ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (3,294)
  • AERODYNAMICS  (2,839)
  • 1990-1994  (6,116)
  • 1950-1954  (17)
  • 1
    Publication Date: 2011-08-24
    Description: A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5 deg N, 77 deg E, 0.5 deg N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (A(sub p) = 161). Simultaneous 100-n T-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6 deg N gm) and at Narsarsuaq, Greenland (70.6 deg N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730-1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV/m and it increases with height, while it is about 1.0 mV/m in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brofelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the assoicated ionospheric electric field penetrating from high latitudes to the magnetic equator.
    Keywords: GEOPHYSICS
    Type: Annales Geophysicae (ISSN 0992-7689); 12; 6; p. 565-573
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The Coast Ranges of the Cascadia margin are overriding the subducted Juan de Fuca/Gorda plate. We investigate the extent to which the latitudinal change in attributes related to the subduction process. These attributes include the varibale age of the subducted slab that underlies the Coast Ranges and average vertical crustal velocities of the western margin of the Coast Rnages for two markedly different time periods, the last 45 years and the last 100 kyr. These vertical crustal velocities are computed from the resurveying of highway bech marks and from the present elevation of shore platforms that have been uplifted in the late Quaternary, respectively. Topogarphy of the Coast Ranges is in part a function of the age and bouyancy of the underlying subducted plate. This is evident in the fact that the two highest topographic elements of the Coast Rnages, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subducted oceanic crust. The subducted Blanco Fracture Zone in southernmost Oregon is responsible for an age discontinuity of subducted crust under the Klamath Mountains. The norhtern terminus of hte topographically higher Klamaths is offset to the north relative to the position of the underlying Blanco Fracture Zone, teh offset being in the direction of migration of the farcture zone, as dictated by relative plate motions. Vertical crustal velocities at the coast, derived from becnh mark surveys, are as much as an order of magnitude greater than vertical crustal velocities derived from uplifted shore platforms. This uplift rate discrepancy indicates that strain is accumulating on the plate margin, to be released during the next interplate earthquake. In a latitudinal sense, average Coast Rnage topography is relatively high where bench mark-derived, short-term vertical crustal velocities are highest. Becuase the shore platform vertical crustal velocities reflect longer-term, premanent uplift, we infer that a small percentage of the interseismic strain that accumulates as rapid short-term uplift is not recovered by subduction earthquakes but rather contributes to rock uplift of the Coast Ranges. The conjecture that permanent rock uplift is related to interseismic uplift is consistent with the observation that those segments of the subduction zone subject to greater interseismic uplift rates are at approximately the same latitudes as those segments of the Coast Ranges that have higher magnitudes of rock uplift over the long term.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B6; p. 12,245-12,255
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A comprehensive review is presented of the mathematical models used to represent magnetic fields in the Earth's magnetosphere, of the way existing data-based models use these methods and of the associated problems and concepts. The magnetic field has five main components: the internal field, the magnetopause, the ring current, the tail and Birkeland currents. Methods of representing separately each of these are discussed, as is the deformation of magnetic fields; Appendix B traces the connection between deformations and the Cauchy integral. A summary section lists the uses of data-based models and their likely future evolution, and Appendix A supplements the text with a set of problems.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,169-17,198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: We present a map of the coseimic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additioanl requirements for ancillary information. the technique is well suited for global seismic monitoring and analysis.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B10; p. 19,617-19,635
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The compressible dynamic stall flowfield over a NACA 0012 airfoil transiently pitching from 0 to 60 deg at a constant rate under compressible flow conditions has been studied using real-time interferometry. A quantitative description of the overall flowfield, including the finer details of dynamic stall vortex formation, growth, and the concomitant changes in the airfoil pressure distribution, has been provided by analyzing the interferograms. For Mach numbers above 0.4, small multiple shocks appear near the leading edge and are present through the initial stages of dynamic stall. Dynamic stall was found to occur coincidentally with the bursting of the separation bubble over the airfoil. Compressibility was found to confine the dynamic stall vortical structure closer to the airfoil surface. The measurements show that the peak suction pressure coefficient drops with increasing freestream Mach number, and also it lags the steady flow values at any given angle of attack. As the dynamic stall vortex is shed, an anti-clockwise vortex is induced near the trailing edge, which actively interacts with the post-stall flow.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 3; p. 586-593
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The effect of the porous leading edge of an airfoil on the blade-vortex interaction noise, which dominates the far-field acoustic spectrum of the helicopter, is investigated. The thin-layer Navier-Stokes equations are solved with a high-order upwind-biased scheme and a multizonal grid system. The Baldwin-Lomax turbulence model is modified for considering transpiration on the surface. The amplitudes of the propagating acoustic wave in the near field are calculated directly from the computation. The porosity effect on the surface is modeled in two ways: (1) imposition of prescribed transpiration velocity distribution and (2) calculation of transpiration velocity distribution by Darcy's law. Results show leading-edge transpiration can suppress pressure fluctuations at the leading edge during blade-vortex interaction and consequently reduce the amplitude of propagating noise by 30% at a maximum in the near field.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 3; p. 480-488
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: A method has been developed for calculating the viscous flow about airfoils with and without deflected flaps at -90 deg incidence. This method provides for the solution of the unsteady incompressible Navier-Stokes equations by means of an implicit technique. The solution is calculated on a body-fitted computational mesh using a staggered-grid method. The vorticity is defined at the node points, and the velocity components are defined at the mesh-cell sides. The staggered-grid orientation provides for accurate representation of vorticity at the node points and the continuity equation at the mesh-cell centers. The method provides for the noniterative solution of the flowfield and satisfies the continuity equation to machine zero at each time step. The method is evaluated in terms of its stability to predict two-dimensional flow about an airfoil at -90-deg incidence for varying Reynolds number and laminar/turbulent models. The variations of the average loading and surface pressure distribution due to flap deflection, Reynolds number, and laminar or turbulent flow are presented and compared with experimental results. The comparisom indicate that the calculated drag and drag reduction caused by flap deflection and the calculated average surface pressure are in excellent agreement with the measured results at a similar Reynolds number.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 3; p. 449-454
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: New line parameters for two heavy odd nitrogen molecules HNO3 in the nu(sub 5)/2nu(sub 9) region, and ClONO2 in the nu(sub 4) region are incorporated in the analysis of high resolution i.r. atmospheric spectra. The line parameters are tested and renormalized vs laboratory spectra, and then applied to retrievals from balloon-borne and ground-based solar absorption spectra.
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 52; 3-4; p. 367-377
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The spectroscopic identification for the HNO3 3 nu(sub 9) - nu(sub 9) band Q branch at 830.4/cm is reported based on 0.01/cm resolution solar occultation spectra of the lower stratosphere recorded by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer and a recent analysis of this band. Least-squares fits to 0.0025/cm resolution laboratory spectra in the Q branch region indicate an integrated intensity of 0.529 x 10(exp -18)/cm/mol/sq cm at 296 K for this weak band. Stratospheric HNO3 retrievals derived from the ATMOS data are consistent with this value within its estimated uncertainty of about +/- 30%. A set of spectroscopic line parameters suitable for atmospheric studies has been generated.
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 52; 3-4; p. 319-322
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: About 200 i.r. solar spectra recorded at 0.01/cm resolution on 71 days between November 1991 and July 1993 at the Network for the Detection of Stratospheric Change (NDSC) station at Mauna Loa, Hawaii (latitude 19.53 deg N, longitude 155.58 deg W, elevation 3.459 km) have been analyzed with a nonlinear least-squares spectral fitting technique to study temporal variations in the total column of atmospheric ethane (C2H6) above the site. The results were derived from the analysis of the unresolved nu(sub 7) band (P)Q(sub 3) subbranch at 2976.8/cm. A distinct seasonal cycle is observed with a factor of 2 variation, a maximum total column of 1.16 x 10(exp 16) mol/sq cm at the end of winter, and a minimum total column of 0.53 x 10(exp 16) mol/sq cm at the end of summer. Our measurements are compared with previous observations and model predictions.
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 52; 3-4; p. 273-279
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: Quantitative measurements of the wavelength dependence of aerosol extinction in the 750-3400/cm spectral region have been derived from 0.01/cm resolution stratospheric solar occultation spectra recorded by the ATMOS (Atmospheric Trace Molecule Spectroscopy) Fourier transform spectrometer about 9 1/2 months after the Mt Pinatubo volcanic eruption. Strong, broad aerosol features have been identified near 900, 1060, 1190, 1720, and 2900/cm below a tangent height of approximately 30 km. Aerosol extinction measurements derived from approximately 0.05/cm wide microwindows nearly free of telluric line absorption in the ATMOS spectra are compared with transmission calculations derived from aerosol size distribution profiles retrieved from correlative SAGE (Stratospheric Aerosol and Gas Experiment) II visible and near i.r. extinction measurements, seasonal and zonally averaged H2SO4 aerosol weight percentage profiles, and published sulfuric acid optical constants derived from room temperature laboratory measurements. The calculated shapes and positions of the aerosol features are generally consistent with the observations, thereby confirming that the aerosols are predominantly concentrated H2SO4-H2O droplets, but there are significant differences between the measured and calculated wavelength dependences of the aerosol extinction. We attribute these differences as primarily the result of errors in the calculated low temperature H2SO4-H2O optical constants. Errors in both the published room temperature optical constants and the limitations of the Lorentz-Lorenz relation are likely to be important.
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 52; 3-4; p. 241-252
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: We present vertical column abundances of H2O, N2O, HNO3, NO2, O3, HF, HCl, and ClNO3, determined from solar absorption spectra measured by the JPL MkIV interferometer from the NASA DC-8 aircraft. These observations, taken in 1987 and 1992, covered latitudes ranging from 85 deg S to 85 deg N. Although most gases display latitude symmetry, large asymmetries in H2O, HNO3, and O3 are apparent, which can be ascribed to processes enhanced by the colder Antarctic winter temperatures.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 23; p. 2599-2602
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: Simultaneous in situ measurements of NO2, NO, O3, ClO, pressure and temperature have been made for the first time, presenting a unique opportunity to test our current understanding of the photochemistry of the lower stratospere. Data were collected from several flights of the ER-2 aircraft at mid-latitudes in May 1993 during NASA's Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE). The daytime ratio of NO2/NO remains fairly constant at 19 km with a typical value of 0.68 and standard deviation of +/- 17. The ratio observations are compared with simple steady-state calculations based on laboratory-measured reaction rates and modeled NO2 photolysis rates. At each measurement point the daytime NO2/NO with its measurements uncertainty overlap the results of steady-state caculations and associated uncertainty. Possible sources of error are examined in both model and measurements. It is shown that more accurate laboratory determinations of the NO + 03 reaction rate and of the NO2 cross-sections in the 200-220 K temperature range characteristic of the lower stratosphere would allow for a more robust test of our knowledge of NO(X) phtochemistry by reducing significant sources if uncertainties in the interpretation of statospheric measurements.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 23; p. 2555-2558
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The ability to predict short-term variations in the Earth's rotation has gained importance in recent years owing to more precise spacecraft tracking requirements. Universal time (UT1), that component of the Earth's orientation corresponding to the rotation angle, can be measured by number of high-precision space geodetic techniques. A Kalman filter developed at the Jet Propulsion Laboratory (JPL) optimally combines these different data sets and generates a smoothed times series and a set of predictions for UT1, as well as for additional Earth orientation components. These UT1 predictions utilize an empirically derived random walk stochastic model for the length of the day (LOD) and require frequent and up-to-date measurements of either UT1 or LOD to keep errors from quickly accumulating. Recent studies have shown that LOD variations are correlated with changes in the Earth's axial atmospheric angular momentum (AAM) over timescales of several years down to as little as 8 days. AAM estimates and forecasts out to 10 days are routinely available from meteorological analysis centers; these data can supplement geodetic measurements to improve the short-term prediction of LOD and have therefore been incorporated as independent data types in the JPL Kalman filter. We find that AAM and, to a lesser extent, AAM forecast data are extremely helpful in generating accurate near-real-time estimates of UT1 and LOD and in improving short-term predictions of these quantities out to about 10 days.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B4; p. 6981-6996
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: Rotor noise prediction codes predict the thickness and loading noise produced by a helicopter rotor, given the blade motion, rotor operating conditions, and fluctuating force distribution over the blade surface. However, the criticality of these various inputs, and their respective effects on the predicted acoustic field, have never been fully addressed. This paper examines the importance of these inputs, and the sensitivity of the acoustic predicitions to a variation of each parameter. The effects of collective and cyclic pitch, as well as coning and cyclic flapping, are presented. Blade loading inputs are examined to determine the necessary spatial and temporal resolution, as well as the importance of the chordwise distribution. The acoustic predictions show regions in the acoustic field where significant errors occur when simplified blade motions or blade loadings are used. An assessment of the variation in the predicted acoustic field is balanced by a consideration of Central Processing Unit (CPU) time necessary for the various approximations.
