ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-19
    Description: Cold-water coral ecosystems are considered hot-spots of biodiversity and biomass production and may be a regionally important contributor to carbonate production. The impact of these ecosystems on biogeochemical processes and carbonate preservation in associated sediments were studied at Røst Reef and Traenadjupet Reef, two modern (post-glacial) cold-water coral reefs on the Mid-Norwegian shelf. Sulfate and iron reduction as well as carbonate dissolution and precipitation were investigated by combining pore-water geochemical profiles, steady state modeling, as well as solid phase analyses and sulfate reduction rate measurements on gravity cores of up to 3.25 m length. Low extents of sulfate depletion and dissolved inorganic carbon (DIC) production, combined with sulfate reduction rates not exceeding 3 nmol S cm−3 d−1, suggested that overall anaerobic carbon mineralization in the sediments was low. These data showed that the coral fragment-bearing siliciclastic sediments were effectively decoupled from the productive pelagic ecosystem by the complex reef surface framework. Organic matter being mineralized by sulfate reduction was calculated to consist of 57% carbon bound in CH2O groups and 43% carbon in -CH2- groups. Methane concentrations were below 1 μM, and failed to support the hypothesis of a linkage between the distribution of cold-water coral reefs and the presence of hydrocarbon seepage. Reductive iron oxide dissolution linked to microbial sulfate reduction buffered the pore-water carbonate system and inhibited acid-driven coral skeleton dissolution. A large pool of reactive iron was available leading to the formation of iron sulfide minerals. Constant pore-water Ca2+, Mg2+ and Sr2+ concentrations in most cores and decreasing Ca2+ and Sr2+ concentrations with depth in core 23–18 GC indicated diagenetic carbonate precipitation. This was consistent with the excellent preservation of buried coral fragments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-09
    Description: The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66° N between 15 and 20° W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chla concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 6 . pp. 867-876.
    Publication Date: 2017-08-08
    Description: A major role in regulation of global methane fluxes has been attributed to the process of anaerobic oxidation of methane (AOM), which is performed by consortia of methanotrophic archaea and sulfate reducing bacteria. An important question remains how these energy limited, slow growing Microorganisms with generation times of 3–7 months respond to rapid natural variations in methane fluxes at cold seeps. We used an experimental flow-through column system filled with cold seep sediments naturally enriched in methanotrophic communities, to test their responses to short-term variations in methane and sulfate fluxes. At stable methane and sulfate concentrations of ∼2 mM and 28 mM, respectively, we measured constant rates of AOM and sulfate reduction (SR) for up to 160 days of incubation. When percolated with methane-free medium, the anaerobic methanotrophs ceased to produce sulfide. After a starvation phase of 40 days, the addition of methane restored former AOM and SR rates immediately. At methane concentrations between 0–2.3 mM we measured a linear correlation between methane availability, AOM and SR. At constant fluid flow velocities of 30 m yr−1, ca. 50% of the methane was consumed by the anaerobic methanotrophic (ANME) population at all concentrations tested. Reducing the sulfate concentration from 28 to 1 mM, a decrease in AOM and SR by 50% was observed, and 45% of the methane was consumed. Hence, the marine anaerobic methanotrophs(ANME) are capable of oxidizing substantial amounts of methane over a wide and variable range of fluxes of the reaction educts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 6 (4). pp. 535-544.
    Publication Date: 2019-09-23
    Description: The relative importance of potential source and sink terms for bromoform (CHBr3) in the tropical Atlantic Ocean is investigated with a coupled physical-biogeochemical water column model. Bromoform production is either assumed to be linked to primary production or to phytoplankton losses; bromoform decay is treated as light dependent (photolysis), and in addition either vertically uniform, proportional to remineralisation or to nitrification. All experiments lead to the observed subsurface maximum of bromoform, corresponding to the subsurface phytoplankton biomass maximum. In the surface mixed layer, the concentration is set by entrainment from below, photolysis in the upper few meters and the outgassing to the atmosphere. The assumed bromoform production mechanism has only minor effects on the solution, but the various loss terms lead to significantly different bromoform concentrations below 200 m depth. The best agreement with observations is obtained when the bromoform decay is coupled to nitrification (parameterised by an inverse proportionality to the light field). Our model results reveal a pronounced seasonal cycle of bromoform outgassing, with a minimum in summer and a maximum in early winter, when the deepening surface mixed layer reaches down into the bromoform production layer
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-06
    Description: The subtropical Indian Ocean along 32° S was for the first time simultaneously sampled in 2002 for inorganic carbon and transient tracers. The vertical distribution and inventory of anthropogenic carbon (CANT) from five different methods: four data-base methods (ΔC*, TrOCA, TTD and IPSL) and a simulation from the OCCAM model are compared and discussed along with the observed CFC-12 and CCl4 distributions. In the surface layer, where carbon-based methods are uncertain, TTD and OCCAM yield the same result (7±0.2 molC m−2), helping to specify the surface CANT inventory. Below the mixed-layer, the comparison suggests that CANT penetrates deeper and more uniformly into the Antarctic Intermediate Water layer limit than estimated from the much utilized ΔC* method. Significant CFC-12 and CCl4 values are detected in bottom waters, associated with Antarctic Bottom Water. In this layer, except for ΔC* and OCCAM, the other methods detect significant CANT values. Consequently, the lowest inventory is calculated using the ΔC* method (24±2 molC m−2) or OCCAM (24.4±2.8 molC m−2) while TrOCA, TTD, and IPSL lead to higher inventories (28.1±2.2, 28.9±2.3 and 30.8±2.5 molC m−2 respectively). Overall and despite the uncertainties each method is evaluated using its relationship with tracers and the knowledge about water masses in the subtropical Indian Ocean. Along 32° S our best estimate for the mean CANT specific inventory is 28±2 molC m−2. Comparison exercises for data-based CANT methods along with time-series or repeat sections analysis should help to identify strengths and caveats in the CANT methods and to better constrain model simulations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-11
    Description: The relation between the Agulhas Current retroflection location and the magnitude of Agulhas leakage, the transport of water from the Indian to the Atlantic Ocean, is investigated in a high-resolution numerical ocean model. Sudden eastward retreats of the Agulhas Current retroflection loop are linearly related to the shedding of Agulhas rings, where larger retreats generate larger rings. Using numerical Lagrangian floats a 37 year time series of the magnitude of Agulhas leakage in the model is constructed. The time series exhibits large amounts of variability, both on weekly and annual time scales. A linear relation is found between the magnitude of Agulhas leakage and the location of the Agulhas Current retroflection, both binned to three month averages. In the relation, a more westward location of the Agulhas Current retroflection corresponds to an increased transport from the Indian Ocean to the Atlantic Ocean. When this relation is used in a linear regression and applied to almost 20 years of altimetry data, it yields a best estimate of the mean magnitude of Agulhas leakage of 13.2 Sv. The early retroflection of 2000, when Agulhas leakage was probably halved, can be identified using the regression.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-06
    Description: The accurate reconstruction of sea surface temperature (SST) history in climate-sensitive regions (e.g. tropical and polar oceans) became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin.) highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca) of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin.) is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02)‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5)°C associated with salinities below 33.0 (±0.5)‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin.), becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-10
    Description: Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Measurement Techniques, 2 (1). pp. 287-298.
    Publication Date: 2015-04-10
    Description: Advances in detector technology enable a new generation of infrared limb sounders to measure 2-D images of the atmosphere. A proposed limb cloud imager (LCI) mode will detect clouds with a spatial resolution unprecedented for limb sounding. For the inference of temperature and trace gas distributions, detector pixels of the LCI have to be combined into super-pixels which provide the required signal-to-noise and information content for the retrievals. This study examines the extent to which tropospheric coverage can be improved in comparison to limb sounding using a fixed field of view with the size of the super-pixels, as in conventional limb sounders. The study is based on cloud topographies derived from (a) IR brightness temperatures (BT) of geostationary weather satellites in conjunction with ECMWF temperature profiles and (b) ice and liquid water content data of the Consortium for Small-scale Modeling-Europe (COSMO-EU) of the German Weather Service. Limb cloud images are simulated by matching the cloud topography with the limb sounding line of sight (LOS). The analysis of the BT data shows that the reduction of the spatial sampling along the track has hardly any effect on the gain in information. The comparison between BT and COSMO-EU data identifies the strength of both data sets, which are the representation of the horizontal cloud extent for the BT data and the reproduction of the cloud amount for the COSMO-EU data. The results of the analysis of both data sets show the great advantage of the cloud imager. However, because both cloud data sets do not present the complete fine structure of the real cloud fields in the atmosphere it is assumed that the results tend to underestimate the increase in information. In conclusion, real measurements by such an instrument may result in an even higher benefit for tropospheric limb retrievals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-06-19
    Description: The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 9 . pp. 1173-1189.
    Publication Date: 2019-01-21
    Description: We present a study of Saharan dust export towards the tropical North Atlantic using the regional dust emission, transport and deposition model LM-MUSCAT. Horizontal and vertical distribution of dust optical thickness, concentration, and dry and wet deposition rates are used to describe seasonality of dust export and deposition towards the eastern Atlantic for three typical months in different seasons. Deposition rates strongly depend on the vertical dust distribution, which differs with seasons. Furthermore the contribution of dust originating from the Bodélé Depression to Saharan dust over the Atlantic is investigated. A maximum contribution of Bodélé dust transported towards the Cape Verde Islands is evident in winter when the Bodélé source area is most active and dominant with regard to activation frequency and dust emission. Limitations of using satellite retrievals to estimate dust deposition are highlighted.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 9 (24). pp. 9545-9554.
    Publication Date: 2015-09-17
    Description: The aim of the work presented here was to detect BrO in the marine boundary layer over the Eastern North-Atlantic by Multi AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) of scattered sunlight. With this technique, information about the concentration and the vertical profile of trace gases in the atmosphere can be gained. BrO can be formed in the marine atmosphere by degradation of biogenic organohalogens or by oxidation of bromide in sea salt aerosol. BrO influences the chemistry in marine air in many ways, e.g. since it catalytically destroys ozone, changes the NO2/NO-ratio as well as the OH/HO2-ratio and oxidises DMS. However, the abundance and the significance of BrO in the marine atmosphere is not yet fully understood. We report on data collected during a ship cruise, which took place along the West African Coast in February 2007, within the framework of the Surface Ocean PRocesses in the ANthropocene project (SOPRAN). Tropospheric BrO could be detected during this cruise at peak mixing ratios of (10.2±3.7) ppt at an assumed layer height of 1 km on 18 February 2007. Furthermore, it was found that the mean BrO concentrations increased when cruising close to the African Coast suggesting that at least part of the BrO might have originated from there.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-02-19
    Description: This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day−1. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-09-23
    Description: A compact, low-cost atmospheric pressure, chemical ionization mass spectrometer ("mini-CIMS") has been developed for continuous underway shipboard measurements of dimethylsulfide (DMS) in seawater. The instrument was used to analyze DMS in air equilibrated with flowing seawater across a porous Teflon membrane equilibrator. The equilibrated gas stream was diluted with air containing an isotopically-labeled internal standard. DMS is ionized at atmospheric pressure via proton transfer from water vapor, then declustered, mass filtered via quadrupole mass spectrometry, and detected with an electron multiplier. The instrument described here is based on a low-cost residual gas analyzer (Stanford Research Systems), which has been modified for use as a chemical ionization mass spectrometer. The mini-CIMS has a gas phase detection limit of 220 ppt DMS for a 1 min averaging time, which is roughly equivalent to a seawater DMS concentration of 0.1 nM DMS at 20°C. The mini-CIMS has the sensitivity, selectivity, and time response required for underway measurements of surface ocean DMS over the full range of oceanographic conditions. The simple, robust design and relatively low cost of the instrument are intended to facilitate use in process studies and surveys, with potential for long-term deployment on research vessels, ships of opportunity, and large buoys.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 1 . pp. 45-61.
