ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:526  (42)
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (8)
  • Physics
  • Springer Berlin Heidelberg  (50)
  • 1
    Publication Date: 2023-07-04
    Description: To resolve undifferenced GNSS phase ambiguities, dedicated satellite products are needed, such as satellite orbits, clock offsets and biases. The International GNSS Service CNES/CLS analysis center provides satellite (HMW) Hatch-Melbourne-Wübbena bias and dedicated satellite clock products (including satellite phase bias), while the CODE analysis center provides satellite OSB (observable-specific-bias) and integer clock products. The CNES/CLS GPS satellite HMW bias products are determined by the Hatch-Melbourne-Wübbena (HMW) linear combination and aggregate both code (C1W, C2W) and phase (L1W, L2W) biases. By forming the HMW linear combination of CODE OSB corrections on the same signals, we compare CODE satellite HMW biases to those from CNES/CLS. The fractional part of GPS satellite HMW biases from both analysis centers are very close to each other, with a mean Root-Mean-Square (RMS) of differences of 0.01 wide-lane cycles. A direct comparison of satellite narrow-lane biases is not easily possible since satellite narrow-lane biases are correlated with satellite orbit and clock products, as well as with integer wide-lane ambiguities. Moreover, CNES/CLS provides no satellite narrow-lane biases but incorporates them into satellite clock offsets. Therefore, we compute differences of GPS satellite orbits, clock offsets, integer wide-lane ambiguities and narrow-lane biases (only for CODE products) between CODE and CNES/CLS products. The total difference of these terms for each satellite represents the difference of the narrow-lane bias by subtracting certain integer narrow-lane cycles. We call this total difference “narrow-lane” bias difference. We find that 3% of the narrow-lane biases from these two analysis centers during the experimental time period have differences larger than 0.05 narrow-lane cycles. In fact, this is mainly caused by one Block IIA satellite since satellite clock offsets of the IIA satellite cannot be well determined during eclipsing seasons. To show the application of both types of GPS products, we apply them for Sentinel-3 satellite orbit determination. The wide-lane fixing rates using both products are more than 98%, while the narrow-lane fixing rates are more than 95%. Ambiguity-fixed Sentinel-3 satellite orbits show clear improvement over float solutions. RMS of 6-h orbit overlaps improves by about a factor of two. Also, we observe similar improvements by comparing our Sentinel-3 orbit solutions to the external combined products. Standard deviation value of Satellite Laser Ranging residuals is reduced by more than 10% for Sentinel-3A and more than 15% for Sentinel-3B satellite by fixing ambiguities to integer values.
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Bias comparison ; Sentinel-3A/B ; Undifferenced ambiguity resolution ; CNES/CLS ; CODE
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-22
    Description: In recent strapdown airborne and shipborne gravimetry campaigns with servo accelerometers of the widely used Q-Flex type, results have been impaired by heading-dependent measurement errors. This paper shows that the effect is, in all likelihood, caused by the sensitivity of the Q-Flex type sensor to the Earth’s magnetic field. In order to assess the influence of magnetic fields on the utilised strapdown IMU of the type iMAR iNAV-RQH-1003, the IMU has been exposed to various magnetic fields of known directions and intensities in a 3-D Helmholtz coil. Based on the results, a calibration function for the vertical accelerometer is developed. At the example of five shipborne and airborne campaigns, it is outlined that under specific circumstances the precision of the gravimetry results can be strongly improved using the magnetic calibration approach: The non-adjusted RMSE at repeated lines decreased from 1.19 to 0.26 mGal at a shipborne campaign at Lake Müritz, Germany. To the knowledge of the authors, a significant influence of the Earth’s magnetic field on strapdown inertial gravimetry is demonstrated for the first time.