    Keywords: AERODYNAMICS
    Type: American Helicopter Society, Journal (ISSN 0002-8711); 39; 3; p. 43-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Disk-shaped current distributions are useful tools in modeling the magnetospheres of Earth and other planets and have also been adapted for modeling the geotail. Such models usually start with an axisymmetric vector potential but may be modified to account for observed asymmetries, variable thickness, and warping in response to an inclined orientation of the planetary dipole axis. Models of this type until now either have lacked the ability to simulate a sharp inner edge of the current and to control accurately its falloff with distance or did not allow a simple analytical representation. Here existing methods will be reviewed, after which a new class of models which overcomes the above deficiencies and also allows the modeling of current disks of finite thickness flanked by current-free regions will be presented.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A1; p. 199-205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until this condition for the error calibration is satisfied. In addition, gravity field tests were performed on strong satellite data sets withheld from the solution (thereby ensuring their independence). In these tests, the performance of the subset models on the withheld observations is compared to error projections based on their calibrated error covariances. These results demonstrate that orbit accuracy projections are reliable for new satellites which were not included in GEM-T3.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B2; p. 2815-2839
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: We present predictions of the signatures of magnetosheath particle precipitation (in the regions classified as open low-latitude boundary layer, cusp, mantle and polar cap) for periods when the interplanetary magnetic field has a southward component. These are made using the 'pulsating cusp' model of the effects of time-varying magnetic reconnection at the dayside magnetopause. Predictions are made for both low-altitude satellites in the topside ionosphere and for midaltitude spacecraft in the magnetosphere. Low-altitude cusp signatures, which show a continuous ion dispersion signature, reveal 'quasi-steady reconnection' (one limit of the pulsating cusp model), which persists for a period of at least 10 min. We estimate that 'quasi-steady' in this context corresponds to fluctuations in the reconnection rate of a factor of 2 or less. The other limit of the pulsating cusp model explains the instantaneous jumps in the precipitating ion spectrum that have been observed at low altitudes. Such jumps are produced by isolated pulses of reconnection: that is, they are separated by intervals when the reconnection rate is zero. These also generate convecting patches on the magnetopause in which the field lines thread the boundary via a rotational discontinuity separated by more extensive regions of tangential discontinuity. Predictions of the corresponding ion precipitation signatures seen by midaltitude spacecraft are presented. We resolve the apparent contradiction between estimates of the width of the injection region from midaltitude data and the concept of continuous entry of solar wind plasma along open field lines. In addition, we reevaluate the use of pitch angle-energy dispersion to estimate the injection distance.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 8531-8553
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: Simultaneous profiles of aerosol backscatter ratio were measured over Lauder, New Zealand (45 deg S, 170 deg E) on the night of November 24, 1992. Instrumentation comprised two complementary lidar systems and a backscattersonde, to give measurements at wavelengths 351, 490, 532, and 940 nm. The data from the lidars and the backscattersonde were self-consistent, enabling the wavelength dependence of aerosol backscatter to be determined as a function of altitude. This wavelength-dependence is a useful parameter in radiative transfer calculations. In the stratosphere, the average wavelength exponent between 351 and 940 nm was -1.23 +/- 0.1, which was in good agreement with values derived from measured physical properties of aerosols.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 9; p. 789-792
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: High-energy electrons have been measured systematically in a low-altitude (520 x 675 km), nearly polar (inclination = 82 deg) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic electron variations as a function of L-shell parameter and time. A long run of essentially continuous data (July 1992 - July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales. This acceleration appears to be due to solar wind velocity enhancements and is surprisingly large in that the radiation belt 'slot' region often is filled temporarily and electron fluxes are strongly enhanced even at very low L-values (L aprroximately 2). A superposed epoch analysis shows that electron fluxes rise rapidly for 2.5 is approximately less than L is approximately less than 5. These increases occur on a time scale of order 1-2 days and are most abrupt for L-values near 3. The temporal decay rate of the fluxes is dependent on energy and L-value and may be described by J = Ke-t/to with t(sub o) approximately equals 5-10 days. Thus, these results suggest that the Earth's magnetosphere is a cosmic electron accelerator of substantial strength and efficiency.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 6; p. 409-412
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The U.S. National Aeronautics and Space Administration (NASA) Balloon Program has been highly successful since recovering from the catastrophic balloon failure problems of the early to mid 1980s. Balloons have continued to perform at unprecedented success rates. The comprehensive research and development (R&D) effort has continued with advances being made across the spectrum of balloon related disciplines. The long duration balloon project will be transitioning from a development effort to an operational capability this year. Recently, emphasis has been placed on the development and implementation of new support systems and facilities. A new permanent launch facility at Fort Sumner, New Mexico has been established. New ground station support equipment is being implemented, and a new heavy load launch vehicle is scheduled to be implemented in 1992. The progress, status and future plans for these and other aspects of the NASA program will be presented.
    Keywords: AERODYNAMICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 2; p. (2)129-(2)135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The catastrophic balloon failure during the first half of the 1980's identified the need for a comprehensive and continuing balloon research and development (R&D) commitment by NASA. Technical understanding was lacking in many of the disciplines and processes associated with scientific ballooning. A comprehensive balloon R&D plan was developed in 1986 and implemented in 1987. The objectives were to develop the understanding of balloon system performance, limitations, and failure mechanisms. The program consisted of five major technical areas: structures, performance and analysis, materials, chemistry and processing, and quality control. Research activitites have been conducted at NASA/Goddard Space Flight Center (GSFC)-Wallops Flight Facility (WFF), other NASA centers and government facilities, universities, and the balloon manufacturers. Several new and increased capabilities and resources have resulted from this activity. The findings, capabilities, and plan of the balloon R&D program are presented.
    Keywords: AERODYNAMICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 2; p. (2)137-(2)146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.
    Keywords: AERODYNAMICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 2; p. (2)49-(2)52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-24
    Description: Rocket data have been used to evaluate the characteristics of precipitating relativistic electrons and their effects on the electrodynamic structure of the middle atmosphere. These data were obtained at Poker Flat, Alaska, on May 13 and 14, 1990, during a midday, highly relativistic electron (HRE) precipitation event. Solid state detectors were used to measure the electron fluxes and their energy spectra. An X ray scintillator was included on each flight to measure bremsstrahlung X rays produced by energetic electrons impacting on the upper atmosphere. However, these were found the be of negligible importance for this particular event. The energy deposition by the electrons has been determined from the flux measurements and compared with in situ measurements of the atmospheric electrical response. The electrodynamic measurements were obtained by the same rockets and additionally on May 13, with an accompanying rocket. The impact flux was highly irregular, containing short-lived bursts of relativistic electrons, mainly with energies below 0.5 MeV and with fluxes most enhanced between pitch angles of 0 deg - 20 deg. Although the geostationary counterpart of this measured event was considered to be of relatively low intensity and hardness, energy deposition peaked near 75 km with fluxes approaching an ion pair production rate in excess of 100/cu cm s. This exceeds peak fluxes in relativistic electron precipitation (REP) events as observed by us in numerous rocket soundings since 1976. Conductivity measurements from a blunt probe showed that negative electrical conductivities exceeded positive conductivities down to 50 km or lower, consistent with steady ionization by precipitating electrons above 1 MeV. These findings imply that the electrons from the outer radiation zone can modulate the electrical properties of the middle atmosphere to altitudes below 50 km. During the decline and activity minimum of the current solar cycle, we anticipate the occurence of similar events but with fluxes 1-2 orders of magnitude above that reported here, based on studies of earlier solar cycles (e.g., Baker et al., 1993).
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 21,071-21,081
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: Nitrous oxide (N2O) measured on board the ER-2 aircraft during the Airborne Arctic Stratospheric Expedition 2 (AASE 2) has been used to monitor descent of air inside the Arctic vortex between October 1991 and March 1992. Monthly mean N2O fields are calculated from the flight data and then compared with mean fields calculated from the high-resolution Geophysical Fluid Dynamics Laboratory general circulation model SKYHI in order to evaluate the model's simulation of the polar vortex. From late fall through winter the model vortex evolves in much the same way as the 1991-1992 vortex, with N2O gradients at the edge becoming progressively steeper. The October to March trends in N2O profiles inside the vortex are used to verify daily net heating rates in the vortex that were computed from clear sky radiative heating rates and National Meteorological Center temperature observations. The computed heating rates successfully estimate the descent of vortex air from December through February but suggest that before December, air at high latitudes may not be isolated from the midlatitudes. SKYHI heating rates are in good agreement with the computed rates but tend to be slightly higher (i.e., less cooling) due to meteorological differences between SKYHI and the 1991-1992 winter. Three ER-2 flights measured N2O just north of the subtropical jet. These low-midlatitude profiles show only slight differences from the high-midlatitude profiles (45 deg - 60 deg N), indicating strong meridional mixing in the midlatitude 'surf zone.' Mean midwinter N2O profiles inside and outside the vortex calculated from AASE 2 data are shown to be nearly identical to 1989 AASE profiles, pointing to the N2O/potential temperature relationship as an excellent marker for vortex air.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,713-20,723
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: The combined Nimbus 7 solar backscattered ultraviolet (SBUV) and NOAA 11 SBUV/2 ozone data, covering a period of more than a solar cycle (about 15 years), are used to study the UV response of ozone in the stratosphere. The study shows that about 2% change in total column ozone and about 5-7% change in ozone mixing ratio in the upper stratosphere (0.7 to 2 hPa) may be attributed to the change in the solar UV flux over a solar cycle. In the upper stratosphere, where photochemical processes are expected to play a major role, the measured solar cycle variation of ozone is significantly larger than inferred either from the photochemical models or from the ozone response to the 27-day solar UV modulation. For example, the observed solar cycle related change in ozone mixing ratio at 2 hPa is about 1% for 1% change in the solar UV flux near 200 nm. The inferred change in ozone from either the photochemical models or from the 27-day ozone-UV response is about a factor of 2-3 lower than this value.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,665-20,671
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: Vertical profiles of N2O and NO(y) taken by the ER-2 outside the vortex are used to construct average vertical profiles of F(NO(y)) = NO(y)/(A-N2O), where A is the tropospheric content of N2O three years prior to the measurements. The southern hemisphere had less nitrous oxide in the range 400 less than Theta less than 470 K, by up to 25% relative to the northern hemisphere. F(NO(y)) is the ratio of NOy produced to N2O lost in a stratospheric air mass since entry from the troposphere. The profiles of F(NO(y)) have the following characteristics: (1) Relative to 1991-1992, a year without denitrification inside or outside the vortex, the northern hemisphere in 1988-1989 showed denitrification outside the vortex ranging up to 25% and averaging 17% above Theta = 425 K. (2) Relative to the northern hemisphere in 1991-1992, the southern hemisphere in 1987 showed denitrification outside the vortex ranging up to 32% and averaging 20% above Theta = 400 K. (3) Below Theta = 400 K the southern hemisphere showed enhancements of F(NO(y)) relative to the northern hemisphere in 1991-1992 ranging up to 200% at Theta = 375 K, outside the vortex. Corresponding profiles of residual water, R(H2O) = H2O - 2(1.6 - CH4), are considered and shown to be consistent with those of F(NO(y)) in the sense that they show deficits outside the Antarctic vortex, which was both dehydrated and denitrified, but not outside the 1988-1989 Arctic vortex, which was denitrified but not dehydrated. R(H2O) is the water content of stratospheric air with the contribution from methane oxidation subtracted. Comparison of F(NO(y)) and R(H2O) below 400 K outside the Antarctic vortex leads to the suggetion that dehydration in the Antarctic vortex occurs by the sedimentation of ice crystals large enough to fall out of the stratosphere, whereas denitrification occurs mainly on mixed nitric acid-water crystals which evaporate below the base of the vortex at Theta = 400 K but above the tropopause.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,573-20,583
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: During January and August 1985, the scanning radiometers of the Earth Radiation Budget Experiment(ERBE) aboard the Earth Radiation Budget Satellite (ERBS) and the NOAA-9 satellite were operated in along-track scanning modes. Along-track scanning permits the study of many measurement problems. It provides the data for developing a limb-darkening model for a single site over a short period of time and also permits the indentification of the scene from data taken at smaller nadir angles. The earth-emitted radiation measured by the scanners has been analyzed to produce limb-darkening models for a variety of scene types. Limb-darkening models relate the radiance in any given direction to the radiant flux. The scene types were computed using measurements within 10 deg of zenith. The models have values near zenith of 1.02-1.09. The typical zenith values of the model are 1.06 for both day and night for ERBS, and for NOAA-9, 1.06 for day and 1.05 for night. Mean models are formed for the ERBS and NOAA-9 results and are found to differ less than 1%, the ERBS results being the higher. The models vary about 1% with latitude near zenith and agree with earlier models that were used to analyze ERBE data typically to 2%.
    Keywords: GEOPHYSICS
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 33; 1; p. 74-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.