    Publication Date: 2019-03-01
    Description: Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these, 75 cruises report alkalinity values. Here we present details of the secondary QC on alkalinity for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the alkalinity values for 16 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal accuracy of the CARINA-ATL alkalinity data to be 3.3 μmol kg−1. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-07-06
    Description: Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a 1° latitude by 1° longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFS-MODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437 μatm. The root mean square error (RMSE) of the neural network fit to the data is 11.6 μatm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-09-23
    Description: Future ocean acidification has the potential to adversely affect many marine organisms. A growing body of evidence suggests that many species could suffer from reduced fertilization success, decreases in larval- and adult growth rates, reduced calcification rates, and even mortality when being exposed to near-future levels (year 2100 scenarios) of ocean acidification. Little research focus is currently placed on those organisms/taxa that might be less vulnerable to the anticipated changes in ocean chemistry; this is unfortunate, as the comparison of more vulnerable to more tolerant physiotypes could provide us with those physiological traits that are crucial for ecological success in a future ocean. Here, we attempt to summarize some ontogenetic and lifestyle traits that lead to an increased tolerance towards high environmental pCO2. In general, marine ectothermic metazoans with an extensive extracellular fluid volume may be less vulnerable to future acidification as their cells are already exposed to much higher pCO2 values (0.1 to 0.4 kPa, ca. 1000 to 3900 μatm) than those of unicellular organisms and gametes, for which the ocean (0.04 kPa, ca. 400 μatm) is the extracellular space. A doubling in environmental pCO2 therefore only represents a 10% change in extracellular pCO2 in some marine teleosts. High extracellular pCO2 values are to some degree related to high metabolic rates, as diffusion gradients need to be high in order to excrete an amount of CO2 that is directly proportional to the amount of O2 consumed. In active metazoans, such as teleost fish, cephalopods and many brachyuran crustaceans, exercise induced increases in metabolic rate require an efficient ion-regulatory machinery for CO2 excretion and acid-base regulation, especially when anaerobic metabolism is involved and metabolic protons leak into the extracellular space. These ion-transport systems, which are located in highly developed gill epithelia, form the basis for efficient compensation of pH disturbances during exposure to elevated environmental pCO2. Compensation of extracellular acid-base status in turn may be important in avoiding metabolic depression. So far, maintained "performance" at higher seawater pCO2 (〉0.3 to 0.6 kPa) has only been observed in adults/juveniles of active, high metabolic species with a powerful ion regulatory apparatus. However, while some of these taxa are adapted to cope with elevated pCO2 during their regular embryonic development, gametes, zygotes and early embryonic stages, which lack specialized ion-regulatory epithelia, may be the true bottleneck for ecological success – even of the more tolerant taxa. Our current understanding of which marine animal taxa will be affected adversely in their physiological and ecological fitness by projected scenarios of anthropogenic ocean acidification is quite incomplete. While a growing amount of empirical evidence from CO2 perturbation experiments suggests that several taxa might react quite sensitively to ocean acidification, others seem to be surprisingly tolerant. However, there is little mechanistic understanding on what physiological traits are responsible for the observed differential sensitivities (see reviews of Seibel and Walsh, 2003; Pörtner et al., 2004; Fabry et al., 2008; Pörtner, 2008). This leads us to the first very basic question of how to define general CO2 tolerance on the species level.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 6 . pp. 923-935.
    Publication Date: 2019-09-23
    Description: Since the seminal paper of Redfield (1934), constant stoichiometric elemental ratios linking biotic carbon and nutrient fluxes are often assumed in marine biogeochemistry, and especially in coupled biogeochemical circulation models, to couple the global oxygen, carbon and nutrient cycles. However, when looking in more detail, some deviations from the classical Redfield stoichiometry have been reported, in particular with respect to remineralization of organic matter changing with depth or with ambient oxygen levels. We here compare the assumptions about the stoichiometry of organic matter and its remineralization that are used explicitly and implicitly in common biogeochemical ocean models. We find that the implicit assumptions made about the hydrogen content of organic matter can lead to inconsistencies in the modeled remineralization and denitrification stoichiometries. It is suggested that future marine biogeochemical models explicitly state the chemical composition assumed for the organic matter, including its oxygen and hydrogen content.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 1 . pp. 7-24.
    Publication Date: 2019-09-23
    Description: Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic Mediterranean Seas, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these 84 cruises report nitrate values, 79 silicate, and 78 phosphate. Here we present details of the secondary QC for nutrients for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the nutrient values for 43 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s (Key et al., 2004). Based on our analysis we estimate the internal accuracy of the CARINA-ATL nutrient data to be: nitrate 1.5%; phosphate 2.6%; silicate 3.1%. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 5 . pp. 547-558.
    Publication Date: 2013-04-19
    Description: Highly accurate and precise measurements of marine carbon components are required in the study of the marine carbon cycle, particularly when investigating the causes for its variability from seasonal to interannual timescales. This is especially true in the investigation of the consequences of anthropogenic influences. The analysis of any marine carbon component requires elaborate instrumentation, most of which is currently used onboard ships, either in manual or automated mode. Technological developments result in more and more instruments that have sufficient long-term reliability so that they can be deployed on commercial ships, surface moorings, and buoys, whilst the great technological and operational challenges mean that only few sensors have been developed that can be used for sub-surface in situ measurements on floats, robots, or gliders. There is a special need for autonomous instruments and sensors that are able to measure a combination of different components, in order to increase the spatial and temporal coverage of marine carbon data. This paper describes analytical techniques used for the measurement of the marine dissolved carbon components, both inorganic and organic: the fugacity of CO2, total dissolved inorganic carbon, pH, alkalinity, and dissolved organic carbon. By pointing out advantages, disadvantages, and/or challenges of the techniques employed in the analysis of each component, we aim to aid non-carbon marine scientists, sensor developers and technologists, in the decision of which challenges to address in further development.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 6 (8). pp. 1603-1613.
    Publication Date: 2012-07-06
    Description: The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and 〉500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere but from the terrestrial biosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-09-23
    Description: Monomethylamine (MA), dimethylamine (DMA) and diethylamine (DEA) were detected at non-negligible concentrations in sub-micrometer particles at the Cap Verde Atmospheric Observatory (CVAO) located on the island of São Vicente in Cape Verde during algal blooms in 2007. The concentrations of these amines in five stage impactor samples ranged from 0–30 pg m−3 for MA, 130–360 pg m−3 for DMA and 5–110 pg m−3 for DEA during the spring bloom in May 2007 and 2–520 pg m−3 for MA, 100–1400 pg m−3 for DMA and 90–760 pg m−3 for DEA during an unexpected winter algal bloom in December 2007. Anomalously high Saharan dust deposition and intensive ocean layer deepening were found at the Atmospheric Observatory and the associated Ocean Observatory during algal bloom periods. The highest amine concentrations in fine particles (impactor stage 2, 0.14–0.42 μm) indicate that amines are likely taken up from the gas phase into the acidic sub-micrometer particles. The contribution of amines to the organic carbon (OC) content ranged from 0.2–2.5% C in the winter months, indicating the importance of this class of compounds to the carbon cycle in the marine environment. Furthermore, aliphatic amines originating from marine biological sources likely contribute significantly to the nitrogen content in the marine atmosphere. The average contribution of the amines to the detected nitrogen species in sub-micrometer particles can be non-negligible, especially in the winter months (0.1% N–1.5% N in the sum of nitrate, ammonium and amines). This indicates that these smaller aliphatic amines can be important for the carbon and the nitrogen cycles in the remote marine environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-11-23
    Description: The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-09-23
    Description: Daily timeseries of the meridional overturning circulation (MOC) estimated from the UK/US RAPID/MOCHA array at 26.5° N in the Atlantic are used to evaluate the MOC as simulated in two global circulation models: (I) an 8-member ensemble of the coupled climate model ECHAM5/MPI-OM, and (II) the ECCO-GODAE state estimate. In ECHAM5/MPI-OM, we find that the observed and simulated MOC have a similar variability and time-mean within the 99% confidence interval. In ECCO-GODAE, we find that the observed and simulated MOC show a significant correlation within the 99% confidence interval. To investigate the contribution of the different transport components, the MOC is decomposed into Florida Current, Ekman and mid-ocean transports. In both models, the mid-ocean transport is closely approximated by the residual of the MOC minus Florida Current and Ekman transports. As the models conserve volume by definition, future comparisons of the RAPID/MOCHA mid-ocean transport should be done against the residual transport in the models. The similarity in the variance and the correlation between the RAPID/MOCHA, and respectively ECHAM5/MPI-OM and ECCO-GODAE MOC estimates at 26.5° N is encouraging in the context of estimating (natural) variability in climate simulations and its use in climate change signal-to-noise detection analyses. Enhanced confidence in simulated hydrographic and transport variability will require longer observational time series.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-09-23
    Description: Offshore south central Chile (35° S–42° S), the morphology of the lowermost continental slope and trench floor witnesses a voluminous submarine mass-wasting event. The blocky slide body deposited in the Chile Trench at 73°46´ W 35°35´ S was targeted for study during RRS JAMES COOK Cruise JC23 and termed Reloca Slide. Its size of about 24 km3, its steep and high headscarp, the spatial distribution of slide deposits and the cohesive nature of major slide blocks make it interesting to address the issue of tsunami generation. We have obtained seismic reflection data that partly reveal the internal structure of the slide body. Gravity core samples were retrieved that will allow the slide to be dated and linked to the history of sedimentation and slope stability along this particular segment of the Chilean convergent margin. At present we assume a Holocene age for the sliding event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-01-15
    Description: The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 6 (10). pp. 2041-2061.