    Description: Technische Universität Darmstadt (3139)
    Keywords: ddc:526 ; Gravimetry ; Strapdown ; Magnetic field ; Q-Flex ; IMU
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-22
    Description: The Sentinel-6 (or Jason-CS) altimetry mission provides a long-term extension of the Topex and Jason-1/2/3 missions for ocean surface topography monitoring. Analysis of altimeter data relies on highly-accurate knowledge of the orbital position and requires radial RMS orbit errors of less than 1.5 cm. For precise orbit determination (POD), the Sentinel-6A spacecraft is equipped with a dual-constellation GNSS receiver. We present the results of Sentinel-6A POD solutions for the first 6 months since launch and demonstrate a 1-cm consistency of ambiguity-fixed GPS-only and Galileo-only solutions with the dual-constellation product. A similar performance (1.3 cm 3D RMS) is achieved in the comparison of kinematic and reduced-dynamic orbits. While Galileo measurements exhibit 30–50% smaller RMS errors than those of GPS, the POD benefits most from the availability of an increased number of satellites in the combined dual-frequency solution. Considering obvious uncertainties in the pre-mission calibration of the GNSS receiver antenna, an independent inflight calibration of the phase centers for GPS and Galileo signal frequencies is required. As such, Galileo observations cannot provide independent scale information and the estimated orbital height is ultimately driven by the employed forces models and knowledge of the center-of-mass location within the spacecraft. Using satellite laser ranging (SLR) from selected high-performance stations, a better than 1 cm RMS consistency of SLR normal points with the GNSS-based orbits is obtained, which further improves to 6 mm RMS when adjusting site-specific corrections to station positions and ranging biases. For the radial orbit component, a bias of less than 1 mm is found from the SLR analysis relative to the mean height of 13 high-performance SLR stations. Overall, the reduced-dynamic orbit determination based on GPS and Galileo tracking is considered to readily meet the altimetry-related Sentinel-6 mission needs for RMS height errors of less than 1.5 cm.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Sentinel-6 ; Jason-CS ; Single-receiver ambiguity fixing ; Precise orbit determination ; GPS ; Galileo ; SLR ; Altimetry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-22
    Description: In this simulation study we analyze the benefit of ground-space optical two-way links (OTWL) for Galileo precise orbit determination (POD). OTWL is a concept based on continuous wave laser ranging and time transfer with modulated signals from and to ground stations. The measurements are in addition to Global Navigation Satellite System (GNSS) observations. We simulate the measurements with regard to 16 Galileo Sensor Stations. In the simulation study we assume that the whole Galileo satellite constellation is equipped with terminals for OTWL. Using OTWL together with Galileo L-band, in comparison with an orbit solution calculated with L-band-only, demonstrates the advantage of combining two ranging techniques with different influences of systematic errors. The two-way link allows a station and satellite clock synchronization. Furthermore, we compare the ground-space concept with the satellite-to-satellite counterpart known as optical two-way inter-satellite links (OISL). The advantage of OTWL is the connection between the satellite system and the solid Earth as well as the possibility to synchronize the satellite clocks and the ground station clocks. The full network, using all three observation types in combination is simulated as well. The possibility to estimate additional solar radiation pressure (SRP) parameters within these combinations is a clear benefit of these additional links. We paid great attention to simulate systematic effects of all observation techniques as realistically as possible. For L-band these are measurement noise, tropospheric delays, phase center variation of receiver and transmitter antennas, constant and variable biases as well as multipath. For optical links we simulated colored and distance-dependent noise, offsets due to the link repeatability and offsets related to the equipment calibration quality. In addition, we added a troposphere error for the OTWL measurements. We discuss the influence on the formal orbit uncertainties and the effects of the systematic errors. Restrictions due to weather conditions are addressed as well. OTWL is synergetic with the other measurement techniques like OISL and can be used for data transfer and communication, respectively.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Galileo ; POD ; Optical two-way link ; Inter-satellite link