    Keywords: GEOPHYSICS
    Type: EOS (ISSN 0096-3941); 75; 5; p. 49, 51-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B9; p. 18,081-18,087
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: A theoretical model is used to describe and investigate the effects of simultaneous crystallization, radiation loss, and entrainment of cooler material on the temperature of a well-mixed core of an active aa lava flow. Entrainment of crust, levee debris, and base material into the interior of active flows has been observed, but the degree of assimilation and the thermal consequences are difficult to quantify. The rate of entrainment can be constrained by supplementing the theoretical model with information on the crystallization along the path of the flow and estimation of the radiative loss from the flow interior. Application of the model is demonstrated with the 1984 Mauna Loa flow, which was erupted about 30 C undercooled. Without any entrainment of cooler material, the high crystallization rates would have driven temperatures in the core wall above temperatures measured by thermocouple and estimated from glass geothermometry. One plausible scenario for this flow, which agrees with available temperature and crystallinity measurements, has a high initial rate of entrainment during the first 8 hours of travel (a mass ratio of entrained material to fluid core of about 15% if the average temperature of the entrained material was 600 C), which counterbalances the latent heat from approximately 40% crystallization. In this scenario, the model suggests an additional 5% crystallization and a 5% entrainment mass ratio over the subsequent 16-hour period. Measurements of crystallization, radiative losses, and entrainment factors are necessary for understanding the detailed thermal histories of active lava flows.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B6; p. 11,819-11,831
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1549-1551
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: The data from the infrared telescope (IRT), which was flown on space shuttle Challenger Spacelab 2 mission (July 1985), were originally reported by Koch et al. (1987) as originating from near orbital emissions, primarily H2O. In this study, analysis of this data was extended to determine the collisional cross sections for the excitation of the low lying vibrational levels of H2O, present in the orbiter cloud, by atmospheric O(3P). The evaluation of the contribution to the measured signal from solar excitation and ram O excitation of outgassing H2O permits the determination of the H2O column density and the excitation cross section of the (101) level at an O(3P) velocity of approximately 7.75 km/s. Contributions to the radiation in the 1.7-3.0 micron band by transitions from the (100), (001), and multiquantum excited levels are discussed. The findings of the study are (1) the IRT data for the 4.5-9.5 micron and the nighttime data for the 1.7-3.0 micron sensors are consistent with being explained by collision excitation of H2O by O(3P), (2) diurnal variations of 4.5-9.5 micron intensities follow the model predicted O density for a full orbit, (3) daytime increases in the H2O cloud density were not evident, (4) the cross sections for the collisional excitation process are derived and compared to values computated by Johnson (1986) and Redmon et al. (1986), (5) theoretical investigation suggests greater than 60% of the radiation from H2O is a result of multiphoton emission resulting from collisional multiquanta excitation, and (6) the large daytime increase in the 1.7-3.0 micron intensity data suggests that O(+) may likely be instrumental in producing excited H2O(+) through charge exchange.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,559-17,575
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: The paper considers the compressible Rayleigh equation as a model for the Mach wave emission mechanism associated with high-temperature supersonic jets. Solutions to the compressible Rayleigh equation reveal the existence of several families of supersonically convecting instability waves. These waves directly radiate noise to the jet far field. The predicted noise characteristics are compared to previously acquired experimental data for an axisymmetric Mach 2 fully pressure balanced jet operating over a range of jet total temperatures from ambient to 1370 K. The results of this comparison show that the first-order supersonic instability wave and the Kelvin-Hemlhlotz first-, second-, and third-order modes have directional radiation characteristics that are in agreement with observed data. The assumption of equal initial amplitudes for all of the waves leads to the conclusion that the flapping mode of instability dominates the noise radiatio process of supersonic jets. At a jet temperature of 1370 K, supersonic instability waves are predicted to dominate the noise radiated at high frequency at narrow angles to the jet axis.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 12; p. 2345-2350
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: The objective of the present work is to study the mixing characteristics of a linear array of supersonic rectangular jets under conditions of screech synchronization. The screech synchronization at a fully expanded jet Mach number of 1.61 is achieved by a precise adjustment of the internozzle spacing. To our knowledge, such an experiment on the resonant mixing of screech synchronized multiple rectangular jets has not been reported before. The results are compared with the case where the screech was suppressed in the multijet configuration.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 12; p. 2477-2480
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: The objective of the present investigation is to assess the effect of the spatial order of accuracy used for the evaluation of the inviscid fluxes on the resolution of higher order quantitites, such as velocity gradients. The viscous terms are computed as second-order accurate with central difference formulas, even though for the explicit part of the algorithm higher order approximations may be used. A viscous/inviscid method is used, and the outer part of the flowfield is computed with the inviscid flow equations. The viscous boundary-layer type flow region close to the body surface is computed with an algebraic eddy viscosity model. Results obtained with the conservative and nonconservative formulations and the viscous/inviscid approach are compared with available experimental data. The effect of grid refinement on the accuracy of the solution is also presented.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 12; p. 2471-2474
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: The devolatilization of calcium sulfate, which is present in the target rock of the Chicxulub, Mexico impact structure, and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. We measured the amount of SO2 produced from two shock-induced devolatilization reactions of calcium sulfate up to 42 GPa in the laboratory. We found both to proceed to a much lower extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be approx. 10(exp -2) times those calculated for equilibrium. Upon modeling the quantity of sulfur oxides degassed into the atmosphere from shock devolatilization of CaSO4 in the Chicxulub lithographic section, the resulting 9 x 10(exp 16) to 6 x 10(exp 17) g (in sulfur mass) is lower by a factor of 10-100 than previous upper limit estimates, the related environmental stress arising from the resultant global cooling and fallout of acid rain is insufficient to explain the widespread K-T extinctions.
    Keywords: GEOPHYSICS
    Type: Earth and Planetary Science Letters (ISSN 0012-821X); 128; 3-4; p. 615-628
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: Energetic atomic (O(+1) and N(+1)) and molecular (O2(+1), NO(+1), and N2(+1)) ions of ionospheric origin were observed in Earth's magnetotail at X approximately -146 R(sub E) during two plasma sheet sunward/tailward flow-reversal events measured by instruments on the GEOTAIL spacecraft. These events were associated with concurrent ground-measured geomagnetic disturbance intensification at auroral-and mid-latitudes (Kp = 7(-)). Energetic ions in the sunward-component and tailward flows were from both the solar wind and ionosphere. Plasma and energetic ions participated in the flows. During tailward flow, ionospheric origin ion abundance ratios at approximately 200-900 km/s in the rest frame were N(+1)/O(+1) = approximately 25-30% and ((O2(+1), NO(+1), and N2(+1))/O(+1) = approximately 1-2%. We argue that tailward flow most likely initiated approximately 80-100 R(sub E) tailward of Earth and molecular ions were in the plasma sheet prior to geomagnetic intensification onset.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 25; p. 3023-3026
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: Wave forms of BEN (Broadband Electrostatic Noise) in the geomagnetic tail were first detected by the Wave Form Capture reciever on the GEOTAIL spacecraft. The results show that most of the BEN in the plasma sheet boundary layer (PSBL) are not continuous broadband noise but are composed of a series of solitary pulses having a special form which we term 'Electrostatic Solitary Waves (ESW)'. A nonlinear BGK potential model is proposed as the generation mechanism for the ESW based upon a simple particle simulation which considers the highly nonlinear evolution of the electron beam instability. The wave forms produced by this simulation are very similar to those observed by GEOTAIL and suggest that the nonlinear dynamics of the electron beam play an essential role in the generation of ESW.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 25; p. 2915-2918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A10; p. 19,475-19,483
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: A radiation model, together with National Meteorological Center temperature observations, was used to compute daily net heating rates in the northern hemisphere (NH) for the Arctic late fall and winter periods of both 1988-1989 and 1991-1992 and in the southern hemisphere (SH) for the Antarctic fall and winters of 1987 and 1992. The heating rates were interpolated to potential temperature (theta) surfaces between 400 K and 2000 K and averaged within the polar vortex, the boundary of which was determined by the maximum gradient in potential vorticity. The averaged heating rates were used in a one-dimensional vortex interior descent model to compute the change in potential temperature with time of air parcels initialized at various theta values, as well as to compute the descent in log pressure coodinates. In the NH vortex, air parcels which were initialized at 18 km on November 1, descended about 6 km by March 21, while air initially at 25 km descended 9 km in the same time period. this represents an average descent rate in the lower stratosphere of 1.3 to 2 km per month. Air initialized at 50 km descended 27 km between November 1 and March 21. In the SH vortex, parcels initialized at 18 km on March 1, descended 3 km, while air at 25 km descended 5-7 km by the end of October. This is equivalent to an average descent in the lower stratosphere of 0.4 to 0.9 km per month during this 8-month period. Air initialized at 52 km descended 26-29 km between March 1 and October 31. In both the NH and the SH, computed descent rates increased markedly with height. The descent for the NH winter of 1992-1993 and the SH winter of 1992 computed with a three-dimensional trajectory model using the same radiation code was within 1 to 2 km of that calculated by the one-dimensional model, thus validating the vortex averaging procedure. The computed descent rates generally agree well with observations of long-lived tracers, thus validating the radiative transfer model.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D8; p. 16,677-16,689
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: The map of the coseismic displacement field generated by interferometric processing of synthetic aperture radar (SAR) images taken before and after the June 28, 1992, Landers earthquake sequence brings new insights into the nature of deformation caused by these earthquakes. We use the interferometric map generated by Massonnet et al. (1993) to analyze the surface displacement field in the vicinity of the fault trace. Complexities in the fringe pattern near the fault reflect short-wavelength variations of the surface rupture and slip distribution, and attest to large displacement gradients. Along two sections of the fault, characteristic fringe patterns can be recognized, contrasting in density and direction with patterns observed away from the rupture. In order to understand the observed fringe patterns, we compute synthetic interferograms in three simple cases: (1) rigid-body rotations about a vertical axis, (2) about a horizontal axis (tilt), and (3) distributed, simple shear. The orientation and spatial separation of interferometric fringes predicted by these models help constrain near-field deformation and rupture parameters. Where the Kickapoo fault connects with the Homestead Valley fault, the interferogram shows a clear pattern of parallel N20 deg W fringes separated by about 160 m. This pattern and vertical offsets measured along the Kickapoo fault suggest that the block between this fault and the Johnson Valley fault may have been tilted, down to the west. A 5-km block lifted by 1 m on one side would be tilted by an angle of 0.01 deg (190 microrad), producing fringes separated by about 160 m, parallel to the tilt axis. Such a tilt, parallel to a N20 deg W direction, would account for the gradual, northward increase of the vertical slip component observed along the Kickapoo fault. This tilt may also explain the 1 m of reverse slip observed along the 'slip gap' section of the Homestead Valley break. Between the southern end of the Johnson Valley fault and the Eureka Peak fault, where no surface rupture has been mapped, the dense pattern of fringes implies distributed shear, probably resulting from fault slip at depth. The density and direction of the fringes in the gap are consistent with a right-lateral slip of 1.2-3.8 m on a blind fault locked above the depth of 1.5-2 km. Such observations of small wavelength features in the SAR interferogram bring new insights into the near-field displacement gradient and thus on response of the uppermost crust to seismic rupture.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B11; p. 21,971-21,981
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV/m with integrated voltages across the tail of up to approximately 200 kV. Energization of particles takes place over a wide range along the tail, due to the large spatial extent of the increased electric field together with the finite cross-tail extent of the electric field region. Such accelerated particles appear earthward of the neutral line over a significant portion of the closed field line region inside of the separatrix, not just in the vicinity of the separatrix. Two different acceleration processes are identified: a 'quasi-potential' acceleration, due to particle motion in the direction of the cross-tail electric field, and a 'quasi-betatron' effect, which consists of multiple energy gains from repeated crossings of the acceleration region, mostly on Speiser-type orbits, in the spatially varying induced electric field. The major source region for accelerated particles in the hundreds of keV range is the central plasma sheet at the dawn flank outside the reconnection site. Since this source plasma is already hot and dense, its moderate energization by a factor of approximately 2 may be sufficient to explain the observed increases in the energetic particle fluxes. Particles from the tail are the source of beams at the plasma sheet/lobe boundary. The temporal increase in the energetic particle fluxes, estimated from the increase in energy gain, occurs on a fast timescale of a few minutes, coincident with a strong increase in B(sub z), despite the fact that the inner boundary ('injection boundary') of the distribution of energized particles is fairly smooth.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A1; p. 109-119
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B2; p. 2791-2813
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: The presence of anisotropic plasma distributions, trapped at the Earth's magnetic equator, has consequences for the electric field structure which must exist in equilibrium along the magnetic field line. Data from SCATHA and Dynamics Explorer 1 indicate that the core ion distributions at the magnetic equator can be well described as bi-Maxwellian distributions, with a perpendicular temperature an order of magnitude larger than the parallel temperature. A collisionless model is developed for the variation in plasma parameters, following the forms developed by Whipple (1977). If the core electron anisotropy is low, the resulting electric field of approximately 0.1 microV/m is pointed away from the equator. Under these conditions the self-consistent electric field will not overcome the effects of magnetic trapping. The resulting potential distribution results in a local maximum in total plasma density at the equator. Only when the electron distribution is primarily field-aligned can there be a density minimum at the equator. Comparisons are made between this model and the observed variations in DE 1 plasma parameters with latitude.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A2; p. 2191-2203
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: A combined 3-dimensional circulation model and aerosol microphysical/transport model is used to simulate the dispersion of the Mt. Pinatubo volcanic cloud in the stratosphere for the first few months following the eruption. Radiative heating of the cloud due to upwelling infrared radiation from the troposphere is shown to be an important factor affecting the transport. Without cloud heating, cloud material stays mostly north of the equator, whereas with cloud heating, the cloud is transported southward across the equator within the first two weeks following the eruption. Generally the simulations agree with Total Ozone Mapping Spectrometer (TOMS), Advanced Very High Resolution Radiometer (AVHRR), and Stratospheric Aerosol and Gas Experiment (SAGE) satellite observations showing the latitude distribution of cloud material to be between about 20 deg S and 30 deg N within the first few months. Temperature perturbations in the stratosphere induced by the aerosol heating are generally 1-4 K, in the range of those observed.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 5; p. 369-372