    Publication Date: 2012-12-12
    Description: A one-dimensional model of Fe speciation and biogeochemistry, coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model, is applied for the Tropical Eastern North Atlantic Time-Series Observatory (TENATSO) site. Among diverse processes affecting Fe speciation, this study is focusing on investigating the role of dust particles in removing dissolved iron (DFe) by a more complex description of particle aggregation and sinking, and explaining the abundance of organic Fe-binding ligands by modelling their origin and fate. The vertical distribution of different particle classes in the model shows high sensitivity to changing aggregation rates. Using the aggregation rates from the sensitivity study in this work, modelled particle fluxes are close to observations, with dust particles dominating near the surface and aggregates deeper in the water column. POC export at 1000 m is a little higher than regional sediment trap measurements, suggesting further improvement of modelling particle aggregation, sinking or remineralisation. Modelled strong ligands have a high abundance near the surface and decline rapidly below the deep chlorophyll maximum, showing qualitative similarity to observations. Without production of strong ligands, phytoplankton concentration falls to 0 within the first 2 years in the model integration, caused by strong Fe-limitation. A nudging of total weak ligands towards a constant value is required for reproducing the observed nutrient-like profiles, assuming a decay time of 7 years for weak ligands. This indicates that weak ligands have a longer decay time and therefore cannot be modelled adequately in a one-dimensional model. The modelled DFe profile is strongly influenced by particle concentration and vertical distribution, because the most important removal of DFe in deeper waters is colloid formation and aggregation. Redissolution of particulate iron is required to reproduce an observed DFe profile at TENATSO site. Assuming colloidal iron is mainly composed of inorganic colloids, the modelled colloidal to soluble iron ratio is lower that observations, indicating the importance of organic colloids.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-10-11
    Description: The Rapid instrument array across the Atlantic Ocean along 26 degrees N provides unprecedented monitoring of the basin-scale circulation. A unique feature of the Rapid array is the combination of full-depth moorings with instruments measuring temperature, salinity, pressure time series at many depths with co-located bottom pressure measurements so that dynamic pressure can be measured from surface to bottom. Bottom pressure measurements show a zonally uniform rise (and fall) of bottom pressure of 0.015 dbar on a 5 to 10 day time scale, suggesting that the Atlantic basin is filling and draining on a short time scale. After removing the zonally uniform bottom pressure fluctuations, bottom pressure variations at 4000 m depth against the western boundary compensate instantaneously for baroclinic fluctuations in the strength and structure of the deep western boundary current so there is no basin-scale mass imbalance resulting from variations in the deep western boundary current. After removing the mass compensating bottom pressure, residual bottom pressure fluctuations at the western boundary just east of the Bahamas balance variations in Gulf Stream transport. Again the compensation appears to be especially confined close to the western boundary. Thus, fluctuations in either Gulf Stream or deep western boundary current transports are compensated in a depth independent (barotropic) manner very close to the continental slope off the Bahamas. In contrast, compensation for variations in wind-driven surface Ekman transport appears to involve fluctuations in both western basin and eastern basin bottom pressures, though the bottom pressure difference fluctuations appear to be a factor of 3 too large, perhaps due to an inability to resolve small bottom pressure fluctuations after removal of larger zonal average, baroclinic, and Gulf Stream pressure components. For 4 tall moorings where time series dynamic height (geostrophic pressure) profiles can be estimated from sea surface to ocean bottom and bottom pressure can be added, there is no general correlation between surface dynamic height and bottom pressure. Dynamic height on each mooring is strongly correlated with sea surface height from satellite observations and the variability in both dynamic height and satellite sea surface height decrease sharply as the western boundary is approached.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-08
    Description: Iron chemistry measurements were conducted during summer 2007 at two distinct locations in the Baltic Sea (Gotland Deep and Landsort Deep) to evaluate the role of iron for cyanobacterial bloom development in these estuarine waters. Depth profiles of Fe(II) were measured by chemiluminescent flow injection analysis (CL-FIA). Up to 0.9 nmol Fe(II) L−1 were detected in light penetrated surface waters, which constitutes up to 20% to the dissolved Fe pool. This bioavailable iron source is a major contributor to the Fe requirements of Baltic Sea phytoplankton and apparently plays a major role for cyanobacterial bloom development during our study. Measured Fe(II) half life times in oxygenated water exceed predicted values and indicate organic Fe(II) complexation. Potential sources for Fe(II) ligands, including rainwater, are discussed. Fe(II) concentrations of up to 1.44 nmol L−1 were detected at water depths below the euphotic zone, but above the oxic anoxic interface. Mixed layer depths after strong wind events are not deep enough in summer time to penetrate the oxic-anoxic boundary layer. However, Fe(II) from anoxic bottom water may enter the sub-oxic zone via diapycnal mixing and diffusion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-09-23
    Description: Increasing atmospheric carbon dioxide (CO2) through human activities and invasion of anthropogenic CO2 into the surface ocean alters the seawater carbonate chemistry, increasing CO2 and bicarbonate (HCO3−) at the expense of carbonate ion (CO32−) concentrations. This redistribution in the dissolved inorganic carbon (DIC) pool decreases pH and carbonate saturation state (Ω). Several components of the carbonate system are considered potential key variables influencing for instance calcium carbonate precipitation in marine calcifiers such as coccolithophores, foraminifera, corals, mollusks and echinoderms. Unravelling the sensitivities of marine organisms and ecosystems to CO2 induced ocean acidification (OA) requires well-controlled experimental setups and accurate carbonate system manipulations. Here we describe and analyse the chemical changes involved in the two basic approaches for carbonate chemistry manipulation, i.e. changing DIC at constant total alkalinity (TA) and changing TA at constant DIC. Furthermore, we briefly introduce several methods to experimentally manipulate DIC and TA. Finally, we examine responses obtained with both approaches using published results for the coccolithophore Emiliania huxleyi. We conclude that under most experimental conditions in the context of ocean acidification DIC and TA manipulations yield similar changes in all parameters of the carbonate system, which implies direct comparability of data obtained with the two basic approaches for CO2 perturbation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 9 . pp. 345-356.
    Publication Date: 2019-01-21
    Description: Air/sea fluxes of dimethylsulfide (DMS) were measured by eddy correlation over the Eastern South Pacific Ocean during January 2006. The cruise track extended from Manzanillo, Mexico, along 110° W, to Punta Arenas, Chile. Bulk air and surface ocean DMS levels were also measured and gas transfer coefficients (kDMS) were computed. Air and seawater DMS measurements were made using chemical ionization mass spectrometry (API-CIMS) and a gas/liquid membrane equilibrator. Mean surface seawater DMS concentrations were 3.8±2.2 nM and atmospheric mixing ratios were 340±370 ppt. The air/sea flux of DMS was uniformly out of the ocean, with an average value of 12±15 μmol m‑2 d‑1. Sea surface concentration and flux were highest around 15° S, in a region influenced by shelf waters and lowest around 25° S, in low chlorophyll gyre waters. The DMS gas transfer coefficient exhibited a linear wind speed-dependence over the wind speed range of 1 to 9 m s‑1. This relationship is compared with previously measured estimates of k from DMS, CO2, and dual tracer data from the Atlantic and Pacific Ocean, and with the NOAA/COARE gas transfer model. The model generated slope of k vs. wind speed is at the low end of those observed in previous DMS field studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 1 . pp. 87-109.
    Publication Date: 2019-09-23
    Description: In the CARINA (Carbon dioxide in the Atlantic Ocean) project, a new dataset with many previously unpublished hydrographic data from the Atlantic, Arctic and Southern Ocean was assembled and subjected to careful quality control (QC) procedures. Here, we present the dissolved oxygen measurements in the Atlantic region of the dataset and describe in detail the secondary QC procedures that aim to ensure that the data are internally consistent. This is achieved by a cross-over analysis, i.e. the comparison of deep ocean data at places that were sampled by different cruises at different times. Initial adjustments to the individual cruises were then determined by an inverse procedure that computes a set of adjustments that requires the minimum amount of adjustment and at the same time reduces the offsets in an optimal manner. The initial adjustments were then reviewed by the CARINA members, and only those that passed the following two criteria were adopted: (i) the region is not subject to substantial temporal variability, and (ii) the adjustment must be based on at least three stations from each cruise. No adjustment was recommended for cruises that did not fit these criteria. The final CARINA-Oxygen dataset has 103414 oxygen samples from 9491 stations obtained during 98 cruises covering three decades. The sampling density of the oxygen data is particularly good in the North Atlantic north of about 40° N especially after 1987. In contrast, the sample density in the South Atlantic is much lower. Some cruises appear to have poor data quality, and were subsequently omitted from the adjusted dataset. Of the data included in the adjusted dataset, 20% were adjusted with a mean adjustment of 2%. Due to the achieved internal consistency, the resulting product is well suited to produce an improved climatology or to study long-term changes in the oxygen content of the ocean. However, the adjusted dataset is not necessarily better suited than the unadjusted data to address questions that require a high level of accuracy, such as the computation of the saturation state.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 9 . pp. 1143-1150.
    Publication Date: 2019-01-21
    Description: The detection of cloudiness is investigated by means of partial and total cloud amount estimations from pyrgeometer radiation measurements and visible all-sky imager observations. The measurements have been performed in Westerland, a seaside resort on the North Sea island of Sylt, Germany, during summer 2005. An improvement to previous studies on this subject resulting in the first time partial cloud amounts (PCAs), defined as cloud amounts without high clouds calculated from longwave downward radiation (LDR) according to the APCADA algorithm (Dürr and Philipona, 2004), are validated against both human observations from the National Meteorological Servive DWD at the nearby airport of Sylt and digital all-sky imaging. The aim is to establish the APCADA scheme at a coastal midlatitude site for longterm observations of cloud cover and to quantify errors resulting from the different methods of detecting cloudiness. Differences between the resulting total cloud amounts (TCAs), defined as cloud amount for all-cloud situations, derived from the camera images and from human observations are within ±1 octa in 72% and within ±2 octa in 85% of the cases. Compared to human observations, PCA measurements, according to APCADA, underestimate the observed cloud cover in 47% of all cases and the differences are within ±1 octa in 60% and ±2 octa in 74% of all cases. Since high cirrus clouds can not be derived from LDR, separate comparisons for all cases without high clouds have been performed showing an agreement within ±1(2) octa in 73(90)% for PCA and also for camera-derived TCA. For this coastal mid-latitude site under investigation, we find similar though slightly smaller agreements to human observations as reported by Dürr and Philipona (2004). Though limited to daytime, the cloud cover retrievals from the sky imager are not really affected by cirrus clouds and provide a more reliable cloud climatology for all-cloud conditions than APCADA.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 5 . pp. 661-684.
    Publication Date: 2016-10-11
    Description: Requirements for understanding the relationships between ocean color and suspended and dissolved materials within the water column, and a rapidly emerging photonics and materials technology base for performing optical based analytical techniques have generated a diverse offering of commercial sensors and research prototypes that perform optical measurements in water. Through inversion, these tools are now being used to determine a diverse set of related biogeochemical and physical parameters. Techniques engaged include measurement of the solar radiance distribution, absorption, scattering, stimulated fluorescence, flow cytometry, and various spectroscopy methods. Selective membranes and other techniques for material isolation further enhance specificity, leading to sensors for measurement of dissolved oxygen, methane, carbon dioxide, common nutrients and a variety of other parameters. Scientists are using these measurements to infer information related to an increasing set of parameters and wide range of applications over relevant scales in space and time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 6 . pp. 867-876.
    Publication Date: 2020-09-02
    Description: A major role in global methane fluxes has been attributed to the process of anaerobic oxidation of methane, which is performed by consortia of methanotrophic archaea and sulfate reducing bacteria. An important question remains how these very slow growing microorganisms with generation times of 3–7 months respond to natural variations in methane fluxes at cold seeps. Here, we used an experimental flow-through column system filled with cold seep sediments naturally enriched in methanotrophic communities, to test their response to short-term variations in methane and sulfate fluxes. At stable methane and sulfate concentrations of ~2 mM and 28 mM, respectively, we measured constant rates of anaerobic oxidation of methane (AOM) and sulfide production (SR) for up to 160 days of incubation. When percolated with methane-free medium, the anaerobic methanotrophs ceased to oxidize methane and to produce sulfide. After a starvation phase of 40 days, the addition of methane restored former AOM and SR rates immediately. At methane concentrations between 0–2.3 mM we measured a linear correlation between methane availability, AOM and SR. At constant fluid flow rates of 30 m yr−1, ca. 50% of the methane was consumed by the ANME population at all concentrations tested. Reducing the sulfate concentration from 28 to 1 mM, a decrease in AOM and SR by 35% was observed. Hence, the marine anaerobic methanotrophs (ANME) are capable to consume substantial amounts of methane rising from the subsurface seabed to the hydrosphere over a wide range of fluxes of methane and sulfate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-09-23
    Description: The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr) in the open oceans. Despite the prominent role of the coastal oceans in absorbing atmospheric CO2 and transferring it into the deep oceans via the continental shelf pump, the underlying mechanisms remain only partly understood. Evaluating observations from the North Sea, a NW European shelf sea, we provide evidence that anaerobic degradation of organic matter, fuelled from land and ocean, generates total alkalinity (AT) and increases the CO2 buffer capacity of seawater. At both the basin wide and annual scales anaerobic AT generation in the North Sea's tidal mud flat area irreversibly facilitates 7–10%, or taking into consideration benthic denitrification in the North Sea, 20–25% of the North Sea's overall CO2 uptake. At the global scale, anaerobic AT generation could be accountable for as much as 60% of the uptake of CO2 in shelf and marginal seas, making this process, the anaerobic pump, a key player in the biological carbon pump. Under future high CO2 conditions oceanic CO2 storage via the anaerobic pump may even gain further relevance because of stimulated ocean productivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 9 . pp. 6717-6725.
