ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Windenergie  (2)
  • 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous  (1)
  • 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring  (1)
  • Copernicus  (4)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: After some short test surveys, during the 2004–2005 summer expedition in Antarctica, a geomagnetic French-Italian observatory was installed on the plateau (geographic coordinates: 75.1 S, 123.4 E; corrected geomagnetic coordinates: 88.9 S, 54.3 E; UT=LT−8) very close to the geomagnetic pole. In this paper we present some peculiarities of the daily variation as observed at this polar cap observatory during the years 2005 and 2006, taking into account the different Loyd seasons and different interplanetary magnetic field conditions. Some interesting results emerge from the analysis, confirming the dependence of the daily variation (and of the associated polar current systems) on the IMF Bz and By components. In particular the analysis showed that different Bz conditions correspond to different contribution to daily variation of ionospheric and field aligned currents, while particular By conditions lead to a time shift of the diurnal variation, indicating an asymmetry with respect to the noon meridian.
    Description: Published
    Description: 2045–2051
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 1.6. Osservazioni di geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Geomagnetism and paleomagnetism (Time variations, diurnal to secular) ; Magnetospheric physics (Polar cap phenomena; Solar wind-magnetosphere interactions) ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Journal cover
    Unknown
    Copernicus
    Online: 1.2016 –
    Publisher: Copernicus
    Corporation: European Academy of Wind Energy, EAWE
    Print ISSN: 2366-7443
    Electronic ISSN: 2366-7451
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Keywords: Windenergie ; Erneuerbare Energien
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Journal cover
    Unknown
    Copernicus
    Online: 1.2016 –
    Publisher: Copernicus
    Corporation: European Academy of Wind Energy, EAWE
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Keywords: Windenergie ; Erneuerbare Energien
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...