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: We use geodetic data from Very Long Baseline Interferometry (VLBI) to determine the pre- and postseismic velocities of two sites. We then place limits on variations in interseismic strain buildup. The 1987 and 1988 Gulf of Alaska earthquakes (each Ms = 7.6) broke the Pacific plate interior. During the earthquakes the Cape Yakataga site moved 78 mm toward southwest. During the 1989 Loma Prieta earthquake (Ms = 7.1) the Fort Ord site moved 48 mm toward north. Baselines (a) from Fairbanks to Cape Yakataga and (b) from Mojave to Fort Ord change at nearly the same rate before and after the earthquakes. Postseismic transients, which we determine from differences between post- and preseismic rates, are minor: at Cape Yakataga the transient is 3 +/- 4 mm in a postseismic interval of 23 months, and at Fort Ord the transient is 6 +/- 5 mm in 21 months. The slip beneath the Loma Prieta rupture needed to generate the Fort Ord transient is 0.22 +/- 0.19 m, one-tenth the coseismic slip (2 m). We analyze elastic lithosphere-viscous asthenosphere models to determine that the characteristic time describing exponential decay in deep fault slip is longer than 6 years. The VLBI measurements are consistent with uniform interseismic strain buildup. They disagree with fast postseismic rates caused by an asthenosphere with very low viscosity.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 5; p. 333-336
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-24
    Description: The AEPI (Atmospheric Emissions Photometric Imager) experiment on the ATLAS-1 shuttle mission (launched March 24, 1992) imaged the earth night airglow emission in O2 Atmospheric (0,0) bands, at 762.0 nm. Earthward views of O2 A bands show structure from gravity waves which exhibit extended horizontal structure with horizontal wavelenghts on the order of 50-100 km. These observations of the O2 A (0,0) bands are particularly interesting since in this wavelength the lower atmosphere absorbs all the earth-reflected emissions and most of the spectrally diffuse backgrounds. Herein we present observations of gravity waves using a topside airglow imaging technique.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 21; p. 2283-2286
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-24
    Description: Fujii et al. (1994) obtained characteristics of the electrodynamic parameters, that is, field-aligned currents, electric fields, and electron precipitation, which are associted with auroral substorm events in the nighttime sector, through a unique analysis that places the ionospheric measurements of these parameters into the context of a generic substorm determined from global auroral images. In this paper we investigate in considerably more detail the characteristics of the field-aligned currents using data from the same set of passes as the previuos study. We show for the first time that the net upward field-aligned currents throughout the surge and surge horn are sufficient to account for most if not all of the converging currents of the auroral electrojets. Current densities are largest in the surge and surge horn. Current region continuity does not appear to exist across the substorm bulge region. Much of the auroral substorm field-aligned current is composed of filamentary currents and finite current segments at large angles to each other. The westward electrojet may contain large gradients in intensity both in local time and latitude due to sets of localized field-aligned currents. The net downward current for several hours to the west of the surge is insufficient to account for the eastward electrojet, consistent with the concept that this electrojet originates primarily on the dayside. Our pattern of field-aligned currents associated with the surge has common features and also differs significantly from the patterns previously derived from data from radars and ground-based magnetometer arrays. Our pattern is considerably more complex, probably due to the much higher resolution in latitude of the satellite data. It is also larger in area, since our average substorm is much larger than those pertaining to the previous patterns, giving a substorm wedge considerably wider than that obtained from the radar and array data.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A11; p. 21,303-21,325
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-24
    Description: An analytical model of the bidirectional reflectance for optically semi-infinite plant canopies has been extended to describe the reflectance of finite depth canopies contributions from the underlying soil. The model depends on 10 independent parameters describing vegetation and soil optical and structural properties. The model is inverted with a nonlinear minimization routine using directional reflectance data for lawn (leaf area index (LAI) is equal to 9.9), soybeans (LAI, 2.9) and simulated reflectance data (LAI, 1.0) from a numerical bidirectional reflectance distribution function (BRDF) model (Myneni et al., 1988). While the ten-parameter model results in relatively low rms differences for the BRDF, most of the retrieved parameters exhibit poor stability. The most stable parameter was the single-scattering albedo of the vegetation. Canopy albedo could be derived with an accuracy of less than 5% relative error in the visible and less than 1% in the near-infrared. Sensitivity were performed to determine which of the 10 parameters were most important and to assess the effects of Gaussian noise on the parameter retrievals. Out of the 10 parameters, three were identified which described most of the BRDF variability. At low LAI values the most influential parameters were the single-scattering albedos (both soil and vegetation) and LAI, while at higher LAI values (greater than 2.5) these shifted to the two scattering phase function parameters for vegetation and the single-scattering albedo of the vegetation. The three-parameter model, formed by fixing the seven least significant parameters, gave higher rms values but was less sensitive to noise in the BRDF than the full ten-parameter model. A full hemispherical reflectance data set for lawn was then interpolated to yield BRDF values corresponding to advanced very high resolution radiometer (AVHRR) scan geometries collected over a period of nine days. The resulting parameters and BRDFs are similar to those for the full sampling geometry, suggesting that the limited geometry of AVHRR measurements might be used to reliably retrieve BRDF and canopy albedo with this model.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D5; p. 10,577-10,600
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX computers to emulate Cray system time calls, which should be easy to modify for other machines as well. The standard distribution media for this version is a 9-track 1600 BPI ASCII Card Image format magnetic tape. The Cray version was developed in 1987. The IBM ES/3090 version is an IBM port of the Cray version. It is written in IBM VS FORTRAN and has the capability of executing in both vector and parallel modes on the MVS/XA operating system and in vector mode on the VM/XA operating system. Various options of the IBM VS FORTRAN compiler provide new features for the ES/3090 version, including 64-bit arithmetic and up to 2 GB of virtual addressability. The IBM ES/3090 version is available only as a 9-track, 1600 BPI IBM IEBCOPY format magnetic tape. The IBM ES/3090 version was developed in 1989. The DEC RISC ULTRIX version is a DEC port of the Cray version. It is written in FORTRAN 77 for RISC-based Digital Equipment platforms. The memory requirement is approximately 7Mb of main memory. It is available in UNIX tar format on TK50 tape cartridge. The port to DEC RISC ULTRIX was done in 1990. COS and UNICOS are trademarks and Cray is a registered trademark of Cray Research, Inc. IBM, ES/3090, VS FORTRAN, MVS/XA, and VM/XA are registered trademarks of International Business Machines. DEC and ULTRIX are registered trademarks of Digital Equipment Corporation.
    Keywords: AERODYNAMICS
    Type: COS-10029
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Panel method computer programs are software tools of moderate cost used for solving a wide range of engineering problems. The panel code PMARC_12 (Panel Method Ames Research Center, version 12) can compute the potential flow field around complex three-dimensional bodies such as complete aircraft models. PMARC_12 is a well-documented, highly structured code with an open architecture that facilitates modifications and the addition of new features. Adjustable arrays are used throughout the code, with dimensioning controlled by a set of parameter statements contained in an include file; thus, the size of the code (i.e. the number of panels that it can handle) can be changed very quickly. This allows the user to tailor PMARC_12 to specific problems and computer hardware constraints. In addition, PMARC_12 can be configured (through one of the parameter statements in the include file) so that the code's iterative matrix solver is run entirely in RAM, rather than reading a large matrix from disk at each iteration. This significantly increases the execution speed of the code, but it requires a large amount of RAM memory. PMARC_12 contains several advanced features, including internal flow modeling, a time-stepping wake model for simulating either steady or unsteady (including oscillatory) motions, a Trefftz plane induced drag computation, off-body and on-body streamline computations, and computation of boundary layer parameters using a two-dimensional integral boundary layer method along surface streamlines. In a panel method, the surface of the body over which the flow field is to be computed is represented by a set of panels. Singularities are distributed on the panels to perturb the flow field around the body surfaces. PMARC_12 uses constant strength source and doublet distributions over each panel, thus making it a low order panel method. Higher order panel methods allow the singularity strength to vary linearly or quadratically across each panel. Experience has shown that low order panel methods can provide nearly the same accuracy as higher order methods over a wide range of cases with significantly reduced computation times; hence, the low order formulation was adopted for PMARC_12. The flow problem is solved by modeling the body as a closed surface dividing space into two regions: the region external to the surface in which an unknown velocity potential exists representing the flow field of interest, and the region internal to the surface in which a known velocity potential (representing a fictitious flow) is prescribed as a boundary condition. Both velocity potentials are required to satisfy Laplace's equation. A surface integral equation for the unknown potential external to the surface can be written by applying Green's Theorem to the external region. Using the internal potential and zero flow through the surface as boundary conditions, the unknown potential external to the surface can be solved for. When the internal flow option, which allows the analysis of closed ducts, wind tunnels, and similar internal flow problems, is selected, the geometry is modeled such that the flow field of interest is inside the geometry and the fictitious flow is outside the geometry. Items such as wings, struts, or aircraft models can be included in the internal flow problem. The time-stepping wake model gives PMARC_12 the ability to model both steady and unsteady flow problems. The wake is convected downstream from the wake-separation line by the local velocity field. With each time step, a new row of wake panels is added to the wake at the wake-separation line. Time stepping can start from time t=0 (no initial wake) or from time t=t0 (an initial wake is specified). A wide range of motions can be prescribed, including constant rates of translation, constant rate of rotation about an arbitrary axis, oscillatory translation, and oscillatory rotation about any of the three coordinate axes. Investigators interested in a visual representation of the phenomenon they are studying with PMARC_12 may want to consider obtaining the program GVS (ARC-13361), the General Visualization System. GVS is a Silicon Graphics IRIS program which was created for the purpose of supporting the scientific visualization needs of PMARC_12. GVS is available separately from COSMIC. PMARC_12 is written in standard FORTRAN 77, with the exception of the NAMELIST extension used for input. This makes the code fairly machine independent. A compiler which supports the NAMELIST extension is required. The amount of free disk space and RAM memory required for PMARC_12 will vary depending on how the code is dimensioned using the parameter statements in the include file. The recommended minimum requirements are 20Mb of free disk space and 4Mb of RAM. PMARC_12 has been successfully implemented on a Macintosh II running System 6.0.7 or 7.0 (using MPW/Language Systems Fortran 3.0), a Sun SLC running SunOS 4.1.1, an HP 720 running HP-UX 8.07, an SGI IRIS running IRIX 4.0 (it will not run under IRIX 3.x.x without modifications), an IBM RS/6000 running AIX, a DECstation 3100 running ULTRIX, and a CRAY-YMP running UNICOS 6.0 or later. Due to its memory requirements, this program does not readily lend itself to implementation on MS-DOS based machines. The standard distribution medium for PMARC_12 is a set of three 3.5 inch 800K Macintosh format diskettes and one 3.5 inch 1.44Mb Macintosh format diskette which contains an electronic copy of the documentation in MS Word 5.0 format for the Macintosh. Alternate distribution media and formats are available upon request, but these will not include the electronic version of the document. No executables are included on the distribution media. This program is an update to PMARC version 11, which was released in 1989. PMARC_12 was released in 1993. It is available only for use by United States citizens.
    Keywords: AERODYNAMICS
    Type: ARC-13362
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-24
    Description: This program determines the supersonic flowfield surrounding three-dimensional wing-body configurations of a delta wing. It was designed to provide the numerical computation of three dimensional inviscid, flowfields of either perfect or real gases about supersonic or hypersonic airplanes. The governing equations in conservation law form are solved by a finite difference method using a second order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically. The flowfield between the body and outermost shock is treated in a shock capturing fashion and therefore allows for the correct formation of secondary internal shocks . The program operates in batch mode, is in CDC update format, has been implemented on the CDC 7600, and requires more than 140K (octal) word locations.
    Keywords: AERODYNAMICS
    Type: ARC-11015
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-24
    Description: MSIS is an empirical model of the thermosphere based on Mass Spectrometer and Incoherent Scatter data. It provides a description of atmospheric temperature, density, and composition for altitudes higher than 85 kilometers. There are coefficients in MSIS to account for yearly and daily variations, geodetic latitude and longitude, altitude, and solar activity. Variations due to magnetic storms are represented by three-hour magnetic ap indices. The MSIS model enables a more timely prediction of aeronomic densities for specific events, such as rocket flights. The database for this model is a comprehensive summary of rocket flight, satellite, incoherent scatter radar, grenade, and falling sphere measurements. Subsets of data were formed by random selection after sorting on altitude, latitude, time of day, etc. Curve fitting was done with four to five thousand data points at a time. The resulting coefficients are presented in subroutines which calculate thermospheric composition and temperature for a user-supplied position and time. MSIS is written in FORTRAN 77 for use with batch or interactive programs and has been implemented on a DEC VAX series computer operating under VMS 4.3 with a central memory requirement of approximately 25K of 8 bit bytes. MSIS is based on a 1977 thermosphere model and was last updated in 1987 to reflect the CIRA 1986 Neutral Thermosphere Model.
    Keywords: GEOPHYSICS
    Type: GSC-12989
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.
    Keywords: AERODYNAMICS
    Type: GSC-12680
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This program, which is called 'AOFA', determines the complete viscous and inviscid flow around a body of revolution at a given angle of attack and traveling at supersonic speeds. The viscous calculations from this program agree with experimental values for surface and pitot pressures and with surface heating rates. At high speeds, lee-side flows are important because the local heating is difficult to correlate and because the shed vortices can interact with vehicle components such as a canopy or a vertical tail. This program should find application in the design analysis of any high speed vehicle. Lee-side flows are difficult to calculate because thin-boundary-layer theory is not applicable and the concept of matching inviscid and viscous flow is questionable. This program uses the parabolic approximation to the compressible Navier-Stokes equations and solves for the complete inviscid and viscous regions of flow, including the pressure. The parabolic approximation results from the assumption that the stress derivatives in the streamwise direction are small in comparison with derivatives in the normal and circumferential directions. This assumption permits the equation to be solved by an implicit finite difference marching technique which proceeds downstream from the initial data point, provided the inviscid portion of flow is supersonic. The viscous cross-flow separation is also determined as part of the solution. To use this method it is necessary to first determine an initial data point in a region where the inviscid portion of the flow is supersonic. Input to this program consists of two parts. Problem description is conveyed to the program by namelist input. Initial data is acquired by the program as formatted data. Because of the large amount of run time this program can consume the program includes a restart capability. Output is in printed format and magnetic tape for further processing. This program is written in FORTRAN IV and has been implemented on a CDC 7600 with a central memory requirement of approximately 35K (octal) of 60 bit words.