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-22
    Description: We present a partition-enhanced least-squares collocation (PE-LSC) which comprises several modifications to the classical LSC method. It is our goal to circumvent various problems of the practical application of LSC. While these investigations are focused on the modeling of the exterior gravity field the elaborated methods can also be used in other applications. One of the main drawbacks and current limitations of LSC is its high computational cost which grows cubically with the number of observation points. A common way to mitigate this problem is to tile the target area into sub-regions and solve each tile individually. This procedure assumes a certain locality of the LSC kernel functions which is generally not given and, therefore, results in fringe effects. To avoid this, it is proposed to localize the LSC kernels such that locality is preserved, and the estimated variances are not notably increased in comparison with the classical LSC method. Using global covariance models involves the calculation of a large number of Legendre polynomials which is usually a time-consuming task. Hence, to accelerate the creation of the covariance matrices, as an intermediate step we pre-calculate the covariance function on a two-dimensional grid of isotropic coordinates. Based on this grid, and under the assumption that the covariances are sufficiently smooth, the final covariance matrices are then obtained by a simple and fast interpolation algorithm. Applying the generalized multi-variate chain rule, also cross-covariance matrices among arbitrary linear spherical harmonic functionals can be obtained by this technique. Together with some further minor alterations these modifications are implemented in the PE-LSC method. The new PE-LSC is tested using selected data sets in Antarctica where altogether more than 800,000 observations are available for processing. In this case, PE-LSC yields a speed-up of computation time by a factor of about 55 (i.e., the computation needs only hours instead of weeks) in comparison with the classical unpartitioned LSC. Likewise, the memory requirement is reduced by a factor of about 360 (i.e., allocating memory in the order of GB instead of TB).
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Gravity field ; Least squares collocation (LSC) ; Covariance function ; Data combination ; Prediction ; Antarctica
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-22
    Description: In 2015, the International Association of Geodesy defined the International Height Reference System (IHRS) as the conventional gravity field-related global height system. The IHRS is a geopotential reference system co-rotating with the Earth. Coordinates of points or objects close to or on the Earth’s surface are given by geopotential numbers C(P) referring to an equipotential surface defined by the conventional value W0 = 62,636,853.4 m2 s−2, and geocentric Cartesian coordinates X referring to the International Terrestrial Reference System (ITRS). Current efforts concentrate on an accurate, consistent, and well-defined realisation of the IHRS to provide an international standard for the precise determination of physical coordinates worldwide. Accordingly, this study focuses on the strategy for the realisation of the IHRS; i.e. the establishment of the International Height Reference Frame (IHRF). Four main aspects are considered: (1) methods for the determination of IHRF physical coordinates; (2) standards and conventions needed to ensure consistency between the definition and the realisation of the reference system; (3) criteria for the IHRF reference network design and station selection; and (4) operational infrastructure to guarantee a reliable and long-term sustainability of the IHRF. A highlight of this work is the evaluation of different approaches for the determination and accuracy assessment of IHRF coordinates based on the existing resources, namely (1) global gravity models of high resolution, (2) precise regional gravity field modelling, and (3) vertical datum unification of the local height systems into the IHRF. After a detailed discussion of the advantages, current limitations, and possibilities of improvement in the coordinate determination using these options, we define a strategy for the establishment of the IHRF including data requirements, a set of minimum standards/conventions for the determination of potential coordinates, a first IHRF reference network configuration, and a proposal to create a component of the International Gravity Field Service (IGFS) dedicated to the maintenance and servicing of the IHRS/IHRF.