    Publication Date: 2019-09-23
    Description: For the first time the long-term interannual and spatial variability of residence time (τ) is presented for the TTL between 360 K and 400 K potential temperature (~14 to 18 km altitude). The analysis is based on a Lagrangian approach using offline calculated diabatic heating rates as vertical velocities, covering Northern Hemisphere (NH) winters from 1962–2004. The residence time τLCP–400 K, being the duration time of air parcels in the layer between the Lagrangian Cold Point (LCP) and 400 K, varies spatially and is longer (〉50 days) over the maritime continent as the LCP is lowest there (〈370 K). Comparing three theta layers within the TTL reveals the vertical dependence of τ. We derive a mean duration time of 34 days for 360–380 K (lower TTL), 38 days for 380–400 K (upper TTL) and 70 days for 360–400 K theta layers for the 1962–2001 period. A case analysis reveals that τ is positively skewed for 360–380 K and 380–400 K during La Niña and El Niño Southern Oscillation (ENSO) neutral years. For these cases, ~60% of air parcels travel from 360 K to 380 K within 25 days. There is large interannual variability for τ varying up to ±20% from the long-term mean, with strongest variability seen in the lower part of the TTL. Statistical analysis reveals a significant anti-correlation between the residence time and the extratropical and subtropical wave driving in the lowermost stratosphere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Journal of Micropalaeontology, 28 . pp. 131-142.
    Publication Date: 2018-03-23
    Description: Living benthic foraminifera of Flensburg Fjord were surveyed in June 2006. The muddy and organic-rich sediments of the inner fjord were dominated by Elphidium incertum. E. incertum and E. excavatum were frequent in muds and sandy muds of the fjord loop around Holnis Peninsula and in the outer part. Gelting Bay yielded a different biofacies, indicating a brackish and sandy habitat, poor in food supply and with microfauna dominated by Ammonia beccarii and E. albiumbilicatum. The central fjord and nearshore zones of the loop were characterized by sandy muds, relatively poor in food and occupied by A. beccarii, E. incertum and E. excavatum subspecies. High abundances of E. excavatum were encountered in the innermost fjord, with fine-grained and organic-rich muddy sediments. A comparison with previous studies revealed the profound changes in species composition in the outer Flensburg Fjord since the 1970s. A decline in numbers of Ammotium cassis and flourishing of Ammonia beccarii in Gelting Bay were recognized. These changes are most likely associated with decreased intensity and frequency of salt-water inflows into the Baltic Sea since the 1960s. It is inferred that the decline of A. cassis is similar to that of Eggerelloides scaber, which currently is found only in depressions of Kiel Bight with higher salinity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-09-23
    Description: Initially a North Atlantic project, the CARINA carbon synthesis was extended to include the Southern Ocean. Carbon and relevant hydrographic and geochemical ancillary data from cruises all across the Arctic Mediterranean Seas, Atlantic and Southern Ocean were released to the public and merged into a new database as part of the CARINA synthesis effort. Of a total of 188 cruises, 37 cruises are part of the Southern Ocean, including 11 from the Atlantic sector. The variables from all Southern Ocean cruises, including dissolved inorganic carbon (TCO2), total alkalinity, oxygen, nitrate, phosphate and silicate, were examined for cruise-to-cruise consistency in one collective effort. Seawater pH and chlorofluorocarbons (CFCs) are also part of the database, but the pH quality control (QC) is described in another Earth System Science Data publication, while the complexity of the Southern Ocean physics and biogeochemistry prevented a proper QC analysis of the CFCs. The area-specific procedures of quality control, including crossover analysis between stations and inversion analysis of all crossover data (i.e. secondary QC), are briefly described here for the Atlantic sector of the Southern Ocean. Data from an existing, quality controlled database (GLODAP) were used as a reference for our computations – however, the reference data were included into the analysis without applying the recommended GLODAP adjustments so the corrections could be independently verified. The outcome of this effort is an internally consistent, high-quality carbon data set for all cruises, including the reference cruises. The suggested corrections by the inversion analysis were allowed to vary within a fixed envelope, thus accounting for natural variability. The percentage of cruises adjusted ranged from 31% (for nitrate) to 54% (for phosphate) depending on the variable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-09-23
    Description: Mesocosms experiments (PeECE II and PeECE III) were carried out in 9 transparent mesocosms. Prior to the experimental period, the seawater carbonate system was manipulated to achieve three different levels of CO2. At the onset of the experimental period, nutrients were added to all mesocosms in order to initiate phytoplankton blooms. Rates of primary production were measured by in-situ incubations using 14C-incorporation and oxygen production/consumption. Particulate primary production by 14C was also size fractionated and compared with phytoplankton species composition. Nutrient supply increased the primary production rates, and a net autotrophic phase with 14C-fixation rates up to 4 times higher than initial was observed midway through the 24 days experiment before net community production returned to near-zero and 14C-fixation rates relaxed back to lower than initial. We found a trend in the 14C-based measurements towards higher cumulative primary production at higher pCO2, consistent with recently published results for DIC removal (Riebesell et al., 2007). There where found differences to the size fractionated primary production response to CO2 treatments. The plankton composition changes throughout the bloom, however, resulted in no significant response until the final phase of the experiment where phytoplankton growth became nutrient limited, and phytoplankton community changed from diatom to flagellate dominance. This opens for the two alternative hypotheses that such an effect is associated with mineral nutrient limited growth, and/or with phytoplankton species composition. The lack of a clear net heterotrophic phase in the last part of the experiment supports the idea that a substantial part of production in the upper layer was not degraded locally, but either accumulated there or was exported vertically.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-03
    Description: A number of field-campaigns in the tropics have been conducted in recent years with two different LIDAR systems at Paramaribo (5.8° N, 55.2° W), Suriname. The lidars detect particles in the atmosphere with high vertical and temporal resolution and are capable of detecting extremely thin cloud layers which frequently occur in the tropical tropopause layer (TTL). Radiosonde as well as operational ECMWF analysis showed that equatorial Kelvin waves propagated in the TTL and greatly modulated its temperature structure. We found a clear correlation between the temperature anomalies introduced by these waves and the occurrence of thin cirrus in the TTL. In particular we found that extremely thin ice clouds form regularly where cold anomalies shift the tropopause to high altitudes. These findings suggest an influence of Kelvin wave activity on the dehydration in the TTL and thus on the global stratospheric water vapour concentration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-09-23
    Description: The marine aragonite cycle has been included in the global biogeochemical model PISCES to study the role of aragonite in shallow water CaCO3 dissolution. Aragonite production is parameterized as a function of mesozooplankton biomass and aragonite saturation state of ambient waters. Observation-based estimates of marine carbonate production and dissolution are well reproduced by the model and about 60% of the combined CaCO3 water column dissolution from aragonite and calcite is simulated above 2000 m. In contrast, a calcite-only version yields a much smaller fraction. This suggests that the aragonite cycle should be included in models for a realistic representation of CaCO3 dissolution and alkalinity. For the SRES A2 CO2 scenario, production rates of aragonite are projected to notably decrease after 2050. By the end of this century, global aragonite production is reduced by 29% and total CaCO3 production by 19% relative to pre-industrial. Geographically, the effect from increasing atmospheric CO2, and the subsequent reduction in saturation state, is largest in the subpolar and polar areas where the modeled aragonite production is projected to decrease by 65% until 2100.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-04-03
    Description: Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-02-26
    Description: A set of experiments utilizing different implementations of the global ORCA-LIM model with horizontal resolutions of 2°, 0.5° and 0.25° is used to investigate tropical and extra-tropical influences on equatorial Pacific SST variability at interannual to decadal time scales. The model experiments use a bulk forcing methodology building on the global forcing data set for 1958 to 2000 developed by Large and Yeager (2004) that is based on a blend of atmospheric reanalysis data and satellite products. Whereas representation of the mean structure and transports of the (sub-) tropical Pacific current fields is much improved with the enhanced horizontal resolution, there is only little difference in the simulation of the interannual variability in the equatorial regime between the 0.5° and 0.25° model versions, with both solutions capturing the observed SST variability in the Niño3-region. The question of remotely forced oceanic contributions to the equatorial variability, in particular, the role of low-frequency changes in the transports of the Subtropical Cells (STCs), is addressed by a sequence of perturbation experiments using different combinations of fluxes. The solutions show the near-surface temperature variability to be governed by wind-driven changes in the Equatorial Undercurrent. The relative contributions of equatorial and off-equatorial atmospheric forcing differ between interannual and longer, (multi-) decadal timescales: for the latter there is a significant impact of changes in the equatorward transport of subtropical thermocline water associated with the lower branches of the STCs, related to variations in the off-equatorial trade winds. A conspicuous feature of the STC variability is that the equatorward transports in the interior and along the western boundary partially compensate each other at both decadal and interannual time scales, with the strongest transport extrema occurring during El Niño episodes. The behaviour is rationalized in terms of a wobbling in the poleward extents of the tropical gyres, which is manifested also in a meridional shifting of the bifurcation latitudes of the North and South Equatorial Current systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-01-21
    Description: The first three Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns at Eureka (80° N, 86° W) were during two extremes of Arctic winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry, and Aura Microwave Limb Sounder (MLS), with meteorological analyses and Eureka lidar and radiosonde temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport and chemistry, and to provide a context for interpretation of campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, above where it could be accurately represented in the meteorological analyses. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with Eureka radiosondes, and with lidar data up to 50–60 km. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex during the 2004 and 2006 Eureka campaigns compared to that in 2005.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 5 (2). pp. 485-494.
    Publication Date: 2017-04-06
    Description: The Baltic and Black Seas are both brackish, that is to say both have salinities intermediate between freshwater and seawater. The coccolithophore Emiliania huxleyi is abundant in one, the Black Sea, but absent from the other, the Baltic Sea. Here we present summertime coccolithophore measurements confirming this difference, as well as data on the calcium carbonate saturation state of the Baltic Sea. We find that the Baltic Sea becomes undersaturated (or nearly so) in winter, with respect to both the aragonite and calcite mineral forms of CaCO3. Data for the Black Sea are more limited, but it appears to remain strongly supersaturated year-round. The absence of E. huxleyi from the Baltic Sea could therefore potentially be explained by dissolution of their coccoliths in winter, suggesting that minimum annual (wintertime) saturation states could be most important in determining future ocean acidification impacts. In addition to this potential importance of winter saturation state, alternative explanations are also possible, either related to differences in salinity or else to differences in silicate concentrations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-04-14
    Description: Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 5 . pp. 1119-1125.
    Publication Date: 2019-09-23
    Description: Coastal upwelling regions have been identified as sites of enhanced CH4 emissions to the atmosphere. The coastal upwelling area off Mauritania (NW Africa) is one of the most biologically productive regions of the world's ocean but its CH4 emissions have not been quantified so far. More than 1000 measurements of atmospheric and dissolved CH4 in the surface layer in the upwelling area off Mauritania were performed as part of the German SOPRAN (Surface Ocean Processes in the Anthropocene) study during two cruises in March/April 2005 (P320/1) and February 2007 (P348). During P348 enhanced CH4 saturations of up to 200% were found close to the coast and were associated with upwelling of South Atlantic Central Water. An area-weighted, seasonally adjusted estimate yielded overall annual CH4 emissions in the range from 1.6 to 2.9 Gg CH4. Thus the upwelling area off Mauritania represents a regional hot spot of CH4 emissions but seems to be of minor importance for the global oceanic CH4 emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 5 (4). pp. 1157-1164.
    Publication Date: 2012-07-06
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  eEarth, 3 . pp. 37-49.