    Keywords: AERODYNAMICS
    Type: ARC-11087
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-08-24
    Description: The Comprehensive Analytical Model of Rotorcraft Aerodynamics, CAMRAD, program is designed to calculate rotor performance, loads, and noise; helicopter vibration and gust response; flight dynamics and handling qualities; and system aeroelastic stability. The analysis is a consistent combination of structural, inertial, and aerodynamic models applicable to a wide range of problems and a wide class of vehicles. The CAMRAD analysis can be applied to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The rotor degrees of freedom included are blade/flap bending, rigid pitch and elastic torsion, and optionally gimbal or teeter motion. General two-rotor aircrafts can be modeled. Single main-rotor and tandem helicopter and sideby-side tilting proprotor aircraft configurations can be considered. The case of a rotor or helicopter in a wind tunnel can also be modeled. The aircraft degrees of freedom included are the six rigid body motion, elastic airframe motions, and the rotor/engine speed perturbations. CAMRAD calculates the load and motion of helicopters and airframes in two stages. First the trim solution is obtained; then the flutter, flight dynamics, and/or transient behavior can be calculated. The trim operating conditions considered include level flight, steady climb or descent, and steady turns. The analysis of the rotor includes nonlinear inertial and aerodynamic models, applicable to large blade angles and a high inflow ratio, The rotor aerodynamic model is based on two-dimensional steady airfoil characteristics with corrections for three-dimensional and unsteady flow effects, including a dynamic stall model. In the flutter analysis, the matrices are constructed that describe the linear differential equations of motion, and the equations are analyzed. In the flight dynamics analysis, the stability derivatives are calculated and the matrices are constructed that describe the linear differential equations of motion. These equations are analyzed. In the transient analysis, the rigid body equations of motion are numerically integrated, for a prescribed transient gust or control input. The CAMRAD program product is available by license for a period of ten years to domestic U.S. licensees. The licensed program product includes the CAMRAD source code, command procedures, sample applications, and one set of supporting documentation. Copies of the documentation may be purchased separately at the price indicated below. CAMRAD is written in FORTRAN 77 for the DEC VAX under VMS 4.6 with a recommended core memory of 4.04 megabytes. The DISSPLA package is necessary for graphical output. CAMRAD was developed in 1980.
    Keywords: AERODYNAMICS
    Type: ARC-12337
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-24
    Description: ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX computers to emulate Cray system time calls, which should be easy to modify for other machines as well. The standard distribution media for this version is a 9-track 1600 BPI ASCII Card Image format magnetic tape. The Cray version was developed in 1987. The IBM ES/3090 version is an IBM port of the Cray version. It is written in IBM VS FORTRAN and has the capability of executing in both vector and parallel modes on the MVS/XA operating system and in vector mode on the VM/XA operating system. Various options of the IBM VS FORTRAN compiler provide new features for the ES/3090 version, including 64-bit arithmetic and up to 2 GB of virtual addressability. The IBM ES/3090 version is available only as a 9-track, 1600 BPI IBM IEBCOPY format magnetic tape. The IBM ES/3090 version was developed in 1989. The DEC RISC ULTRIX version is a DEC port of the Cray version. It is written in FORTRAN 77 for RISC-based Digital Equipment platforms. The memory requirement is approximately 7Mb of main memory. It is available in UNIX tar format on TK50 tape cartridge. The port to DEC RISC ULTRIX was done in 1990. COS and UNICOS are trademarks and Cray is a registered trademark of Cray Research, Inc. IBM, ES/3090, VS FORTRAN, MVS/XA, and VM/XA are registered trademarks of International Business Machines. DEC and ULTRIX are registered trademarks of Digital Equipment Corporation.
    Keywords: AERODYNAMICS
    Type: ARC-12112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Panel methods are moderate cost tools for solving a wide range of engineering problems. PMARC (Panel Method Ames Research Center) is a potential flow panel code that numerically predicts flow fields around complex three-dimensional geometries. PMARC's predecessor was a panel code named VSAERO which was developed for NASA by Analytical Methods, Inc. PMARC is a new program with many additional subroutines and a well-documented code suitable for powered-lift aerodynamic predictions. The program's open architecture facilitates modifications or additions of new features. Another improvement is the adjustable size code which allows for an optimum match between the computer hardware available to the user and the size of the problem being solved. PMARC can be resized (the maximum number of panels can be changed) in a matter of minutes. Several other state-of-the-art PMARC features include internal flow modeling for ducts and wind tunnel test sections, simple jet plume modeling essential for the analysis and design of powered-lift aircraft, and a time-stepping wake model which allows the study of both steady and unsteady motions. PMARC is a low-order panel method, which means the singularities are distributed with constant strength over each panel. In many cases low-order methods can provide nearly the same accuracy as higher order methods (where the singularities are allowed to vary linearly or quadratically over each panel). Low-order methods have the advantage of a shorter computation time and do not require exact matching between panels. The flow problem is solved by assuming that the body is at rest in a moving flow field. The body is modeled as a closed surface which divides space into two regions -- one region contains the flow field of interest and the other contains a fictitious flow. External flow problems, such as a wing in a uniform stream, have the external region as the flow field of interest and the internal flow as the fictitious flow. This arrangement is reversed for internal flow problems where the internal region contains the flow field of interest and the external flow field is fictitious. In either case it is assumed that the velocity potentials in both regions satisfy Laplace's equation. PMARC has extensive geometry modeling capabilities for handling complex, three-dimensional surfaces. As with all panel methods, the geometry must be modeled by a set of panels. For convenience, the geometry is usually subdivided into several pieces and modeled with sets of panels called patches. A patch may be folded over on itself so that opposing sides of the patch form a common line. For example, wings are normally modeled with a folded patch to form the trailing edge of the wing. PMARC also has the capability to automatically generate a closing tip patch. In the case of a wing, a tip patch could be generated to close off the wing's third side. PMARC has a simple jet model for simulating a jet plume in a crossflow. The jet plume shape, trajectory, and entrainment velocities are computed using the Adler/Baron jet in crossflow code. This information is then passed back to PMARC. The wake model in PMARC is a time-stepping wake model. The wake is convected downstream from the wake separation line by the local velocity flowfield. With each time step, a new row of wake panels is added to the wake at the wake separation line. PMARC also allows an initial wake to be specified if desired, or, as a third option, no wakes need be modeled. The effective presentation of results for aerodynamics problems requires the generation of report-quality graphics. PMAPP (ARC-12751), the Panel Method Aerodynamic Plotting Program, (Sterling Software), was written for scientists at NASA's Ames Research Center to plot the aerodynamic analysis results (flow data) from PMARC. PMAPP is an interactive, color-capable graphics program for the DEC VAX or MicroVAX running VMS. It was designed to work with a variety of terminal types and hardcopy devices. PMAPP is available separately from COSMIC. PMARC was written in standard FORTRAN77 using adjustable size arrays throughout the code. Redimensioning PMARC will change the amount of disk space and memory the code requires to be able to run; however, due to its memory requirements, this program does not readily lend itself to implementation on MS-DOS based machines. The program was implemented on an Apple Macintosh (using 2.5 MB of memory) and tested on a VAX/VMS computer. The program is available on a 3.5 inch Macintosh format diskette (standard media) or in VAX BACKUP format on TK50 tape cartridge or 9-track magnetic tape. PMARC was developed in 1989.
    Keywords: AERODYNAMICS
    Type: ARC-12642
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters. Output from TAIR may include aerodynamic coefficients, the airfoil surface solution, convergence histories, and printer plots of Mach number and density contour maps. The TAIR program is written in FORTRAN IV for batch execution and has been implemented on a CDC 7600 computer with a central memory requirement of approximately 155K (octal) of 60 bit words. The TAIR program was developed in 1981.
    Keywords: AERODYNAMICS
    Type: ARC-11436
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-08-24
    Description: The TAWFIVE program calculates transonic flow over a transport-type wing and fuselage. Although more complex Euler and Navier-Stokes methods are available, TAWFIVE combines a multi-grid acceleration technique in the iterative solution of the potential equation with the use of integral-form boundary-layer equations to provide a computationally efficient and sufficiently accurate design tool. TAWFIVE simplifies the solution process by breaking the problem into a loosely coupled set of modified equations. The inviscid method, using standard inviscid equations (nonlinear full potential), is valid in the "outer" region away from the wing, whereas the boundary-layer equations are valid in the thin region near the solid surface of the wing. The two types of equations are coupled by a technique of modifying surface boundary conditions for the inviscid equations. This interaction process starts with a solution of the outer flow field. Pressures are computed at the wing surface and are used to calculate the boundary layer. The boundary-layer and wake properties are then computed using a three-dimensional integral method, and the computed displacement thickness is added to the surface of the "hard" geometry. This new displaced wing surface is then regridded and the inviscid flowfield is recomputed. New values of the inviscid pressures are then used by the boundary-layer method to predict a new displacement thickness distribution. An under-relaxed update of the previously predicted displacement thickness is then made to obtain a new displacement thickness correction that is added to the "hard" geometry. These global iterations are continued until suitable convergence is obtained. Input to TAWFIVE is limited to geometric definition of the configuration, free-stream flow quantities, and iteration control parameters. The geometric input consists of the definition of a series of airfoil sections to define the wing and a series of fuselage cross sections to model the fuselage. High-aspect-ratio wings are modeled more accurately than low-aspect-ratio wings since no special provisions are made to accurately model the wing-fuselage juncture or the wingtip region. The user can specify the solution either in terms of lift or in terms of angle of attack. TAWFIVE can produce tabular output and input files for PLOT3D (COSMIC program number ARC-12779). TAWFIVE is written in FORTRAN 77 for CRAY series computers running UNICOS. The main memory requirement is 2.7Mb for execution. This program is available on a 9-track 1600 BPI UNIX tar format magnetic tape. TAWFIVE was under development from 1979 to 1989 and first released by COSMIC in 1991. CRAY and UNICOS are registered trademarks of Cray Research, Inc.
    Keywords: AERODYNAMICS
    Type: LAR-14722
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This computer program is designed to calculate the flow fields in two-dimensional and three-dimensional axisymmetric supersonic inlets. The method of characteristics is used to compute arrays of points in the flow field. At each point the total pressure, local Mach number, local flow angle, and static pressure are calculated. This program can be used to design and analyze supersonic inlets by determining the surface compression rates and throat flow properties. The program employs the method of characteristics for a perfect gas. The basic equation used in the program is the compatibility equation which relates the change in stream angle to the change in entropy and the change in velocity. In order to facilitate the computation, the flow field behind the bow shock wave is broken into regions bounded by shock waves. In each region successive rays are computed from a surface to a shock wave until the shock wave intersects a surface or falls outside the cowl lip. As soon as the intersection occurs a new region is started and the previous region continued only in the area in which it is needed, thus eliminating unnecessary calculations. The maximum number of regions possible in the program is ten, which allows for the simultaneous calculations of up to nine shock waves. Input to this program consists of surface contours, free-stream Mach number, and various calculation control parameters. Output consists of printed and/or plotted results. For plotted results an SC-4020 or similar plotting device is required. This program is written in FORTRAN IV to be executed in the batch mode and has been implemented on a CDC 7600 with a central memory requirement of approximately 27k (octal) of 60 bit words.
    Keywords: AERODYNAMICS
    Type: ARC-11098
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This program was developed to predict turbine stage performance taking into account the effects of complex passage geometries. The method uses a quasi-3D inviscid-flow analysis iteratively coupled to calculated losses so that changes in losses result in changes in the flow distribution. In this manner the effects of both the geometry on the flow distribution and the flow distribution on losses are accounted for. The flow may be subsonic or shock-free transonic. The blade row may be fixed or rotating, and the blades may be twisted and leaned. This program has been applied to axial and radial turbines, and is helpful in the analysis of mixed flow machines. This program is a combination of the flow analysis programs MERIDL and TSONIC coupled to the boundary layer program BLAYER. The subsonic flow solution is obtained by a finite difference, stream function analysis. Transonic blade-to-blade solutions are obtained using information from the finite difference, stream function solution with a reduced flow factor. Upstream and downstream flow variables may vary from hub to shroud and provision is made to correct for loss of stagnation pressure. Boundary layer analyses are made to determine profile and end-wall friction losses. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses. The total losses are then used to calculate stator, rotor, and stage efficiency. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370/3033 under TSS with a central memory requirement of approximately 4.5 Megs of 8 bit bytes. This program was developed in 1985.
    Keywords: AERODYNAMICS
    Type: LEW-14218
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-08-24
    Description: Turbomachinery components are often connected by ducts, which are usually annular. The configurations and aerodynamic characteristics of these ducts are crucial to the optimum performance of the turbomachinery blade rows. The ANDUCT computer program was developed to calculate the velocity distribution along an arbitrary line between the inner and outer walls of an annular duct with axisymmetric swirling flow. Although other programs are available for duct analysis, the use of the velocity gradient method makes the ANDUCT program fast and convenient while requiring only modest computer resources. A fast and easy method of analyzing the flow through a duct with axisymmetric flow is the velocity gradient method, also known as the stream filament or streamline curvature method. This method has been used extensively for blade passages but has not been widely used for ducts, except for the radial equilibrium equation. In ANDUCT, a velocity gradient equation derived from the momentum equation is used to determine the velocity variation along an arbitrary straight line between the inner and outer wall of an annular duct. The velocity gradient equation is used with an assumed variation of meridional streamline curvature. Upstream flow conditions may vary between the inner and outer walls, and an assumed total pressure distribution may be specified. ANDUCT works best for well-guided passages and where the curvature of the walls is small as compared to the width of the passage. The ANDUCT program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 60K of 8 bit bytes. The ANDUCT program was developed in 1982.
    Keywords: AERODYNAMICS
    Type: LEW-14000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Panel Code for Planar Cascades was developed as an aid for the designer of turbomachinery blade rows. The effective design of turbomachinery blade rows relies on the use of computer codes to model the flow on blade-to-blade surfaces. Most of the currently used codes model the flow as inviscid, irrotational, and compressible with solutions being obtained by finite difference or finite element numerical techniques. While these codes can yield very accurate solutions, they usually require an experienced user to manipulate input data and control parameters. Also, they often limit a designer in the types of blade geometries, cascade configurations, and flow conditions that can be considered. The Panel Code for Planar Cascades accelerates the design process and gives the designer more freedom in developing blade shapes by offering a simple blade-to-blade flow code. Panel, or integral equation, solution techniques have been used for several years by external aerodynamicists who have developed and refined them into a primary design tool of the aircraft industry. The Panel Code for Planar Cascades adapts these same techniques to provide a versatile, stable, and efficient calculation scheme for internal flow. The code calculates the compressible, inviscid, irrotational flow through a planar cascade of arbitrary blade shapes. Since the panel solution technique is for incompressible flow, a compressibility correction is introduced to account for compressible flow effects. The analysis is limited to flow conditions in the subsonic and shock-free transonic range. Input to the code consists of inlet flow conditions, blade geometry data, and simple control parameters. Output includes flow parameters at selected control points. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 590K of 8 bit bytes. This program was developed in 1982.