    Description: https://www.ngs.noaa.gov/GRAV-D/data_ms05.shtml
    Keywords: ddc:526 ; International Height Reference System (IHRS) ; International Height Reference Frame (IHRF) ; World height system ; Global unified vertical reference system ; Geopotential height datum ; Permanent tide ; Tide systems ; The Colorado experiment
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-22
    Description: Ambiguity resolution of a single receiver is becoming more and more popular for precise GNSS (Global Navigation Satellite System) applications. To serve such an approach, dedicated satellite orbit, clock and bias products are needed. However, we need to be sure whether products based on specific frequencies and signals can be used when processing measurements of other frequencies and signals. For instance, for Galileo E5a frequency, some receivers track only the pilot signal (C5Q) while some track only the pilot-data signal (C5X). We cannot compute the differences between C5Q and C5X directly since these two signals are not tracked concurrently by any common receiver. As code measurements contribute equally as phase in the Melbourne-Wuebbena (MelWub) linear combination it is important to investigate whether C5Q and C5X can be mixed in a network to compute a common satellite MelWub bias product. By forming two network clusters tracking Q and X signals, respectively, we confirm that GPS C5Q and C5X signals cannot be mixed together. Because the bias differences between GPS C5Q and C5X can be more than half of one wide-lane cycle. Whereas, mixing of C5Q and C5X signals for Galileo satellites is possible. The RMS of satellite MelWub bias differences between Q and X cluster is about 0.01 wide-lane cycles for both E1/E5a and E1/E5b frequencies. Furthermore, we develop procedures to compute satellite integer clock and narrow-lane bias products using individual dual-frequency types. Same as the finding from previous studies, GPS satellite clock differences between L1/L2 and L1/L5 estimates exist and show a periodical behavior, with a peak-to-peak amplitude of 0.7 ns after removing the daily mean difference of each satellite. For Galileo satellites, the maximum clock difference between E1/E5a and E1/E5b estimates after removing the mean value is 0.04 ns and the mean RMS of differences is 0.015 ns. This is at the same level as the noise of the carrier phase measurement in the ionosphere-free linear combination. Finally, we introduce all the estimated GPS and Galileo satellite products into PPP-AR (precise point positioning, ambiguity resolution) and Sentinel-3A satellite orbit determination. Ambiguity fixed solutions show clear improvement over float solutions. The repeatability of five ground-station coordinates show an improvement of more than 30% in the east direction when using both GPS and Galileo products. The Sentinel-3A satellite tracks only GPS L1/L2 measurements. The standard deviation (STD) of satellite laser ranging (SLR) residuals is reduced by about 10% when fixing ambiguity parameters to integer values.
    Description: Klinikum rechts der Isar der Technischen Universität München (8934)
    Keywords: ddc:526 ; Integer satellite clock ; Ambiguity resolution ; Daily code and phase biases ; GPS and Galileo signals ; Pilot and data
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-22
    Description: The increasing importance of terrestrial gravimetry in monitoring global change processes, in providing a reference for satellite measurements and in applications in metrology necessitates a stable reference system reflecting the measurement accuracy achievable by modern gravimeters. Therefore, over the last decade, the International Association of Geodesy (IAG) has developed a system to achieve accurate, homogeneous, long-term global recording of Earth’s gravity, while taking advantage of the potential of today’s absolute gravity measurements. The current status of the International Gravity Reference System and Frame is presented as worked out by the IAG Joint Working Group 2.1.1 “Establishment of a global absolute gravity reference system” during the period 2015–2019. Here, the system is defined by the instantaneous acceleration of free-fall, expressed in the International System of Units (SI) and a set of conventional corrections for the time-independent components of gravity effects. The frame as the systems realization includes a set of conventional temporal gravity corrections which represent a uniform set of minimum requirements. Measurements with absolute gravimeters, the traceability of which is ensured by comparisons and monitoring at reference stations, provide the basis of the frame. A global set of such stations providing absolute gravity values at the microgal level is the backbone of the frame. Core stations with at least one available space geodetic technique will provide a link to the terrestrial reference frame. Expanded facilities enabling instrumental verification as well as repeated regional and additional comparisons will complement key comparisons at the level of the International Committee for Weights and Measures (CIPM) and ensure a common reference and the traceability to the SI. To make the gravity reference system accessible to any user and to replace the previous IGSN71 network, an infrastructure based on absolute gravity observations needs to be built up. This requires the support of national agencies, which are encouraged to establish compatible first order gravity networks and to provide information about existing absolute gravity observations.
