    Keywords: Astrophysics
    Type: 34th Joint Committee on Space Research Scientific (COSPAR)Scientific Assembly; Oct 10, 2002 - Oct 19, 2002; Houston, TX; United States|2nd World Space Congress; Oct 10, 2002 - Oct 19, 2002; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-18
    Description: We present analyses of a nightside plasmaspheric pattern of bifurcated, filamentary He(+) 30.4-nm emission enhancements observed by IMAGE EUV between approximately 19:40-22:13 UT on 28 June 2000 that indicate the presence of a large-scale, global ULF standing wave pattern. Analysis of coincident IMAGE magnetometer chain data reveals that these ULF waves extend across the magnetic latitude-longitude range of the chain and possess multiple spectral features between 0.6-5-mHz (3-30 minute period). Additionally, analysis of ACE SWE data reveals similarly structured spectral components in the solar wind. Collectively, these analyses lead to the conclusion that the observed large-scale ULF wave pattern is the result of solar wind pressure pulses 'ringing' the inner-magnetosphere.
    Keywords: Astrophysics
    Type: AGU Fall Meeting; Dec 05, 2002 - Dec 11, 2002; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.
    Keywords: Astrophysics
    Type: Diffuse Cosmic Infrared Background Radiation; Sep 23, 2003 - Sep 30, 2003; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-18
    Description: The IMAGE Mission Extreme Ultraviolet Imager routinely provides global snapshots of the plasmasphere from high latitude. In these 10-minute images, intensity edges have been identified with the plasmapause and other strong gradients in plasmaspheric density. In addition to the classic sunward directed convection tail and its entrainment in corotation during storm-time recovery, the plasmapause boundary reveals a wide variety of structures thought to result from penetration of the solar wind induced convection electric field to subauroral latitudes. The so-called shoulder feature has most prominently been discussed in the context of under shielding in response to changes in the convection electric field strength. It is not yet clear whether all of the observed surface structures on the plasmasphere can be explained in this manner. The types of structures observed and their frequency of occurrence will be presented. A statistical view of these structures and associated solar wind conditions will also be presented.
    Keywords: Astrophysics
    Type: AGU Fall Meeting; Dec 05, 2002 - Dec 11, 2002; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-18
    Description: I have developed a technique for measuring multi-variate luminosity functions of galaxies. Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and absorption and re-emission of dust within evolving galaxy populations. By using principle component analysis to reduce the dimensionality of the problem, I optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, I derive the multiwavelength luminosity function for the galaxies in the released SDSS catalog, and show that the results are consistent with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by the SIRTF and GALEX missions.
    Keywords: Astrophysics
    Type: Origins 2002: The Heavy Element Trail from Galaxies to Habitable Worlds Conference; May 26, 2002 - May 30, 2002; Jackson Hole, WY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...