    Keywords: AERODYNAMICS
    Type: LEW-13862
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-08-24
    Description: An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.
    Keywords: AERODYNAMICS
    Type: LEW-13854
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-08-24
    Description: A computer program, QSONIC, has been developed for calculating the full potential, transonic quasi-three-dimensional flow through a rotating turbomachinery blade row. The need for lighter, more efficient turbomachinery components has led to the consideration of machines with fewer stages, each with blades capable of higher speeds and higher loading. As speeds increase, the numerical problems inherent in the transonic regime have to be resolved. These problems include the calculation of imbedded shock discontinuities and the dual nature of the governing equations, which are elliptic in the subcritical flow regions but become hyperbolic for supersonic zones. QSONIC provides the flow analyst with a fast and reliable means of obtaining the transonic potential flow distribution on a blade-to-blade stream surface of a stationary or rotating turbomachine blade row. QSONIC combines several promising transonic analysis techniques. The full potential equation in conservative form is discretized at each point on a body-fitted period mesh. A mass balance is calculated through the finite volume surrounding each point. Each local volume is corrected in the third dimension for any change in stream-tube thickness along the stream tube. The nonlinear equations for all volumes are of mixed type (elliptic or hyperbolic) depending on the local Mach number. The final result is a block-tridiagonal matrix formulation involving potential corrections at each grid point as the unknowns. The residual of each system of equations is solved along each grid line. At points where the Mach number exceeds unity, the density at the forward (sweeping) edge of the volume is replaced by an artificial density. This method calculates the flow field about a cascade of arbitrary two-dimensional airfoils. Three-dimensional flow is approximated in a turbomachinery blade row by correcting for stream-tube convergence and radius change in the through flow direction. Several significant assumptions were made in developing the QSONIC program, including: (1) the flow is inviscid and adiabatic, (2) the flow relative to the blade is steady, (3) the fluid is a perfect gas with constant specific heat, (4) the flow is isentropic and any discontinuities (shocks) are weak enough to be approximated as isentropic jumps, (5) there is no velocity component normal to the stream surface, and (6) the flow relative to a fixed frame in space (absolute velocity) is completely irrotational. These assumptions place some limitations on the application of QSONIC. Sharp leading edges at high incidence and high-Mach-number turbine blade trailing edges with substantial deviation will both cause large velocity peaks on the blade. In addition, the program may have difficulty converging if the passage is nearly choked. Input to QSONIC consists of case control parameters, a geometry description, upstream boundary conditions, and a rotor description. Output includes solution scheme parameters and flow field parameters. A data file is also output which contains data on the solution mesh, surface Mach numbers, surface static pressures, isomachs, and the velocity vector field. This data may be used for further processing or for plotting. The QSONIC is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 500K of 8 bit bytes. QSONIC was developed in 1982.
    Keywords: AERODYNAMICS
    Type: LEW-13832
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-08-24
    Description: This computer program, WIND, was developed to numerically solve the exact, full-potential equation for three-dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three-dimensional, boundary-conforming grid and iteratively solves the full-potential equation while fully accounting for both the rotating and Coriolis effects. WIND is capable of numerically analyzing the flow field about a given blade shape of the horizontal-axis type wind turbine. The rotor hub is assumed representable by a doubly infinite circular cylinder. An arbitrary number of blades may be attached to the hub and these blades may have arbitrary spanwise distributions of taper and of the twist, sweep, and dihedral angles. An arbitrary number of different airfoil section shapes may be used along the span as long as the spanwise variation of all the geometeric parameters is reasonably smooth. The numerical techniques employed in WIND involve rotated, type-dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, WIND is cabable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. Along with the three-dimensional results, WIND provides the results of the two-dimensional calculations to aid the user in locating areas of possible improvement in the aerodynamic design of the blade. Output from WIND includes the chordwise distribution of the coefficient of pressure, the Mach number, the density, and the relative velocity components at spanwise stations along the blade. In addition, the results specify local values of the lift coefficient and the tangent and axial aerodynamic force components. These are also given in integrated form expressing the total torque and the total axial force acting on the shaft. WIND can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the relative oncoming flow is subsonic. The WIND program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 253K of 8 bit bytes. WIND was developed in 1980.
    Keywords: AERODYNAMICS
    Type: LEW-13740
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-08-24
    Description: This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters used, solution planes, and a description of the shock waves. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series machine with a central memory requirement of 110K (octal) of 60 bit words when it is overlayed. This flow analysis program was developed in 1978.
    Keywords: AERODYNAMICS
    Type: LEW-13279
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-08-24
    Description: This computer program was developed for calculating the subsonic or transonic flow on the hub-shroud mid-channel stream surface of a single blade row of a turbomachine. The design and analysis of blades for compressors and turbines ideally requires methods for analyzing unsteady, three-dimensional, turbulent viscous flow through a turbomachine. Since an exact solution is impossible at present, solutions on two-dimensional surfaces are calculated to obtain a quasi-three dimensional solution. When three-dimensional effects are important, significant information can be obtained from a solution on a cross-sectional surface of the passage normal to the flow. With this program, a solution to the equations of flow on the meridional surface can be carried out. This solution is chosen when the turbomachine under consideration has significant variation in flow properties in the hubshroud direction, especially when input is needed for use in blade-to-blade calculations. The program can also perform flow calculations for annular ducts without blades. This program should prove very useful in the design and analysis of any turbomachine. This program calculates a solution for two-dimensional, adiabatic shockfree flow. The flow must be essentially subsonic, but there may be local areas of supersonic flow. To obtain the solution, this program uses both the finite difference and the quasi-orthogonal (velocity gradient) methods combined in a way that takes maximum advantage of both. The finite-difference method solves a finite-difference equation along the meridional stream surface in a very efficient manner but is limited to subsonic velocities. This approach must be used in cases where the blade aspect ratios are above one, cases where the passage is curved, and cases with low hub-tip-ratio blades. The quasi-orthogonal method solves the velocity gradient equation on the meridional surface and is used if it is necessary to extend the range of solutions into the transonic regime. In general the blade row may be fixed or rotating and the blades may be twisted and leaned. The flow may be axial, radial, or mixed. The upstream and downstream flow conditions can vary from hub to shroud with provisions made for an approximate correction for loss of stagnation pressure. Also, viscous forces are neglected along solution mesh lines running from hub to tip. The capabilities of this program include handling of nonaxial flows without restriction, annular ducts without blades, and specified streamwise loss distributions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 700K of 8 bit bytes. This core requirement can be reduced depending on the size of the problem and the desired solution accuracy. This program was developed in 1977.
    Keywords: AERODYNAMICS
    Type: LEW-12966
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-08-24
    Description: A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.
    Keywords: AERODYNAMICS
    Type: LEW-11744
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-08-24
    Description: This program obtains a transonic flow solution on a blade-to-blade surface between blades of a turbomachine. The flow must be essentially subsonic, but there may be locally supersonic flow. The solution is two-dimensional, isentropic, and shock free. The blades may be fixed or rotating. The flow may be axial, radial, or mixed, and there may be a change in stream-channel thickness in the through-flow direction. A loss in relative stagnation pressure may be accounted for. The program input consists of blade and stream-channel geometry, stagnation flow conditions, inlet and outlet flow angles, and blade-to-blade stream-channel weight flow. The output includes blade surface velocities, velocity magnitude and direction at all interior mesh points in the blade-to-blade passage, and streamline coordinates throughout the passage. The transonic solution is obtained by a combination of a finite-difference, stream-function solution and a velocity-gradient solution. The finite-difference solution at a reduced weight flow provides information needed to obtain a velocity-gradient solution. This program is written in FORTRAN IV for batch execution and has been implemented on the IBM 360 computer with a central memory requirement of approximately 36K of 8 bit bytes. This program was developed in 1969 and last updated in 1979.
    Keywords: AERODYNAMICS
    Type: LEW-10977
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-08-24
    Description: This program is a revision of an existing program for blade-to-blade aerodynamic analysis of turbomachine blades and it is a simpler program while consistent with related programs. The analysis is for two-dimensional, subsonic, compressible (or incompressible), nonviscous flow in a circular or straight infinite cascade of blades, which may be fixed or rotating. The flow may be axial, radial, or mixed, and the stream channel thickness may change in the through-flow direction. The program input consists of blade and stream channel geometry, total flow conditions, inlet and outlet flow angles, and blade-to-blade stream channel weight flow. The output includes blade surface velocities, velocity magnitude and direction at all interior mesh points in the blade-to-blade passage, and streamline coordinates throughout the passage. This program was developed on an IBM 7094/7044 DCS.
    Keywords: AERODYNAMICS
    Type: LEW-10788
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-08-24
    Description: This computer program gives the blade-to-blade solution of the two-dimensional, subsonic, compressible (or incompressible), nonviscous flow problem for a circular or straight infinite cascade of tandem or slotted turbomachine blades. The blades may be fixed or rotating. The flow may be axial, radial , or mixed. The method of solution is based on the stream function using an iterative solution of nonlinear finite-difference equations. These equations are solved using two major levels of iteration. The inner iteration consists of the solution of simultaneous linear equations by successive over-relaxation, using an estimated optimum over-relaxation factor. The outer iteration then changes the coefficients of the simultaneous equations to correct for compressibility. The program input consists of the basic blade geometry, the meridional stream channel coordinates, fluid stagnation conditions, weight flow and flow split through the slot, and inlet and outlet flow angles. The output includes blade surface velocities, velocity magnitude and direction throughout the passage, and the streamline coordinates.
    Keywords: AERODYNAMICS
    Type: LEW-10743
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This FORTRAN IV computer program which incorporates the method of characteristics was written to assist in the design of supersonic inlets. There were two objectives: (1) to study a greater variety of supersonic inlet configurations and (2) to reduce the time required for trial-and-error procedures to arrive at optimum inlet design. The computer program was written with the intention of being able to construct a variety of inlet configurations by interchanging specific subroutines. In this manner, greater flexibility of choice was attained, and the time required to program a specific inlet configuration was greatly reduced. The second objective was accomplished by a reformulation of the boundary value problem for hyperbolic equations. By this reformulation of the boundary data, the engineering design quantities, throat Mach number and flow angle, were introduced as direct input quantities to the computer program. As a consequence of introducing the engineering parameters as input, the computer program will calculate the surface contours required to satisfy the specific throat conditions. Inviscid flow is assumed and the method used to calculate the inlet contour results in minimum distortion to the flow in the throat. This program was developed on an IBM 7094.
    Keywords: AERODYNAMICS
    Type: LEW-10868
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-08-24
    Description: This program represents a subsonic aerodynamic method for determining the mean camber surface of trimmed noncoplaner planforms with minimum vortex drag. With this program, multiple surfaces can be designed together to yield a trimmed configuration with minimum induced drag at some specified lift coefficient. The method uses a vortex-lattice and overcomes previous difficulties with chord loading specification. A Trefftz plane analysis is used to determine the optimum span loading for minimum drag. The program then solves for the mean camber surface of the wing associated with this loading. Pitching-moment or root-bending-moment constraints can be employed at the design lift coefficient. Sensitivity studies of vortex-lattice arrangements have been made with this program and comparisons with other theories show generally good agreement. The program is very versatile and has been applied to isolated wings, wing-canard configurations, a tandem wing, and a wing-winglet configuration. The design problem solved with this code is essentially an optimization one. A subsonic vortex-lattice is used to determine the span load distribution(s) on bent lifting line(s) in the Trefftz plane. A Lagrange multiplier technique determines the required loading which is used to calculate the mean camber slopes, which are then integrated to yield the local elevation surface. The problem of determining the necessary circulation matrix is simplified by having the chordwise shape of the bound circulation remain unchanged across each span, though the chordwise shape may vary from one planform to another. The circulation matrix is obtained by calculating the spanwise scaling of the chordwise shapes. A chordwise summation of the lift and pitching-moment is utilized in the Trefftz plane solution on the assumption that the trailing wake does not roll up and that the general configuration has specifiable chord loading shapes. VLMD is written in FORTRAN for IBM PC series and compatible computers running MS-DOS. This program requires 360K of RAM for execution. The Ryan McFarland FORTRAN compiler and PLINK86 are required to recompile the source code; however, a sample executable is provided on the diskette. The standard distribution medium for VLMD is a 5.25 inch 360K MS-DOS format diskette. VLMD was originally developed for use on CDC 6000 series computers in 1976. It was originally ported to the IBM PC in 1986, and, after minor modifications, the IBM PC port was released in 1993.
    Keywords: AERODYNAMICS
    Type: LAR-15160
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-08-24
    Description: This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.
