ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (183)
Collection
  • Articles  (183)
Publisher
Years
Journal
  • 1
    Publication Date: 2019-09-24
    Description: Standard passive aerodynamic flow control devices such as vortex generators and gurney flaps have a working principle that is well understood. They increase the stall angle and the lift below stall and are mainly applied at the inboard part of wind turbine blades. However, the potential of applying a rigidly fixed leading edge slat element at inboard blade stations is less well understood but has received some attention in the past decade. This solution may offer advantages not only under steady conditions but also under unsteady inflow conditions such as yaw. This article aims at further clarifying what an optimal two-element configuration with a thick main element would look like, and what kind of performance characteristics can be expected from a purely aerodynamic point of view. To accomplish this an aerodynamic shape optimization procedure is used to derive optimal profile designs for different optimization boundary conditions including the optimization of both the slat and the main element. The performance of the optimized designs shows several positive characteristics as compared to single element airfoils, such as a high stall angle, high lift below stall, low roughness sensitivity and higher aerodynamic efficiency. Furthermore, the results highlight the benefits of an integral design procedure, where both slat and main element are optimized, over an auxiliary one. Nevertheless, the designs also have two caveats, namely a steep drop in lift post-stall and high positive pitching moments.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-18
    Description: Aerodynamic loads on wind turbine blades that are tested for fatigue certifications, need to be known for planning and defining test loads beforehand. It is known that the aerodynamic forces, especially drag, are different for tests and operation, due to the entirely different flow conditions. In test facilities, a vibrating blade will move in and out of its own wake increasing the drag forces on the blade. This is not the case in operation. To study this special aerodynamic condition present during experimental tests, numerical simulations of a wind turbine blade during pull-release tests were conducted. High fidelity three dimensional computational fluid dynamics methods were used throughout the simulations. By this, the fluid mechanisms and their impact on the moving blade are clarified and through the coupling with a structural solver, the fluid-structure interaction is studied. Results are compared to actual measurements from experimental tests, verifying the approach. It is found that the blade experiences a high drag due to its motion towards its own whirling wake, resulting in an effective drag coefficient of approximately 5.3 for the 90 degree angle of attack. This large drag coefficient was implemented in a fatigue test load simulation, resulting in a significant decrease of moment along the blade, leading to less load applied than intended. The confinement from the test facility did not impact this specific test setup, but simulations with longer blades could possibly yield different conclusions. To the knowledge of the authors, this investigation including three dimensional effects, structural coupling and confinement is the first of its kind.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-05
    Description: Aero-servo-elastic analyses are required to determine the wind turbine loading for a wide range of load cases as specified in certification standards. The floating reference frame (FRF) formulation can be used to model, with sufficient accuracy, the structural response of long and flexible wind turbine blades. Increasing the number of bodies in the FRF formulation of the blade increases both the fidelity of the structural model as well as the size of the problem. However, the turbine load analysis is a coupled aero-servo-elastic analysis, and computation cost does not only depend on the size of the structural model, but also the aerodynamic solver and the iterations between the solvers. This study presents an investigation of the performance of the different fidelity levels as measured by the computational cost and the turbine response (e.g. blade loads, tip clearance, tower top accelerations). The presented analysis is based on state of the art aeroelastic simulations for normal operation in turbulent inflow load cases as defined in a design standard, and is using two 10 MW reference turbines. The results show that the turbine response quickly approaches the results of the highest fidelity model as the number of bodies increases. The increase in computational costs to account for more bodies can almost entirely be compensated by changing the type of the matrix solver from dense to sparse.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-05
    Description: Ducted Wind Turbines (DWTs) can be used for energy harvesting in urban areas where non-uniform flows are caused by the presence of buildings or other surface discontinuities. For this reason, the aerodynamic performance of DWTs in yawed flow conditions must be characterized. A numerical study to investigate the characteristics of flow around two DWT configurations using a simplified duct-actuator disc (AD) model is carried out. The analysis shows that the aerodynamic performance of a DWT in yawed flow is dependent on the mutual interaction between the duct and the rotor; an interaction that changes with duct geometry, AD loading and operating conditions. It is found that the duct cross-section camber not only offers insensitivity to yaw, but also a gain in performance up to a specific yaw angle; thereafter any further increase of yaw results in a performance drop.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-04
    Description: The need for cost effective support structure designs for offshore wind turbines has led to continued interest in the development of design optimization methods. So far, almost no studies have considered the effect of uncertainty, and hence probabilistic constraints, on the support structure design optimization problem. In this work, we present a general methodology that implements recent developments in gradient-based design optimization, in particular the use of analytical gradients, within the context of reliability-based design optimization methods. By an assumed factorization of the uncertain response into a design-independent, probabilistic part and a design-dependent, but completely deterministic part, it is possible to computationally decouple the reliability analysis from the design optimization. Furthermore, this decoupling makes no further assumption about the functional nature of the stochastic response, meaning that high fidelity surrogate modeling through Gaussian process regression of the probabilistic part can be performed while using analytical gradient-based methods for the design optimization. We apply this methodology to several different cases based around a uniform cantilever beam and the OC3 Monopile and different loading and constraints scenarios. The results demonstrate the viability of the approach in terms of obtaining reliable, optimal support structure designs and furthermore show that in practice only a limited amount of additional computational effort is required compared to deterministic design optimization. While there are some limitations in the applied cases, and some further refinement might be necessary for applications to high fidelity design scenarios, the demonstrated capabilities of the proposed methodology show that efficient reliability-based optimization for offshore wind turbine support structures is feasible.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-03