    Publication Date: 2018-07-25
    Description: The living benthic foraminiferal assemblages in Kiel Fjord (SW Baltic Sea) were investigated in the years 2005 and 2006. The faunal studies were accomplished by geochemical analyses of surface sediments. In general, sediment pollution by copper, zinc, tin and lead is assessed as moderate in comparison with levels reported from other areas of the Baltic Sea. However, the inner Kiel Fjord is still exposed to a high load of metals and organic matter due to enhanced accumulation of fine-grained sediments in conjunction with potential pollution sources as shipyards, harbours and intensive traffic. The results of our survey show that the dominant environmental forcing of benthic foraminifera is nutrients availability coupled with human impact. A comparison with faunal data from the 1960s reveals apparent changes in species composition and population densities. The stress-tolerant species Ammonia beccarii invaded Kiel Fjord. Ammotium cassis had disappeared that reflects apparently the changes in salinity over the last 10 years. These changes in foraminiferal community and a significant increase of test abnormalities indicate an intensified environmental stress since the 1960s.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 5 . pp. 55-72.
    Publication Date: 2012-07-06
    Description: Various functions have been suggested and applied to represent the sedimentation and remineralisation of particulate organic matter (POM) in numerical ocean models. Here we investigate some representations commonly used in large-scale biogeochemical models: a constant sinking speed, a sinking speed increasing with depth, a spectrum of particles with different size and different size-dependent sinking velocities, and a model that assumes a power law particle size distribution everywhere in the water column. The analysis is carried out for an idealised one-dimensional water column, under stationary boundary conditions for surface POM. It focuses on the intrinsic assumptions of the respective sedimentation function and their effect on POM mass, mass flux, and remineralisation profiles. A constant and uniform sinking speed does not appear appropriate for simulations exceeding a few decades, as the sedimentation profile is not consistent with observed profiles. A spectrum of size classes, together with size-dependent sinking and constant remineralisation, causes the sinking speed of total POM to increase with depth. This increase is not strictly linear with depth. Its particular form will further depend on the size distribution of the POM ensemble at the surface. Assuming a power law particle size spectrum at the surface, this model results in unimodal size distributions in the ocean interior. For the size-dependent sinking model, we present an analytic integral over depth and size that can explain regional variations of remineralisation length scales in response to regional patterns in trophodynamic state.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 8 . pp. 2833-2840.
    Publication Date: 2019-01-21
    Description: The SEVIRI instrument on the Meteosat Second Generation satellite with both fine spatial and temporal resolution allows to detect and follow the dynamics of fast developing meteorological events like spreading smoke plumes and the lifecycles of convective clouds. Smoke plumes have the ability to change the atmospheric heat content due to absorption and reduced reflection of solar radiation. By these means they can trigger formation of shallow convective clouds at their edge. A heavy smoke plume emerging from burning Lebanese oil tanks and spreading over adjacent deserts on 17 July 2006 has been observed as an example of such an effect. This study suggests a physical explanation of the observed convection along the edge of the smoke plume, namely the strong thermal contrast resulting from solar heating of the smoke layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-07-06
    Description: Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm) were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Microzooplankton composition was determined by light microscopy. Despite a range of up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. During days 3–9 of the experiment the algae community standing stock, measured as chlorophyll a (Chl-a), showed the highest instantaneous grow rates (k=0.37–0.99 d−1) and increased from ca. 2–3 to 6–12 μg l−1, in all mesocosms. Afterwards the phytoplankton standing stock decreased in all mesocosms until the end of the experiment. The microzooplankton standing stock, that was mainly constituted by dinoflagellates and ciliates, varied between 23 and 130 μg C l−1 (corresponding to 1.9 and 10.8 μmol C l−1), peaking on day 13–15, apparently responding to the phytoplankton development. Instantaneous Chl-a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (12–43% of the standing stock d−1) only in the pre-bloom phase when they were in low numbers, and in the post-bloom phase when they were already affected by low nutrients and/or viral lysis. The cyanobacteria populations appeared more affected by microzooplankton grazing which generally removed 20–65% of the standing stock per day.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2012-07-06
    Description: Increasing atmospheric carbon dioxide (CO2) concentrations due to anthropogenic fossil fuel combustion are currently changing the ocean's chemistry. Increasing oceanic [CO2] and consequently decreasing seawater pH have the potential to significantly impact marine life. Here we describe and analyze the build-up and decline of a natural phytoplankton bloom initiated during the 2005 mesocosm Pelagic Ecosystem CO2 Enrichment study (PeECE III). The draw-down of inorganic nutrients in the upper surface layer of the mesocosms was reflected by a concomitant increase of organic matter until day t11, the peak of the bloom. From then on, biomass standing stocks steadily decreased as more and more particulate organic matter was lost into the deeper layer of the mesocosms. We show that organic carbon export to the deeper layer was significantly enhanced at elevated CO2. This phenomenon might have impacted organic matter remineralization leading to decreased oxygen concentrations in the deeper layer of the high CO2 mesocosms as indicated by deep water ammonium concentrations. This would have important implications for our understanding of pelagic ecosystem functioning and future carbon cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2012-07-06
    Description: The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics) affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2): 350 μatm (1×CO2), 700 μatm (2×CO2) and 1050 μatm (3×CO2). The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP) of free-living and attached bacteria as well as cell-specific BPP (csBPP) of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2012-07-06
    Description: The potential impact of seawater acidification on the concentrations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP), and the activity of the enzyme DMSP-lyase was investigated during a pelagic ecosystem CO2 enrichment experiment (PeECE III) in spring 2005. Natural phytoplankton blooms were studied for 24 days under present, double and triple partial pressures of CO2 (pCO2; pH=8.3, 8.0, 7.8) in triplicate 25 m3 enclosures. The results indicate similar DMSP concentrations and DMSP-lyase activity (DLA) patterns for all treatments. Hence, DMSP and DLA do not seem to have been affected by the CO2 treatment. In contrast, DMS concentrations showed small but statistically significant differences in the temporal development of the low versus the high CO2 treatments. The low pCO2 enclosures had higher DMS concentrations during the first 10 days, after which the levels decreased earlier and more rapidly than in the other treatments. Integrated over the whole study period, DMS concentrations were not significantly different from those of the double and triple pCO2 treatments. Pigment and flow-cytometric data indicate that phytoplanktonic populations were generally similar between the treatments, suggesting a certain resilience of the marine ecosystem under study to the induced pH changes, which is reflected in DMSP and DLA. However, there were significant differences in bacterial community structure and the abundance of one group of viruses infecting nanoeukaryotic algae. The amount of DMS accumulated per total DMSP or chlorophyll-a differed significantly between the present and future scenarios, suggesting that the pathways for DMS production or bacterial DMS consumption were affected by seawater pH. A comparison with previous work (PeECE II) suggests that DMS concentrations do not respond consistently to pelagic ecosystem CO2 enrichment experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  eEarth, 3 (1). pp. 37-49.
    Publication Date: 2018-07-25
    Description: The living benthic foraminiferal assemblages in Kiel Fjord (SW Baltic Sea) were investigated in the years 2005 and 2006. The faunal studies were accomplished by geochemical analyses of surface sediments. In general, sediment pollution by copper, zinc, tin and lead is assessed as moderate in comparison with levels reported from other areas of the Baltic Sea. However, the inner Kiel Fjord is still exposed to a high load of metals and organic matter due to enhanced accumulation of fine-grained sediments in conjunction with potential pollution sources as shipyards, harbours and intensive traffic. The results of our survey show that the dominant environmental forcing of benthic foraminifera is nutrients availability coupled with human impact. A comparison with faunal data from the 1960s reveals apparent changes in species composition and population densities. The stress-tolerant species Ammonia beccarii invaded Kiel Fjord. Ammotium cassis had disappeared that reflects apparently the changes in salinity over the last 10 years. These changes in foraminiferal community and a significant increase of test abnormalities indicate an intensified environmental stress since the 1960s.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 8 . pp. 1689-1699.
    Publication Date: 2019-07-03
    Description: During the European heat wave summer 2003 with predominant high pressure conditions we performed a detailed study of upper tropospheric humidity and ice particles which yielded striking results concerning the occurrence of ice supersaturated regions (ISSR), cirrus, and contrails. Our study is based on lidar observations and meteorological data obtained at Lindenberg/Germany (52.2° N, 14.1° E) as well as the analysis of the European centre for medium range weather forecast (ECMWF). Cirrus clouds were detected in 55% of the lidar profiles and a large fraction of them were subvisible (optical depth 〈0.03). Thin ice clouds were particularly ubiquitous in high pressure systems. The radiosonde data showed that the upper troposphere was very often supersaturated with respect to ice. Relating the radiosonde profiles to concurrent lidar observations reveals that the ISSRs almost always contained ice particles. Persistent contrails observed with a camera were frequently embedded in these thin or subvisible cirrus clouds. The ECMWF cloud parametrisation reproduces the observed cirrus clouds consistently and a close correlation between the ice water path in the model and the measured optical depth of cirrus is demonstrated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 8 . pp. 813-823.
    Publication Date: 2019-07-03
    Description: A long-term climatology of air mass transport through the tropical tropopause layer (TTL) is presented, covering the period from 1962–2005. The transport through the TTL is calculated with a Lagrangian approach using radiative heating rates as vertical velocities in an isentropic trajectory model. We demonstrate the improved performance of such an approach compared to previous studies using vertical winds from meteorological analyses. Within the upper part of the TTL, the averaged diabatic ascent is 0.5 K/day during Northern Hemisphere (NH) winters 1992–2001. Climatological maps show a cooling and strengthening of this part of the residual circulation during the 1990s and early 2000s compared to the long-term mean. Lagrangian cold point (LCP) fields show systematic differences for varying time periods and natural forcing components. The interannual variability of LCP temperature and density fields is found to be influenced by volcanic eruptions, El Niño Southern Oscillation (ENSO), Quasi-Biennial Oscillation (QBO) and the solar cycle. The coldest and driest TTL is reached during QBO easterly phase and La Niña over the western Pacific, whereas during volcanic eruptions, El Niño and QBO westerly phase it is warmer and less dry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 5 . pp. 1199-1213.