    Keywords: AERODYNAMICS
    Type: LAR-14178
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This program provides a wing design algorithm based on modified linear theory which takes into account the effects of attainable leading-edge thrust. A primary objective of the WINGDES2 approach is the generation of a camber surface as mild as possible to produce drag levels comparable to those attainable with full theoretical leading-edge thrust. WINGDES2 provides both an analysis and a design capability and is applicable to both subsonic and supersonic flow. The optimization can be carried out for designated wing portions such as leading and trailing edge areas for the design of mission-adaptive surfaces, or for an entire planform such as a supersonic transport wing. This program replaces an earlier wing design code, LAR-13315, designated WINGDES. WINGDES2 incorporates modifications to improve numerical accuracy and provides additional capabilities. A means of accounting for the presence of interference pressure fields from airplane components other than the wing and a direct process for selection of flap surfaces to approach the performance levels of the optimized wing surfaces are included. An increased storage capacity allows better numerical representation of those configurations that have small chord leading-edge or trailing-edge design areas. WINGDES2 determines an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. The objective of the design is the recovery of unrealized theoretical leading-edge thrust of the input flat surface by shaping of the design surface to create a distributed thrust and thus minimize drag. The input consists of airfoil section thickness data, leading and trailing edge planform geometry, and operational parameters such as Mach number, Reynolds number, and design lift coefficient. Output includes optimized camber surface ordinates, pressure coefficient distributions, and theoretical aerodynamic characteristics. WINGDES2 is written in FORTRAN V for batch execution and has been implemented on a CDC CYBER computer operating under NOS 2.7.1 with a central memory requirement of approximately 344K (octal) of 60 bit words. This program was developed in 1984, and last updated in 1990. CDC and CYBER are trademarks of Control Data Corporation.
    Keywords: AERODYNAMICS
    Type: LAR-13995
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-24
    Description: This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.
    Keywords: AERODYNAMICS
    Type: LAR-14458
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Since its early beginnings, NASA has been actively involved in the design and testing of airfoil sections for a wide variety of applications. Recently a set of programs has been developed to smooth and scale arbitrary airfoil coordinates. The smoothing program, AFSMO, utilizes both least-squares polynomial and least-squares cubic-spline techniques to iteratively smooth the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. The camber and thickness distribution of the smooth airfoil are also computed. The scaling program, AFSCL, may then be used to scale the thickness distribution generated by the smoothing program to a specified maximum thickness. Once the thickness distribution has been scaled, it is combined with the camber distribution to obtain the final scaled airfoil contour. The airfoil smoothing and scaling programs are written in FORTRAN IV for batch execution and have been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 70K (octal) of 60 bit words. Both programs generate plotted output via CALCOMP type plotting calls. These programs were developed in 1983.
    Keywords: AERODYNAMICS
    Type: LAR-13132
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Supersonic Wing Nonlinear Aerodynamics computer program, LTSTAR, was developed to provide for the estimation of the nonlinear aerodynamic characteristics of a wing at supersonic speeds. This corrected linearized-theory method accounts for nonlinearities in the variation of basic pressure loadings with local surface slopes, predicts the degree of attainment of theoretical leading-edge thrust forces, and provides an estimate of detached leading-edge vortex loadings that result when the theoretical thrust forces are not fully realized. Comparisons of LTSTAR computations with experimental results show significant improvements in detailed wing pressure distributions, particularly for large angles of attack and for regions of the wing where the flow is highly three-dimensional. The program provides generally improved predictions of the wing overall force and moment coefficients. LTSTAR could be useful in design studies aimed at aerodynamic performance optimization and for providing more realistic trade-off information for selection of wing planform geometry and airfoil section parameters. Input to the LTSTAR program includes wing planform data, freestream conditions, wing camber, wing thickness, scaling options, and output options. Output includes pressure coefficients along each chord, section normal and axial force coefficients, and the spanwise distribution of section force coefficients. With the chordwise distributions and section coefficients at each angle of attack, three sets of polars are output. The first set is for linearized theory with and without full leading-edge thrust, the second set includes nonlinear corrections, and the third includes estimates of attainable leading-edge thrust and vortex increments along with the nonlinear corrections. The LTSTAR program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 150K (octal) of 60 bit words. The LTSTAR program was developed in 1980.
    Keywords: AERODYNAMICS
    Type: LAR-12788
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-08-24
    Description: The nozzle afterbody is one of the main drag-producing components of an aircraft propulsion system. Thus, considerable effort has been devoted to developing techniques for predicting the afterbody flow field and drag. The RAXJET computer program was developed to predict the transonic, axisymmetric flow over nozzle afterbodies with supersonic jet exhausts and includes the effects of boundary-layer displacement, separation, jet entrainment, and inviscid jet plume blockage. RAXJET iteratively combines the South-Jameson relaxation procedure, the Reshotko-Tucker boundary-layer solution, the Presz separation model, the Dash-Pergament mixing model, and the Dash-Thorpe inviscid plume model into a single, comprehensive model. The approach taken in the RAXJET program requires considerably less computational time than the Navier-Stokes solutions and generally yields results of comparable accuracy. In RAXJET, the viscous-inviscid interaction model is constructed by dividing the afterbody flow field into six separate computational regions: (1) The inviscid external flow solution is based on the relaxation procedure of South and Jameson for solving the exact nonlinear potential flow equation in nonconservative form. (2) The flow field in the inviscid jet exhaust is solved by explicit spatial marching of the conservative finite-difference form of the inviscid flow equations for a uniform composition gas mixture. (3) The properties in the attached boundary-layer region are solved by a modified version of the Reshotko-Tucker integral method for turbulent flows. (4) The analysis of the separated flow region consists of predicting the separation location and calculating the discriminating streamline shape. (5) The jet wake region is determined by either a simple extrapolation model or by an integral method that accounts for entrainment effects. (6) The displacement-thickness distribution arising from entrainment into the jet mixing layer is calculated by the overlaid mixing model. The inviscid external flow solution and inviscid jet exhaust solution provide the necessary flow conditions to calculate the flow in the viscous regions. The viscous and inviscid flow fields are iteratively solved until a final solution is obtained. Input to the RAXJET program consists of body geometry data, free-stream conditions, main logic control parameters, and condition and control parameters for each of the six computational flow regions. Output from RAXJET includes detailed flow results and aerodynamic coefficients. The RAXJET program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 60K(octal) of 60 bit words. The RAXJET program was developed in 1982.
    Keywords: AERODYNAMICS
    Type: LAR-12957
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-08-24
    Description: The computer program SALLY was developed to compute the incompressible linear stability characteristics and integrate the amplification rates of boundary layer disturbances on swept and tapered wings. For some wing designs, boundary layer disturbance can significantly alter the wing performance characteristics. This is particularly true for swept and tapered laminar flow control wings which incorporate suction to prevent boundary layer separation. SALLY should prove to be a useful tool in the analysis of these wing performance characteristics. The first step in calculating the disturbance amplification rates is to numerically solve the compressible laminar boundary-layer equation with suction for the swept and tapered wing. A two-point finite-difference method is used to solve the governing continuity, momentum, and energy equations. A similarity transformation is used to remove the wall normal velocity as a boundary condition and place it into the governing equations as a parameter. Thus the awkward nonlinear boundary condition is avoided. The resulting compressible boundary layer data is used by SALLY to compute the incompressible linear stability characteristics. The local disturbance growth is obtained from temporal stability theory and converted into a local growth rate for integration. The direction of the local group velocity is taken as the direction of integration. The amplification rate, or logarithmic disturbance amplitude ratio, is obtained by integration of the local disturbance growth over distance. The amplification rate serves as a measure of the growth of linear disturbances within the boundary layer and can serve as a guide in transition prediction. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on a CDC CYBER 70 series computer with a central memory requirement of approximately 67K (octal) of 60 bit words. SALLY was developed in 1979.
    Keywords: AERODYNAMICS
    Type: LAR-12556
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-08-24
    Description: The Program for Solving the General-Frequency Unsteady Two-Dimensional Transonic Small-Disturbance Equation, XTRAN2L, is used to calculate time-accurate, finite-difference solutions of the nonlinear, small-disturbance potential equation for two- dimensional transonic flow about airfoils. The code can treat forced harmonic, pulse, or aeroelastic transient type motions. XTRAN2L uses a transonic small-disturbance equation that incorporates a time accurate finite-difference scheme. Airfoil flow tangency boundary conditions are defined to include airfoil contour, chord deformation, nondimensional plunge displacement, pitch, and trailing edge control surface deflection. Forced harmonic motion can be based on: 1) coefficients of harmonics based on information from each quarter period of the last cycle of harmonic motion; or 2) Fourier analyses of the last cycle of motion. Pulse motion (an alternate to forced harmonic motion) in which the airfoil is given a small prescribed pulse in a given mode of motion, and the aerodynamic transients are calculated. An aeroelastic transient capability is available within XTRAN2L, wherein the structural equations of motion are coupled with the aerodynamic solution procedure for simultaneous time-integration. The wake is represented as a slit downstream of the airfoil trailing edge. XTRAN2L includes nonreflecting farfield boundary conditions. XTRAN2L was developed on a CDC CYBER mainframe running under NOS 2.4. It is written in FORTRAN 5 and uses overlays to minimize storage requirements. The program requires 120K of memory in overlayed form. XTRAN2L was developed in 1987.
    Keywords: AERODYNAMICS
    Type: LAR-13899
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The NASCRIN program was developed for analyzing two-dimensional flow fields in supersonic combustion ramjet (scramjet) inlets. NASCRIN solves the two-dimensional Euler or Navier-Stokes equations in conservative form by an unsplit, explicit, two-step finite-difference method. A more recent explicit-implicit, two-step scheme has also been incorporated in the code for viscous flow analysis. An algebraic, two-layer eddy-viscosity model is used for the turbulent flow calculations. NASCRIN can analyze both inviscid and viscous flows with no struts, one strut, or multiple struts embedded in the flow field. NASCRIN can be used in a quasi-three-dimensional sense for some scramjet inlets under certain simplifying assumptions. Although developed for supersonic internal flow, NASCRIN may be adapted to a variety of other flow problems. In particular, it should be readily adaptable to subsonic inflow with supersonic outflow, supersonic inflow with subsonic outflow, or fully subsonic flow. The NASCRIN program is available for batch execution on the CDC CYBER 203. The vectorized FORTRAN version was developed in 1983. NASCRIN has a central memory requirement of approximately 300K words for a grid size of about 3,000 points.
    Keywords: AERODYNAMICS
    Type: LAR-13297
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The problem of axisymmetric transonic flow is of interest not only because of the practical application to missile and launch vehicle aerodynamics, but also because of its relation to fully three-dimensional flow in terms of the area rule. The RAXBOD computer program was developed for the analysis of steady, inviscid, irrotational, transonic flow over axisymmetric bodies in free air. RAXBOD uses a finite-difference relaxation method to numerically solve the exact formulation of the disturbance velocity potential with exact surface boundary conditions. Agreement with available experimental results has been good in cases where viscous effects and wind-tunnel wall interference are not important. The governing second-order partial differential equation describing the flow potential is replaced by a system of finite difference equations, including Jameson's "rotated" difference scheme at supersonic points. A stretching is applied to both the normal and tangential coordinates such that the infinite physical space is mapped onto a finite computational space. The boundary condition at infinity can be applied directly and there is no need for an asymptotic far-field solution. The system of finite difference equations is solved by a column relaxation method. In order to obtain both rapid convergence and any desired resolution, the relaxation is performed iteratively on successively refined grids. Input to RAXBOD consists of a description of the body geometry, the free stream conditions, and the desired resolution control parameters. Output from RAXBOD includes computed geometric parameters in the normal and tangential directions, iteration history information, drag coefficients, flow field data in the computational plane, and coordinates of the sonic line. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6600 computer with an overlayed central memory requirement of approximately 40K (octal) of 60 bit words. Optional plotted output can be generated for the Calcomp plotting system. The RAXBOD program was developed in 1976.
    Keywords: AERODYNAMICS
    Type: LAR-12499
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-08-24
    Description: Two separate and distinct theories are incorporated in this computer program to estimate the lift-induced pressures existent on a wing-body combination. These are (1) the second-order shock-expansion theory, which is used to obtain the lifting pressures on the body alone at small angles of attack, and (2) the linear-theory integral equations, which is used to evaluate the lifting pressures induced by the wing. These equations relate the local surface slope at a point on the lifting surface to the pressure differential at the point and the influence of the pressures upstream of the point. The numerical solution of these equations is effected by treating the wing-planform as a composite of elemental rectangles and applying summation techniques to satisfy the necessary integral relations. Most of the input required by this program is involved with the description of the missile planform geometry. The output consists of the computed value of the lifting pressure slope (the differential pressure coefficient per degree angle of attack) for each of the elements in the planform array. A force and moment summary is presented for the configuration under consideration.
    Keywords: AERODYNAMICS
    Type: LAR-10932
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-08-24
    Description: A modified strip analysis has been developed for rapidly predicting flutter of finite-span, swept or unswept wings at subsonic to hypersonic speeds. The method employs distributions of aerodynamic parameters which may be evaluated from any suitable linear or nonlinear steady-flow theory or from measured steady-flow load distributions for the underformed wing. The method has been shown to give good flutter results for a broad range of wings at Mach number from 0 to as high as 15.3. The principles of the modified strip analysis may be summarized as follows: Variable section lift-curve slope and aerodynamic center are substituted respectively, for the two-dimensional incompressible-flow values of 2 pi and quarter chord which were employed by Barmby, Cunningham, and Garrick. Spanwise distributions of these steady-flow section aerodynamic parameters, which are pertinent to the desired planform and Mach number, are used. Appropriate values of Mach number-dependent circulation functions are obtained from two-dimensional unsteady compressible-flow theory. Use of the modified strip analysis avoids the necessity of reevaluating a number of loading parameters for each value of reduced frequency, since only the modified circulation functions, and of course the reduced frequency itself, vary with frequency. It is therefore practical to include in the digital computing program a very brief logical subroutine, which automatically selects reduced-frequency values that converge on a flutter solution. The problem of guessing suitable reduced-frequency values is thus eliminated, so that a large number of flutter points can be completely determined in a single brief run on the computing machine. If necessary, it is also practical to perform the calculations manually. Flutter characteristics have been calculated by the modified strip analysis and compared with results of other calculations and with experiments for Mach numbers up to 15.3 and for wings with sweep angles from 0 degrees to 52.5 degrees, aspect ratios from 2.0 to 7.4, taper ratios from 0.2 to 1.0, and center-of-gravity positions between 34% chord and 59% chord. These ranges probably cover the great majority of wings that are of practical interest with the exception of very low-aspect-ratio surfaces such as delta wings and missile fins. This program has been implemented on the IBM 7094.