    Description: The design of foundations for offshore wind turbines (OWT) requires the assessment of the long-term performance of the soil–structure-interaction (SSI) which is subjected to a large number of cyclic loadings. In terms of serviceability limit state (SLS), it has to be ensured that the foundation does not exceed the operational tolerance prescribed by the wind turbine manufacturer throughout its lifetime. This work aims at developing a probabilistic approach along with a reliability framework with emphasis on verifying the SLS criteria in terms of maximum allowable rotation during an extreme cyclic loading event. This reliability framework allows the quantification of uncertainties in soil properties, in the constitutive soil model for cyclic loadings and extreme environmental conditions and verifies that the foundation design meets a specific target reliability level. A 3D finite element (FE) model is used to predict the long-term response of the SSI accounting for the accumulation of permanent cyclic strain experienced by the soil. The proposed framework is employed for the design of a large diameter monopile supporting a 10 MW offshore wind turbine.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-27
    Description: The continuous effort to better predict the mechanical behavior of wind turbine blades is related to lowering the cost of energy. But new design strategies and the continuous increase in the size and flexibility of modern blades make their aero-elastic modeling ever more challenging. For the structural part, the best compromise between computational efficiency and accuracy can be obtained by schematizing the blades as suitable beam-like elements. This paper addresses the modeling of the mechanical behavior of complex beam-like structures, which are curved, twisted and tapered in their reference state, undergo large displacements, 3D cross-sectional warping and small strains. A suitable model for the problem at hand is proposed. It can be used to analyze large deflections under prescribed loads and allows the 3D strain and stress fields in the structure to be determined. Analytical results obtained by applying the proposed modeling approach are illustrated.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-23
    Description: We show that the up-scaling of wind turbines from rotor diameters of 15–20 m to presently large rotors of 150–200 m has changed the requirements for the aerodynamic Blade Element Momentum (BEM) models in the aeroelastic codes. This is because the typical scales in the inflow turbulence are now comparable with the rotor diameter of the large turbines. Therefore the spectrum of the incoming turbulence relative to the rotating blade has increased energy content on 1P, 2P, ..., nP and the annular mean induction approach in a classical BEM implementation might no longer be a good approximation for large rotors. We present a complete BEM implementation on a polar grid that models the induction response to the considerable 1P, 2P, ..., nP inflow variations, including models for yawed inflow, dynamic inflow and radial induction. At each time step in an aeroelastic simulation the induction derived from a local BEM approach is updated at all the stationary grid points covering the swept area so the model can be characterized as an engineering actuator disc (AD) solution. The induction at each grid point varies slowly in time due to the dynamic inflow filter but the rotating blade now samples the induction field; as a result the induction seen from the blade is highly unsteady and has a spectrum with distinct 1P, 2P, ..., nP peaks. The load impact mechanism from this unsteady induction is analyzed and it is found that the load impact strongly depends on the turbine design and operating conditions. For operation at low to medium thrust coefficients (conventional turbines at above rated wind speed or low induction turbines in the whole operating range) it is found that the grid BEM gives typically 8–10 % lower 1 Hz fatigue loads than the classical annular mean BEM approach. At high thrust coefficients the grid BEM can give slightly increased fatigue loads. In the paper the implementation of the grid based BEM is described in detail and finally several validation cases are presented.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-23
    Description: In this paper, an analytical wake model with a double Gaussian velocity distribution is presented, improving on a similar formulation by Keane et al. The choice of a double Gaussian shape function is motivated by the behavior of the near wake region, observed in numerical simulations and experimental measurements. The method is based on the conservation of momentum principle, while stream-tube theory is used to determine the wake expansion at the tube outlet. The model is calibrated and validated using large eddy simulations replicating scaled wind turbine experiments. Results show that the tuned double Gaussian model is superior to a single Gaussian formulation in the near wake region.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-22
    Description: This paper aims to develop fast and reliable surrogate models for yaw-based wind farm control. The surrogates, based on polynomial chaos expansion (PCE), are built using high fidelity flow simulations combined with aeroelastic simulations of the turbine performance and loads. Developing a model for wind farm control is a challenging control problem due to the time-varying dynamics of the wake. Both the power output and the loading of the turbines are included in the optimization of wind farm control strategies. Optimization results performed using two Vestas V27 turbines in a row for a specific atmospheric condition suggest that a power gain of almost 3 % ± 1 % can be achieved at close spacing by yawing the upstream turbine more than 15°. At larger spacing, the power gain the optimization shows that yawing is not beneficial as the optimization reverts to normal operation. Furthermore, it was also identified that a reduction of the equivalent loads was obtained at the cost of power production. The total power gains are discussed in relation to the associated model errors and the uncertainty of the surrogate models used in the optimization, and the implication for wind farm control.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...