    Publication Date: 2012-07-06
    Description: To enable an accurate estimate of total excess nitrogen (N) in the North Atlantic, a new tracer TNxs is defined, which includes the contribution of organic nutrients to the assessment of N:P stoichiometric anomalies. We measured the spatial distribution of TNxs within the subtropical North Atlantic using data from a trans-Atlantic section across 24.5° N occupied in 2004. We then employ three different approaches to infer rates of total excess nitrogen accumulation using pCFC-12 derived ventilation ages (a TNxs vertical integration, a one end-member and a two-end member mixing model). Despite some variability among the different methods the dissolved organic nutrient fraction always contributes to about half of the TNxs accumulation, which is in the order of 9.38±4.18×1011 mol N y−1. We suggest that neglecting organic nutrients in stoichiometric balances of the marine N and P inventories can lead to systematic errors when estimating deviations of nitrogen excess or deficit relative to the Redfield ratio in the oceans. For the North Atlantic the inclusion of the organic fraction to the excess nitrogen pool leads to an upward revision of the N supply by N2 fixation to 10.2±6.9×1011 mol N y−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-07-06
    Description: Changes to seawater inorganic carbon and nutrient concentrations in response to the deliberate CO2 perturbation of natural plankton assemblages were studied during the 2005 Pelagic Ecosystem CO2 Enrichment (PeECE III) experiment. Inverse analysis of the temporal inorganic carbon dioxide system and nutrient variations was used to determine the net community stoichiometric uptake characteristics of a natural pelagic ecosystem perturbed over a range of pCO2 scenarios (350, 700 and 1050 μatm). Nutrient uptake showed no sensitivity to CO2 treatment. There was enhanced carbon production relative to nutrient consumption in the higher CO2 treatments which was positively correlated with the initial CO2 concentration. There was no significant calcification response to changing CO2 in Emiliania huxleyi by the peak of the bloom and all treatments exhibited low particulate inorganic carbon production (~15 μmol kg−1). With insignificant air-sea CO2 exchange across the treatments, the enhanced carbon uptake was due to increase organic carbon production. The inferred cumulative C:N:P stoichiometry of organic production increased with CO2 treatment from 1:6.3:121 to 1:7.1:144 to 1:8.25:168 at the height of the bloom. This study discusses how ocean acidification may incur modification to the stoichiometry of pelagic production and have consequences for ocean biogeochemical cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-07-06
    Description: Methane-related carbonates from Hydrate Ridge typically show several macroscopically distinguishable mineral phases, namely whitish aragonite, lucent aragonite, and gray micrite. The relationship of these phases to particular microorganisms or biogeochemical processes is as yet unclear. We used a miniaturized biomarker technique on mg samples, combined with factor analysis and subsequent electron microprobe analysis, to study lipid biomarkers and chemical compositions of the individual phases. This allows us to identify particular mechanisms involved in the formation of the different carbonate precipitates. Our combined analysis of biomarkers and petrographic traits shows that most of the lipids related to the anaerobic oxidation of methane (〉90% by weight) are concentrated within only a minor compartment (~20% by volume) of the Hydrate Ridge carbonates, the whitish aragonite. The patterns indicate that the whitish aragonite represents fossilized biofilms of methanotrophic consortia containing mainly archaea of the ANME-2 group and sulfate reducing bacteria, whereas the precipitation of the lucent aragonite may have lacked the immediate proximity of microorganisms during formation. By contrast, the gray micrite formed by incorporation of allochthonous organic and inorganic matter during carbonate precipitation induced by the anaerobic oxidation of methane involving ANME-1 archaea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-27
    Description: On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s?1. Along the pathway of the plume, maximum particulate matter (PM10) mass concentrations between 200 and 1400 ?g m?3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm?1 and a particle optical depth of 0.71 at wavelength 0.532 ?m. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2?3 ?m. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10?2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4?1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the possible effects of further anthropogenic desertification and climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-01-21
    Description: We have combined the first satellite maps of the global distribution of phytoplankton functional type and new measurements of phytoplankton-specific isoprene productivities, with available remote marine isoprene observations and a global model, to evaluate our understanding of the marine isoprene source and its impacts on organic aerosol abundances. Using satellite products to scale up data on phytoplankton-specific isoprene productivity to the global oceans, we infer a mean "bottom-up" oceanic isoprene emission of 0.31±0.08 (1σ) Tg/yr. By minimising the mean bias between the model and isoprene observations in the marine atmosphere remote from the continents, we produce a "top-down" oceanic isoprene source estimate of 1.9 Tg/yr. We suggest our reliance on limited atmospheric isoprene data, difficulties in simulating in-situ isoprene production rates in laboratory phytoplankton cultures, and limited knowledge of isoprene production mechanisms across the broad range of phytoplankton communities in the oceans under different environmental conditions as contributors to this difference between the two estimates. Inclusion of secondary organic aerosol (SOA) production from oceanic isoprene in the model with a 2% yield produces small contributions (0.01–1.4%) to observed organic carbon (OC) aerosol mass at three remote marine sites in the Northern and Southern Hemispheres. Based on these findings we suggest an insignificant role for isoprene in modulating remote marine aerosol abundances, giving further support to a recently postulated primary OC source in the remote marine atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-09-23
    Description: The influence of seawater carbon dioxide (CO2) concentration on the size distribution of suspended particles (2–60 μm) and on phytoplankton abundance was investigated during a mesocosm experiment at the large scale facility (LFS) in Bergen, Norway, in the frame of the Pelagic Ecosystem CO2 Enrichment study (PeECE II). In nine outdoor enclosures the partial pressure of CO2 in seawater was modified by an aeration system to simulate past (~190 μatm CO2), present (~370 μatm CO2) and future (~700 μatm CO2) CO2 conditions in triplicates. Due to the initial addition of inorganic nutrients, phytoplankton blooms developed in all mesocosms and were monitored over a period of 19 days. Seawater samples were collected daily for analysing the abundance of suspended particles and phytoplankton with the Coulter Counter and with Flow Cytometry, respectively. During the bloom period, the abundance of small particles (〈4 μm) significantly increased at past, and decreased at future CO2 levels. At that time, a direct relationship between the total-surface-to-total-volume ratio of suspended particles and DIC concentration was determined for all mesocosms. Significant changes with respect to the CO2 treatment were also observed in the phytoplankton community structure. While some populations such as diatoms seemed to be insensitive to the CO2 treatment, others like Micromonas spp. increased with CO2, or showed maximum abundance at present day CO2 (i.e. Emiliania huxleyi). The strongest response to CO2 was observed in the abundance of small autotrophic nano-plankton that strongly increased during the bloom in the past CO2 mesocosms. Together, changes in particle size distribution and phytoplankton community indicate a complex interplay between the ability of the cells to physiologically respond to changes in CO2 and size selection. Size of cells is of general importance for a variety of processes in marine systems such as diffusion-limited uptake of substrates, resource allocation, predator-prey interaction, and gravitational settling. The observed changes in particle size distribution are therefore discussed with respect to biogeochemical cycling and ecosystem functioning.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-04-23
    Description: Proxy records from a core site off Northwest Africa were generated and compared with data from the subpolar Northeast Atlantic to unravel some main climatic features of interglacial marine isotope stage (MIS) 11 (423–362 ka). The records point to an almost 25 kyr lasting full interglacial period during stage 11 that was preceded by a considerably long glacial-interglacial transition (Termination V). Off NW Africa, a strong reduction of terrestrially derived iron input is noted after 420 ka suggesting a pronounced increase in continental humidity and vegetation cover over Northwest Africa. In analogy to the Holocene climate of the region, this early wet phase of MIS 11 was likely associated with enhanced influence of the West African monsoon system on the Saharan-Sahel region which led to both a reduction in trade wind intensity off NW Africa and the formation of sapropel S11 in the Mediterranean Sea. A detailed comparison with data from the subpolar North Atlantic indicates a remarkable coherent timing for the main environmental changes in both regions giving evidence for strong interglacial climate connection between the low and high latitude North Atlantic. Although our records of MIS 11 compare well with the Holocene in terms of some major climate characteristics there are distinct differences in the temporal evolution of each peak warm interval. This suggests that care should be taken when using MIS 11 as analogue to forecast future interglacial conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-07-06
    Description: Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 700 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the 〉10 μm fraction was greater in the 3×CO2 mesocosm during the first 6–10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) rather than a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Specific phosphate affinity and specific APA tended to be higher in the 3×CO2 than in the 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, although no statistical differences were found. Glucose turnover time was correlated significantly and negatively with bacterial abundance and production but not with the bulk DOC concentration. This suggests that even though constituting a small fraction of the bulk DOC, glucose was an important component of labile DOC for bacteria. Specific glucose affinity of bacteria behaved similarly at the three different pCO2 levels with measured specific glucose affinities being consistently much lower than the theoretical maximum predicted from the diffusion-limited model. This suggests that bacterial growth was not severely limited by the glucose availability. Hence, it seems that the lower availability of inorganic nutrients after the phytoplankton bloom reduced the bacterial capacity to consume labile DOC in the upper mixed layer of the stratified mesocosms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 4 (2). pp. 125-136.
    Publication Date: 2018-12-06
    Description: When dating marine samples with 14C, the reservoir-age effect is usually assumed to be constant, although atmospheric 14C production rate and ocean circulation changes cause temporal and spatial reservoir-age variations. These lead to dating errors, which can limit the interpretation of cause and effect in paleoclimate data. We used a global ocean circulation model forced by transient atmospheric Δ14C variations to calculate reservoir ages for the last 45 000 years for a present day-like and a last glacial maximum-like ocean circulation. A ~30% reduced Atlantic meridonal overturning circulation leads to increased reservoir ages by up to ~500 years in high latitudes. Temporal variations are proportional to the absolute value of the reservoir age; regions with large reservoir age also show large variation. Temporal variations range between ~300 years in parts of the subtropics and ~1000 years in the Southern Ocean. For tropical regions, which are generally assumed to have nearly stable reservoir ages, the model suggests variations of several hundred years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2012-07-06
    Description: The interaction between iron availability and the phytoplankton elemental composition was investigated during the in situ iron fertilization experiment EIFEX and in laboratory experiments with the Southern Ocean diatom species Fragilariopsis kerguelensis and Chaetoceros dichaeta. Contrary to other in situ iron fertilization experiments we observed an increase in the BSi:POC, BSi:PON, and BSi:POP ratios within the iron fertilized patch during EIFEX. This is possibly caused by a relatively stronger increase in diatom abundance compared to other phytoplankton groups and does not necessarily represent the amount of silicification of single diatom cells. In laboratory experiments with F. kerguelensis and C. dichaeta no changes in the POC:PON, PON:POP, and POC:POP ratios were found with changing iron availability in both species. BSi:POC, BSi:PON, and BSi:POP ratios were significantly lower in the high iron treatments compared to the controls. In F. kerguelensis this was caused by a decrease in cellular BSi concentrations and therefore possibly less silicification. In C. dichaeta no change in cellular BSi concentration was found. Here lower BSi:POC, BSi:PON, and BSi:POP ratios were caused by an increase in cellular C, N, and P under high iron conditions. These results indicate that iron limitation does not always increase silicification in diatoms and that changes in the BSi:POC, BSi:PON, and BSi:POP ratios under iron fertilization in the field are caused by a variety of different mechanisms. Our results therefore imply that simple cause-and-effect relationships are not always applicable for modeling of elemental ratios.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2012-07-06
    Description: Rates of dinitrogen (N2) fixation and primary production were measured during two 9 day transect cruises in the Baltic proper in June–July of 1998 and 1999. Assuming that the early phase of the bloom of cyanobacteria lasted a month, total rates of N2 fixation contributed 15 mmol N m−2 (1998) and 33 mmol N m−2 (1999) to new production (sensu Dugdale and Goering, 1967). This constitutes 12–26% more new N than other annual estimates (mid July–mid October) from the same region. The between-station variability observed in both total N2 fixation and primary productivity greatly emphasizes the need for multiple stations and seasonal sampling strategies in biogeochemical studies of the Baltic Sea. The majority of new N from N2 fixation was contributed by filamentous cyanobacteria. On average, cyanobacterial cells 〉20 µm were able to supply a major part of their N requirements for growth by N2 fixation in both 1998 (73%) and 1999 (81%). The between-station variability was high however, and ranged from 28–150% of N needed to meet the rate of C incorporation by primary production. The molar C:N rate incorporation ratio (C:NRATE) in filamentous cyanobacterial cells was variable (range 7–28) and the average almost twice as high as the Redfield ratio (6.6) in both years. Since the molar C:N mass ratio (C:NMASS) in filamentous cyanobacterial cells was generally lower than C:NRATE at a number of stations, we suggest that the diazotrophs incorporated excess C on a short term basis (carbohydrate ballasting and buoyancy regulation), released nitrogen or utilized other regenerated sources of N nutrients. Measured rates of total N2 fixation contributed only a minor fraction of 13% (range 4–24) in 1998 and 18% (range 2–45) in 1999 to the amount of N needed for the community primary production. An average of 9 and 15% of total N2 fixation was found in cells 〈5 µm. Since cells 〈5 µm did not show any detectable rates of N2 fixation, the 15N-enrichment could be attributed to regenerated incorporation of dissolved organic N (DON) and ammonium generated from larger diazotroph cyanobacteria. Therefore, N excretion from filamentous cyanobacteria may significantly contribute to the pool of regenerated nutrients used by the non-diazotroph community in summer. Higher average concentrations of regenerated N (ammonium) coincided with higher rates of N2 fixation found during the 1999 transect and a higher level of 15N-enrichment in cells 〈5 µm. A variable but significant fraction of total N2 fixation (1–10%) could be attributed to diazotrophy in cells between 5–20 µm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-04-17