    Keywords: AERODYNAMICS
    Type: LAR-10199
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The SUBAERF2 program was developed to provide for the aerodynamic analysis and design of low speed wing flap systems. SUBAERF2 is based on a linearized theory lifting surface solution. It is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The program is applicable to wings with either sharp or rounded leading edges. This program is a new and improved version of LAR-13116 and LAR-12987, which it replaces. The low speed aerodynamic analysis method used in SUBAERF2 provides estimates of wing performance which include the effects of attainable leading-edge thrust and vortex lift. This basic aerodynamic analysis method has been improved to provide for the convenient, efficient and accurate treatment of simple leading-edge and trailing-edge flap systems. The user inputs flap geometry directly. Solutions can be found for various combinations of leading and trailing edge flap deflections. The program provides for the simultaneous analysis of up to 25 pairs of leading-edge and trailing-edge flap deflection schedules. A revised attainable thrust algorithm improves accuracy at the low Mach numbers sometimes encountered in wind tunnel testing. Also added is a means of estimating the distribution of leading edge separation vortex forces. The revised program has been particularly useful in the subsonic analysis of vehicles designed for supersonic cruise. The SUBAERF2 program is written in FORTRAN V for batch execution and has been implemented on a CDC 175 computer operating under NOS 2.4 with a central memory requirement of approximately 115K (octal) of 60 bit words. This program was originally developed in 1983 and later revised in 1988.
    Keywords: AERODYNAMICS
    Type: LAR-13994
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.
    Keywords: AERODYNAMICS
    Type: LAR-13223
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-08-24
    Description: An approximate inverse solution is presented for the nonequilibrium flow in the inviscid shock layer about a vehicle in hypersonic flight. The method is based upon a thin-shock-layer approximation and has the advantage of being applicable to both subsonic and supersonic regions of the shock layer. The relative simplicity of the method makes it ideally suited for programming on a digital computer with a significant reduction in storage capacity and computing time required by other more exact methods. Comparison of nonequilibrium solutions for an air mixture obtained by the present method is made with solutions obtained by two other methods. Additional cases are presented for entry of spherical nose cones into representative Venusian and Matrian atmospheres. A digital computer program written in FORTRAN language is presented that permits an arbitrary gas mixture to be employed in the solution. The effects of vibration, dissociation, recombination, electronic excitation, and ionization are included in the program.
    Keywords: AERODYNAMICS
    Type: LAR-11198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Small areas of high heat transfer and pressure can occur on a vehicle surface due to the influence of an impinging shock on the local flow. A method was needed to determine peak pressure and heating of these areas. This package is a system of computer programs designed to calculate two-dimensional shock interference patterns for six types of interference flows. Results also include properties of the inviscid flow field and the inviscid-viscous interaction at the surface along with peak pressure and peak heating at the impingement point. The six types of interference flow patterns considered are: 1) Type I interference patterns, occurring when two weak shocks of opposite families, BS (bow shock) and IS (impingment shock), intersect when the flow upstream of the impingement point is supersonic, or in the case of a blunt body, takes place well below the sonic point. 2) Type II interference pattern occurs when two shocks of opposite families (bow shock and impinging shock) intersect. Both shocks are weak as in type I, but are of such strength that in order to turn the flow, a Mach reflection must exist in the center of the flow field with an embedded subsonic region occurring between the intersection points (A & B) and the accompanying shear layers. Type II interference occurs on a blunt body when the impinging shock intersects the bow shock near the sonic point. 3) Type III shock interference pattern occurs when a weak impinging shock intersects a strong detached bow shock. On a blunt body the shock intersection occurs near or above the lower sonic point. 4) Type IV interference can occur when the impinging shock intersects a strong bow shock ahead of a subsonic flow region. On a blunt body this shock intersection is located between the lower sonic point and just above the body axis. The impinging shock causes a displacement of the bow shock and the formation of a supersonic jet that is embedded in the subsonic region. A jet bow shock is produced when the jet impinges on the surface, creating a small region with high stagnation heating. 5) Type V interference involves the interaction of two weak shocks of the same family. The interaction produces a shear layer, a supersonic jet, and a transmitted impinging shock. On a blunt body the shock interaction occurs near the upper sonic point. 6) Type VI interference involves the intersection of two weak shocks of the same family, which leads to an entirely supersonic flow field. This type of interference is important because it provides a means for predicting the onset of type V. Peak-heating correlations for laminar and turbulent shock-boundary-layer interactions are included in the programs for types I, II, V, and VI interference patterns. Heating correlations for laminar and turbulent reattaching shear layers obtained from separation studies are included in the program for type III interference. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 Series computer. This program was developed in 1973.
    Keywords: AERODYNAMICS
    Type: LAR-11497
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-08-24
    Description: A computer program has been written to obtain the wave and friction drag of configurations with bodies of revolution and fins. These inviscid flow fields are superimposed and the wave drag of the configuration is obtained by integration of the surface pressures. The friction drag is obtained from the viscous flow field of the body and a flat-plate friction analysis of the fins. The numerical solution of these flow fields, superposition, and integration to obtain total drag have been programmed for high-speed digital computation. A large portion of the input required by the program is involved with the description of the configuration geometry and the specific surface positions where pressures are to be evaluated. In addition to drag forces, an output is available whereby the pressure distributions on the body and fins can be obtained.
    Keywords: AERODYNAMICS
    Type: LAR-10935
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-08-24
    Description: This paper is on the control of nonlinear-nonstationary vibration of a frame-stringer structure resulting from high levels of excitaation from a nearby supersonic jet exhaust. The structure exhibits periodic, chaotic, or random behaviors when forced by high-intensity sound from a supersonic jet exhaust with shock loading superimposed on the broadband response. The time history of the pressure, showing the rotation and flapping of the shock structure in the jet column due to large-scale instabilities, indicates that the response is not only nonlinear but also nonstationary. The acoustic pressure radiated by the structure also contains shocks and the formation of harmonics with distance. Control of the structural response is achieved by actively forcing the structure with an actuator at the shock oscillation frequency whose amplitude is locked into a self-control cycle. Results show that the peak power level is reduced by a factor of 63, or 18 dB. As a result, new broadband components emerge with at least four harmonics. At accelerating and decelerating supersonic speeds, the exhaust from the jet induces higher transient loading on the nearby flexible structure due to the occurence of multiple shocks from the jet.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1367-1376
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-08-24
    Description: Continuous optical observations of cusp/cleft auroral activities within approximately equal to 09-15 MLT and 70-76 deg magnetic latitude are studied in relation to changes in solar wind dynamic pressure and interplanetary magnetic field (IMF) variability. The observed latitudinal movements of the cusp/cleft aurora in response to IMF B(sub z) changes may be explained as an effect of a variable magnetic field intensity in the outer dayside magnetosphere associated with the changing intensity of region 1 field-aligned currents and associated closure currents. Ground magnetic signatures related to such currents were observed in the present case (January 10, 1993). Strong, isolated enhancements in solar wind dynamic pressure (Delta p/p is greater than or equal to 0.5) gave rise to equatorward shifts of the cusp/cleft aurora, characteristic auroral transients, and distinct ground magnetic signatures of enhanced convection at cleft latitudes. A sequence of auroral events of approximately equal to 5-10 min recurrence time, moving eastward along the poleward boundary of the persistent cusp/cleft aurora in the approximately equal to 10-14 MLT sector, during negative IMF B(sub z) and B(sub y) conditions, were found to be correlated with brief pulses in solar wind dynamic pressure (0.1 is less than Delta p/p is less than 0.5). Simultaneous photometer observations from Ny Alesund, Svalbard, and Danmarkshavn, Greenland, show that the events often appeared on the prenoon side (approximately equal to 10-12 MLT), before moving into the postnoon sector in the case we study here, when IMF B(sub y) is less than 0. In other cases, similar auroral event sequences have been observed to move westward in the prenoon sector, during intervals of positive B(sub y). Thus a strong prenoon/postnoon asymmetry of event occurence and motion pattern related to the IMF B(sub y) polarity is observed. We find that this category of auroral event sequence is stimulated bursts of electron precipitation that originate from magnetosheath plasma that has accessed that dayside magnetosphere in the noon or near-noon sector, possibly at high latitudes, partly governed by the IMF orientation as well as by solar wind dynamic pressure pulses.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,323-17,342
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-08-24
    Description: Stratospheric aerosols, collected near 19 km altitude on wire impactors over western North America from August 20, 1991 to May 11, 1993, show strong influence of the June 1991 Mt. Pinatubo eruption. Lognormal size distributions are bimodal; each of the mode radii increases and reaches maximum value at about 15 months after eruption. The second (large particle) mode becomes well developed then, and about 40% of the droplets are larger than 0.4 micron radius. The eruption of Mt. Spurr (Alaska) may also have contributed to this. Sulfate mass loading decays exponentially (e-folding 216 days), similar to El Chichon. Silicates are present in samples only immediately after eruption. Two years after eruption, sulfate mass loading is about 0.4 micrograms/cu m, about an order of magnitude higher than background pre-volcanic values. Aerosol size distributions are still bimodal with a very well-defined large droplet mode.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 12; p. 1129-1132
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-08-24
    Description: Comparisons are presented between Nimbus 7 LIMS (Limb Infrared Monitor of the Stratosphere) mapped temperatures and both Datasonde and sphere in situ rocketsonde temperature measurements. With this approach up to 666 LIMS/Datasonde pairs were obtained for various pressure levels to look for small biases in LIMS temperatures as a function of altitude, latitude and season. Between 10-1 hPa LIMS and Datasonde agree everywhere to better than +/- 2 K with the exception of a warm bias of about 3 K at 2 hPa at high latitudes. However, LIMS is colder than the Datasonde by about 4 K at 0.4 hPa and by about 8-10 K at 0.1 hPa. When compared with the more accurate sphere temperatures the bias at 0.1 hPa is reduced by nearly one-half. These results indicate that the LIMS zonal mean constituent profiles are nearly free of temperature bias, except perhaps at 0.1 hPa.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 12; p. 1145-1148
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-08-24
    Description: The carbon monoxide (CO) reference scale created by the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) is used to quantify measurements of CO in the atmosphere, calibrate standards of other laboratories and to otherwise provide reference gases to the community measuring atmospheric CO. This reference scale was created based upon a set of primary standards prepared by gravimetric methods at CMDL and has been propagated to a set of working standards. In this paper we compare CO mixing ratios assigned to the working standards by three approaches: (1) calibration against the original gravimetric standards, (2) calibration using only working standards as the reference gas, and (3) calibration against three new gravimetric standards prepared to CMDL. The agreement between these values was typically better than 1%. The calibration histories of CMDL working standards are reviewed with respect to expected rates of CO change in the atmosphere. Using a Monte Carlo approach to simulate the effect of drifting standards on calculated mixing ratios, we conclude that the error solely associated with the maintenance of standards will limit the ability to detect small CO changes in the atmosphere. We also report results of intercalibration experiments conducted between CMDL and the Diode Laser Sensor Group (DACOM) at the NASA Langley Research Center (Hampton, Virginia), and CMDL and the Fraunhofer-Institut (Garmisch-Partenkirchen, Germany). Each laboratory calibrated several working standards for CO using their reference gases, and these results were compared to calibrations conducted by CMDL. The intercomparison of eight standards (CO concentrations between approximately 100 and approximately 165 ppb) by CMDL and NASA agreed to better than +/- 2%. The calibration of six standards (CO concentrations between approximately 50 and approximately 210 ppb) by CMDL and the Fraunhofer-Institut agreed to within +/- 2% for four standards, and to within +/- 5% for all six standards.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D6; p. 12,833-12,839
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-24
    Description: Measurements of the ratio OH/HO2, NO, O3, ClO, and BrO were obtained at altitudes from 15-20 km and latitudes from 15-60 deg N. A method is presented for interpreting the rates of chemical transformations that (1) are responsible for over half the ozone removal rate in the lower stratosphere via reactions of HO2; and (2) control the abundance of HO2 through coupling to nitrogen and halogen radicals. The results show our understanding of the chemical reactions controlling the partitioning of OH and HO2 is complete and accurate and that the potential effects of 'missing chemistry' are strickly constrained in the region of the atmosphere encompassed by the observations. The analysis demonstrates that the sensitivity of the ratio OH/HO2 to changes in NO is described to within 12% by current models. This reduces by more than a factor of 2 the effect of uncertainty in the coupling of hydrogen and nitrogen radicals on the analysis of the potential effects of perturbations to odd notrogen in the lower statosphere.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 23; p. 2539-2542
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-08-24
    Description: Previous observations have shown that during periods of steady magnetospheric convection (SMC) a large amount of magnetic flux crosses the plasma sheet (corresponding to approximately 10 deg wide auroral oval at the nightside) and that the magnetic configuration in the midtail is relaxed (the curent sheet is thick and contains enhanced B(sub Z). These signatures are typical for the substorm recovery phase. Using near-geostationary magnetic field data, magnetic field modeling and a noval diagostic technique (isotropic boundary algorithm), we show that in the near-Earth tail the magnetic confirguration is very stretched during the SMC events. This stretching is caused by an intense, thin westward current. Because of the srongly depressed B(sub Z), there is a large radial gradient in the near-tail magetic field. These signatures have been peviously associated only with the substorm growth phase. Our results indicate that during the SMC periods the magnetic configuration is very peculiar, with co-existing thin near-Earth current sheet and thick midtail plasma sheet. The deep local minimum of the equatorial B(sub Z) that devleops at R approximately 12 R(sub E) is consistent with steady, adiabatic, Earthward convection in the midtail. These results impose contraints on the existing substorm theories, and call for an explanation of how such a stressed configuration can persist for such a long time without tail current disruptions that occur at the end of a substorm growth phase.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A12; p. 23,571-23,582
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...