    Description: In early May 2006 a record high air pollution event was observed at Ny-Ålesund, Spitsbergen. An atypical weather pattern established a pathway for the rapid transport of biomass burning aerosols from agricultural fires in Eastern Europe to the Arctic. Atmospheric stability was such that the smoke was constrained to low levels, within 2 km of the surface during the transport. A description of this smoke event in terms of transport and main aerosol characteristics can be found in Stohl et al. (2007). This study puts emphasis on the radiative effect of the smoke. The aerosol number size distribution was characterised by lognormal parameters as having an accumulation mode centered around 165–185 nm and almost 1.6 for geometric standard deviation of the mode. Nucleation and small Aitken mode particles were almost completely suppressed within the smoke plume measured at Ny-Ålesund. Chemical and microphysical aerosol information obtained at Mt. Zeppelin (474 m a.s.l) was used to derive input parameters for a one-dimensional radiation transfer model to explore the radiative effects of the smoke. The daily mean heating rate calculated on 2 May 2006 for the average size distribution and measured chemical composition reached 0.55 K day−1 at 0.5 km altitude for the assumed external mixture of the aerosols but showing much higher heating rates for an internal mixture (1.7 K day−1). In comparison a case study for March 2000 showed that the local climatic effects due to Arctic haze, using a regional climate model, HIRHAM, amounts to a maximum of 0.3 K day−1 of heating at 2 km altitude (Treffeisen et al., 2005).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-09-06
    Description: The ocean's influence on volatile organic compounds (VOCs) in the atmosphere is poorly understood. This work characterises the oceanic emission and/or uptake of methanol, acetone, acetaldehyde, isoprene and dimethyl sulphide (DMS) as a function of photosynthetically active radiation (PAR) and a suite of biological parameters. The measurements were taken following a phytoplankton bloom, in May/June 2005 with a proton transfer reaction mass spectrometer (PTR-MS), from mesocosm enclosures anchored in the Raunefjord, Southern Norway. The net flux of methanol was always into the ocean, and was stronger at night. Isoprene and acetaldehyde were emitted from the ocean, correlating with light (ravcorr, isoprene=0.49; ravcorr, acetaldehyde=0.70) and phytoplankton abundance. DMS was also emitted to the air but did not correlate significantly with light (ravcorr, dms=0.01). Under conditions of high biological activity and a PAR of ~450 μmol photons m‑2 s‑1, acetone was emitted from the ocean, otherwise it was uptaken. The inter-VOC correlations were highest between the day time emission fluxes of acetone and acetaldehyde (rav=0.96), acetaldehyde and isoprene (rav=0.88) and acetone and isoprene (rav=0.85). The mean fluxes for methanol, acetone, acetaldehyde, isoprene and DMS were ‑0.26 ng m‑2 s‑1, 0.21 ng m‑2 s‑1, 0.23 ng m‑2 s‑1, 0.12 ng m‑2 s‑1 and 0.3 ng m‑2 s‑1, respectively. This work shows that compound specific PAR and biological dependency should be used for estimating the influence of the global ocean on atmospheric VOC budgets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-09-23
    Description: We investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons using observations from the open subpolar North Atlantic [sNA] and to a lesser extent a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow-depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep CaCO3 saturation horizons, and precisely-defined pre-formed alkalinity. Based on the analysis of a comprehensive alkalinity data set we find that SDCCD does not appear to be a significant process in the open sNA. The results from the model support the observational findings by indicating that there is not a significant need of SDCCD to explain observed patterns of alkalinity in the North Atlantic. Instead our investigation points to the importance of mixing processes for the redistribution of alkalinity from dissolution of CaCO3 from below its saturation horizons. However, mixing has recently been neglected for a number of studies that called for SDCCD in the sNA and on global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-03-20
    Description: During phytoplankton growth a fraction of dissolved inorganic carbon (DIC) assimilated by phytoplankton is exuded in the form of dissolved organic carbon (DOC), which can be transformed into extracellular particulate organic carbon (POC). A major fraction of extracellular POC is associated with carbon of transparent exopolymer particles (TEP; carbon content = TEPC) that form from dissolved polysaccharides (PCHO). The exudation of PCHO is linked to an excessive uptake of DIC that is not directly quantifiable from utilisation of dissolved inorganic nitrogen (DIN), called carbon overconsumption. Given these conditions, the concept of assuming a constant stoichiometric carbon-to-nitrogen (C:N) ratio for estimating new production of POC from DIN uptake becomes inappropriate. Here, a model of carbon overconsumption is analysed, combining phytoplankton growth with TEPC formation. The model describes two modes of carbon overconsumption. The first mode is associated with DOC exudation during phytoplankton biomass accumulation. The second mode is decoupled from algal growth, but leads to a continuous rise in POC while particulate organic nitrogen (PON) remains constant. While including PCHO coagulation, the model goes beyond a purely physiological explanation of building up carbon rich particulate organic matter (POM). The model is validated against observations from a mesocosm study. Maximum likelihood estimates of model parameters, such as nitrogen- and carbon loss rates of phytoplankton, are determined. The optimisation yields results with higher rates for carbon exudation than for the loss of organic nitrogen. It also suggests that the PCHO fraction of exuded DOC was 63±20% during the mesocosm experiment. Optimal estimates are obtained for coagulation kernels for PCHO transformation into TEPC. Model state estimates are consistent with observations, where 30% of the POC increase was attributed to TEPC formation. The proposed model is of low complexity and is applicable for large-scale biogeochemical simulations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-02-04
    Description: Dissolved iron (DFe; 〈0.2 µm) and dissolved manganese (DMn; 〈0.2 µm) concentrations were determined in the water column of the Bay of Biscay (eastern North Atlantic Ocean) in March 2002. The samples were collected along a transect traversing from the European continental shelf over the continental slope. The highest DFe and DMn concentrations (2.39 nM and 6.10 nM, respectively) were observed in the bottom waters on the shelf at stations closest to the coast. The release of trace metal from resuspended particles and the diffusion from pore waters were probably at the origin of elevated DFe and DMn concentrations in the Bottom Boundary Layer (BBL). In the slope region, the highest total dissolvable iron (TDFe), DFe and DMn values (24.6 nM, 1.58 nM and 2.12 nM, respectively) were observed close to the bottom at depth of ca.~600–700 m. Internal wave activity and slope circulation are thought to be at the origin of this phenomenon. These processes were also very likely the cause of elevated concentrations (DFe: 1.27 nM, DMn: 2.34 nM) measured in surface waters of stations located in the same area. At stations off the continental slope, the vertical distribution of both metals were typical of open ocean conditions, indicating that inputs from the continental margin did not impact the metal distributions in the offshore waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-09-24
    Description: Early diagenetic features are noticed in the vicinity of carbonate platforms. Planktonic foraminifera of two tropical Atlantic deep-sea sediment cores show the strict relation between micro-scale euhydral crystallites of inorganic precipitates, higher oxygen isotope values and Mg/Ca ratios, and lower Sr/Ca ratios than expected for their pelagic environment in the time interval of ~100 000–550 000 calendar years before present. Laser ablation Mg/Ca (Sr/Ca) of crystallite-bearing foraminiferal chamber walls revealed 4–6 times elevated (2–3 times depleted) ratios, when ablating the diagenetic overgrowth. Crystalline overgrowth in proportion of 10–20% are estimated to cause the observed geochemical alteration. The extent of foraminiferal Mg/Ca alteration, moreover, seems to be controlled by the composition of the bulk sediment, especially the content of high-magnesium calcite. Anomalous ratios of 〉6 mmol/mol only occur, when high-magnesium calcite has dissolved within the sediment. The older parts (back to ~800 kyrs) of the records are characterized by similar trends of Mg/Ca and Sr/Ca. We discuss possible scenarios to accommodate the obtained geochemical information.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 4 (1). pp. 53-61.
    Publication Date: 2019-09-24
    Description: The cyanobacterium Trichodesmium is an important link in the global nitrogen cycle due to its significant input of atmospheric nitrogen to the ocean. Attempts to incorporate Trichodesmium in ocean biogeochemical circulation models have, so far, relied on the observed correlation between temperature and Trichodesmium abundance. This correlation may result in part from a direct effect of temperature on Trichodesmium growth rates through the control of cellular biochemical processes, or indirectly through temperature influence on mixed layer depth, light and nutrient regimes. Here we present results indicating that the observed correlation of Trichodesmium with temperature in the field reflects primarily the direct physiological effects of temperature on diazotrophic growth of Trichodesmium. Trichodesmium IMS-101 (an isolate of Trichodesmium) could acclimate and grow at temperatures ranging from 20 to 34°C. Maximum growth rates (μmax=0.25 day–1) and maximum nitrogen fixation rates (0.13 mmol N mol POC−1 h–1) were measured within 24 to 30°C. Combining this empirical relationship with global warming scenarios derived from state-of-the-art climate models sets a physiological constraint on the future distribution of Trichodesmium that could significantly affect the future nitrogen input into oligotrophic waters by this diazotroph.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Journal of Micropalaeontology, 26 . pp. 47-60.
    Publication Date: 2018-03-23
    Description: Living benthic foraminiferal assemblages were monitored between January and July 2004 in the Kiel Bight, Baltic Sea. Phytoplankton blooms and the deposition of organic detritus were depicted by fluorometer hydro casts and pigment concentrations in surface sediments. Three depositional pulses of organic matter were identified by high phytoplankton concentrations above the sea floor and elevated pigment concentrations in the surface sediment. The foraminiferal assemblage composition remained rather constant but the population density of Elphidium excavatum clavatum showed a two- to six-fold increase within a few days after organic detritus deposition. The foraminiferal assemblage composition was compared to earlier studies in this area. Elphidium excavatum, Ammotium cassis and E incertum dominated the living fauna in the 1960s and 1970s. The recent survey revealed a predominance of E. excavatum subspecies (more than 90% of the living assemblage). The average population densities were six times higher than in the 1970s. Data structure and model calculations suggested that E excavatum clavatum is able to reproduce rapidly, with high offspring numbers at elevated food supply. The diminution of A. cassis has occurred in Kiel Bight during the last ten years and was most likely induced by a period of low deep-water salinities in the early 1990s.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-07-06
    Description: A one-dimensional model of the biogeochemistry and speciation of iron is coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model. The model is able to simulate the temporal patterns and vertical profiles of dissolved iron (dFe) in the upper ocean at the Bermuda Atlantic Time-series Study site reasonably well. Subsurface model profiles strongly depend on the parameter values chosen for the loss processes for iron, colloidal aggregation and scavenging onto particles. Estimates for these parameters based on observations in particle-rich waters result in depletion of dFe. A high stability constant of iron-binding organic ligands is required to reproduce the observed degree of organic complexation below the mixed layer. The scavenging residence time for iron in the model is shortest in spring and summer, because of the larger abundance of particles, and increases with depth towards values on the order of a hundred years. A solubility of atmospherically deposited iron higher than 2% lead to dFe concentrations incompatible with observations. Despite neglecting ultraviolet radiation, the model produces diurnal variations and mean vertical profiles of H2O2 and iron species that are in good agreement with observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-11-08
    Description: A study about measurements of solid precipitation using an optical disdrometer is presented. The optical disdrometer is an improved version of the ODM 470 disdrometer. It allows to measure hydrometeors within a size range of 0.4 to 22 mm in diameter. The main advantage of this instrument is its ability to estimate accurately precipitation even under strong wind conditions (Großklaus, 1996). To measure solid precipitation a geometrical model was developed to determine the mean cross-sectional area of snow crystals for different predefined shapes and sizes. It serves to develop an algorithm, which relates the mean cross sectional area of snow crystals to their maximum dimension, liquid water content, and terminal velocity. The algorithm was applied to disdrometer measurements during winter 1999/2000 in Uppsala/Sweden. Resulting precipitation was compared to independent measurements of a Geonor gauge and to manual measurements. In terms of daily precipitation the disdrometer shows a reliable performance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-01-31
    Description: Proxy records and results of a three dimensional climate model show that European summer temperatures roughly a millennium ago were comparable to those of the last 25 years of the 20th century, supporting the existence of a summer "Medieval Warm Period" in Europe. Those two relatively mild periods were separated by a rather cold era, often referred to as the "Little Ice Age". Our modelling results suggest that the warm summer conditions during the early second millennium compared to the climate background state of the 13th–18th century are due to a large extent to the long term cooling induced by changes in land-use in Europe. During the last 200 years, the effect of increasing greenhouse gas concentrations, which was partly levelled off by that of sulphate aerosols, has dominated the climate history over Europe in summer. This induces a clear warming during the last 200 years, allowing summer temperature during the last 25 years to reach back the values simulated for the early second millennium. Volcanic and solar forcing plays a weaker role in this comparison between the last 25 years of the 20th century and the early second millennium. Our hypothesis appears consistent with proxy records but modelling results have to be weighted against the existing uncertainties in the external forcing factors, in particular related to land-use changes, and against the uncertainty of the regional climate sensitivity. Evidence for winter is more equivocal than for summer. The forced response in the model displays a clear temperature maximum at the end of the 20th century. However, the uncertainties are too large to state that this period is the warmest of the past millennium in Europe during winter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 3 . pp. 607-619.
    Publication Date: 2012-07-06
    Description: In order to get a comprehensive picture of the distribution of nitrous oxide (N2O) in the North Atlantic Ocean, measurements of dissolved nitrous oxide were made during three cruises in the tropical, subtropical and cold-temperate North Atlantic Ocean in October/November 2002, March/April 2004, and May 2002, respectively. To account for the history of atmospheric N2O, we suggest a new depth-dependent calculation of excess N2O (ΔN2O). N2O depth profiles showed supersaturation throughout the water column with a distinct increasing trend from the cold-temperate to the tropical region. Lowest nitrous oxide concentrations, near equilibrium and with an average of 11.0±1.7 nmol L−1, were found in the cold-temperate North Atlantic where the profiles showed no clear maxima. Highest values up to 37.3 nmol L−1 occurred in the tropical North Atlantic with clear maxima at approximately 400 m. A positive correlation of nitrous oxide with nitrate, as well as excess nitrous oxide with the apparent oxygen utilization (AOU), was only observed in the subtropical and tropical regions. Therefore, we conclude that the formation of nitrous oxide via nitrification occurs in the tropical region rather than in the cold-temperate region of the North Atlantic Ocean
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-09-06
    Description: In late May 2005 unusual high levels of solar ultraviolet radiation were observed over central Europe. In Northern Germany the measured irradiance of erythemally effective radiation exceeded the climatological mean by more than about 20%. An extreme low ozone event for the season coincided with high solar elevation angles and high pressure induced clear sky conditions leading to the highest value of erythemal UV-radiation ever observed over this location in May since 1994. This hereafter called "ozone mini-hole" was caused by an elevation of tropopause height accompanied with a poleward advection of ozone-poor air from the tropics. The resultant increase in UV-radiation is of particular significance for human health. Dynamically induced low ozone episodes that happen in late spring can considerably enhance the solar UV-radiation in mid latitudes and therefore contribute to the UV-burden of people living in these regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-09-23
    Description: To commemorate the publication of the 25th Volume of the Journal of Micropalaeontology, the first issue of which came out in 1982, this celebratory review article was commissioned. Officers of each TMS Group (Ostracod, Foraminifera, Palynology, Nannofossil, Microvertebrate and Silicofossil) were requested to reflect over the last 25 years and assess the major advances and innovations in each of their disciplines. It is obvious from the presentations that all Groups report that research has moved on from the basic, but essential descriptive phase, i.e. taxonomy and establishing biostratigraphies, to the utilization of new technologies and application to issues of the day such as climate change and global warming. However, we must not lose sight of the fact that the foundation of micropalaeontology is observation and the building block for all these new and exciting innovations and developments is still good taxonomy. Briefly, the most obvious conclusion that can be drawn from this review is that micropalaeontology as a science is in relatively good health, but we have to ensure that the reported advancements will sustain and progress our discipline. There is one issue that has not really been highlighted in these contributions – we need to make sure that there are enough people being trained in micropalaeontology to maintain development. The last 25 years has seen a dramatic decrease in the number of post-graduate MSc courses in micropalaeontology. For example, in the UK, in the 1980s and early 1990s there were five specific MSc courses to choose ...
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Nonlinear Processes in Geophysics, 13 (3). pp. 275-285.
    Publication Date: 2017-02-15
    Description: We investigated the influence of atmospheric noise on the generation of interannual El Niño variability. Therefore, we perturbed a conceptual ENSO delay model with surrogate windstress data generated from tropical windspeed measurements. The effect of the additional stochastic forcing was studied for various parameter sets including periodic and chaotic regimes. The evaluation was based on a spectrum and amplitude-period relation comparison between model and measured sea surface temperature data. The additional forcing turned out to increase the variability of the model output in general. The noise-free model was unable to reproduce the observed spectral bandwidth for any choice of parameters. On the contrary, the stochastically forced model is capable of producing a realistic spectrum. The weakly nonlinear regimes of the model exhibit a proportional relation between amplitude and period matching the relation derived from measurement data. The chaotic regime, however, shows an inversely proportional relation. A stability analysis of the different regimes revealed that the spectra of the weakly nonlinear regimes are robust against slight parameter changes representing disregarded physical mechanisms, whereas the chaotic regime exhibits a very unstable realistic spectrum. We conclude that the model including stochastic forcing in a parameter range of moderate nonlinearity best matches the real conditions. This suggests that atmospheric noise plays an important role in the coupled tropical pacific ocean-atmosphere system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-09-06
    Description: In late May 2005 unusual high levels of solar ultraviolet radiation were observed over central Europe. In Northern Germany the measured irradiance of erythemally effective radiation exceeded the climatological mean by more than about 20%. An extreme low ozone event for the season coincided with high solar elevation angles and high pressure induced clear sky conditions leading to the highest value of erythemal UV-radiation ever observed over this location in May since 1994. This hereafter called "ozone mini-hole" was caused by an elevation of tropopause height accompanied with a poleward advection of ozone-poor air from the tropics. The resultant increase in UV-radiation is of particular significance for human health. Dynamically induced low ozone episodes that happen in late spring can considerably enhance the solar UV-radiation in mid latitudes and therefore contribute to the UV-burden of people living in these regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2012-07-06
    Description: In January 2003, a major inflow of cold and oxygen-rich North Sea Water terminated an ongoing stagnation period in parts of the central Baltic Sea. In order to investigate the role of North Sea Water inflow in the production of nitrous oxide (N2O), we measured dissolved and atmospheric N〈2O at 26 stations in the southern and central Baltic Sea in October 2003. At the time of our cruise, water renewal had proceeded to the eastern Gotland Basin, whereas the western Gotland Basin was still unaffected by the inflow. The deep water renewal was detectable in the distributions of temperature, salinity, and oxygen concentrations as well as in the distribution of the N2O concentrations: Shallow stations in the Kiel Bight and Pomeranian Bight were well-ventilated with uniform N2O concentrations near equilibrium throughout the water column. In contrast, stations in the deep basins, such as the Bornholm and the Gotland Deep, showed a clear stratification with deep water affected by North Sea Water. Inflowing North Sea Water led to changed environmental conditions, especially enhanced oxygen (O2) or declining hydrogen sulphide (H2S) concentrations, thus, affecting the conditions for the production of N2O. Pattern of N2O profiles and correlations with parameters like oxygen and nitrate differed between the basins. Because of the positive correlation between ΔN2O and AOU in oxic waters the dominant production pathway seems to be nitrification rather than denitrification. Advection of N2O by North Sea Water was found to be of minor importance. A rough budget revealed a significant surplus of in situ produced N2O after the inflow. However, due to the permanent halocline, it can be assumed that the N2O produced does not reach the atmosphere. Hydrographic aspects therefore are decisive factors determining the final release of N2O produced to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-04-11
    Description: The biogeochemistry of the river-sea interface was studied in the Kem' River (the largest river flowing to the White Sea from Karelian coast) estuary and adjacent area of the White Sea onboard the RV "Ekolog" in summer 2001, 2002 and 2003. The study area can be divided into 3 zones: I - the estuary itself, with water depth from 1 to 5m and low salinity in the surface layer (salinity is lower than 0.2psu in the Kem' River and varies from 15 to 20psu in outer part of this zone); II - the intermediate zone with depths from 5 to 10m and salinity at the surface from 16 to 22psu; III - the marine zone with depths from 10 to 29 m and salinity 21-24.5psu. Highest concentrations of the suspended particulate matter (SPM) were registered in the Kem' mouth (5-7mg/l). They sharply decreased to values 〈1mg/l towards the sea. At beginning of July 2001, particulate organic carbon (POC) concentration in the river mouth was 404µg/l and POC content in total SPM was 5.64%. In the marine part of the studied area the POC concentration varied from 132 to 274µg/l and the POC contents in suspended matter increased to 19-52.6%. These studies show, that the majority of riverborne suspended matter in the Kem' estuary deposits near the river mouth within the 20psu isohaline, where sedimentation of the suspended matter takes place. The role of fresh-water phytoplankton species decreases and the role of marine species increases from the river to sea and the percentage of green algae decreases and the role of diatoms increases. The organic carbon (Corg) to nitrogen (N) ratio (Corg/N) in both suspended matter and bottom sediments decreases from the river to the marine part of the mixing zone (from 8.5 to 6.1 in the suspended matter and from 14.6 to 7.5 in the bottom sediments), demonstrating that content of terrestrial-derived organic matter decreases and content of marine organic matter increases from the river mouth to the sea. The Kem' estuary exhibits a similar character of biogeochemial processes as in the large Arctic estuaries, but the scale of these processes (amount of river input of SPM, POC, area of estuaries) is different.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 2 . pp. 189-204.
    Publication Date: 2019-01-21
    Description: Sinking particles, once caught in sediment trap jars, release dissolved elements into the surrounding medium through leaching from their pore fluids, chemical dissolution and the activity of free exoenzymes. This results in an increase in dissolved elements in the trap jar supernatant. Elemental fluxes as traditionally measured by sediment traps underestimate total export when this particle-associated dissolved flux is not considered. The errors introduced are variable and alter both the absolute levels of flux as well as the stoichiometry of export. These errors have been quantified and corrections applied for samples from sediment traps in the North Atlantic based on measurements of excess dissolved carbon, nitrogen, phosphorus, silica and calcium in the supernatant of the collection cups. At the base of the winter mixed layer, on average 90±6% of phosphorus fluxes are found as excess phosphate whereas for carbon and nitrogen dissolved concentrations account for 30 (±8)% and 47(±11)% of total fluxes respectively. Excess dissolved silica is on average 61 (±17)% of total biogenic silica flux. Little (〈10%) of calcium is solubilized. The proportion of dissolved to total flux decreases with trap deployment depth. Calculations of the C:N:P ratios for particles only are well above the Redfield ratios of 106:16:1 (Redfield et al., 1963), although the mid-water dissolved N:P and N:Si values as well as the C:N:P ratios of remineralisation along isopycnals conform to the Redfield ratios at this site. Accounting for dissolved fluxes of all these elements brings the stoichiometry of export in agreement with the Redfield Ratio and with other geochemical estimates of winter mixed layer export. A factor of 3 to 4 higher ratios of organic: inorganic carbon export also implies that the net atmospheric CO2 sequestration by the biological pump is about 50% higher at this site when the dissolved elemental fluxes are considered. Solubilization is thus a process that should be accounted for in protocols used to measure vertical fluxes with sediment traps.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...