    Description: Ministry of Education, Youth and Sports of the Czech Republic (MŠMT)
    Keywords: ddc:526 ; Gravity reference system and frame ; Absolute gravimeter
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-22
    Description: Wide-lane (WL) uncalibrated phase delay (UPD) is usually derived from Melbourne–Wübbena (MW) linear combination and is a prerequisite in Global Navigation Satellite Systems (GNSS) precise point positioning (PPP) ambiguity resolution (AR). MW is a linear combination of pseudorange and phase, and the accuracy is limited by the larger pseudorange noise which is about one hundred times of the carrier phase noise. However, there exist inconsistent pseudorange biases which may have detrimental effect on the WL UPD estimation, and further degrade user-side ambiguity fixing. Currently, only the large part of pseudorange biases, e.g., the differential code bias (DCB), are available and corrected in PPP-AR, while the receiver-type-dependent biases have not yet been considered. Ignoring such kind of bias, which could be up to 20 cm, will cause the ambiguity fixing failure, or even worse, the incorrect ambiguity fixing. In this study, we demonstrate the receiver-type-dependent WL UPD biases and investigate their temporal and spatial stability, and further propose the method to precisely estimate these biases and apply the corrections to improve the user-side PPP-AR. Using a large data set of 1560 GNSS stations during a 30-day period, we demonstrate that the WL UPD deviations among different types of receivers can reach ± 0.3 cycles. It is also shown that such kind of deviations can be calibrated with a precision of about 0.03 cycles for all Global Positioning System (GPS) satellites. On the user side, ignoring the receiver-dependent UPD deviation can cause significant positioning error up to 10 cm. By correcting the deviations, the positioning performance can be improved by up to 50%, and the fixing rate can also be improved by 10%. This study demonstrates that for the precise and reliable PPP-AR, the receiver-dependent UPD deviations cannot be ignored and have to be handled.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Description: ftp://geodesy.noaa.gov/cors/rinex/
    Description: ftp://ftp.gfz-potsdam.de/GNSS/products/mgex/
    Description: ftp://ftp.aiub.unibe.ch/CODE/
    Keywords: ddc:526 ; Uncalibrated phase delay ; Precise point positioning ; Ambiguity resolution ; Receiver-type-dependent bias
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-22
    Description: The gravity field maps of the satellite gravimetry missions Gravity Recovery and Climate Experiment (GRACE ) and GRACE Follow-On are derived by means of precise orbit determination. The key observation is the biased inter-satellite range, which is measured primarily by a K-Band Ranging system (KBR) in GRACE and GRACE Follow-On. The GRACE Follow-On satellites are additionally equipped with a Laser Ranging Interferometer (LRI), which provides measurements with lower noise compared to the KBR. The biased range of KBR and LRI needs to be converted for gravity field recovery into an instantaneous range, i.e. the biased Euclidean distance between the satellites’ center-of-mass at the same time. One contributor to the difference between measured and instantaneous range arises due to the nonzero travel time of electro-magnetic waves between the spacecraft. We revisit the calculation of the light time correction (LTC) from first principles considering general relativistic effects and state-of-the-art models of Earth’s potential field. The novel analytical expressions for the LTC of KBR and LRI can circumvent numerical limitations of the classical approach. The dependency of the LTC on geopotential models and on the parameterization is studied, and afterwards the results are compared against the LTC provided in the official datasets of GRACE and GRACE Follow-On. It is shown that the new approach has a significantly lower noise, well below the instrument noise of current instruments, especially relevant for the LRI, and even if used with kinematic orbit products. This allows calculating the LTC accurate enough even for the next generation of gravimetric missions.
    Description: Max-Planck-Gesellschaft http://dx.doi.org/10.13039/501100004189
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:526 ; GRACE follow-on ; Light time correction ; General relativity ; Laser interferomery ; K-band ranging
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-07-20
    Description: GNSS satellite and receiving antennas exhibit group delay variations (GDV), which affect code pseudorange measurements. Like antenna phase center variations, which affect phase measurements, they are frequency-dependent and vary with the direction of the transmitted and received signal. GNSS code observations contain the combined contributions of satellite and receiver antennas. If absolute GDV are available for the receiver antennas, absolute satellite GDV can be determined. In 2019, an extensive set of absolute receiver antenna GDV was published and, thus, it became feasible to estimate absolute satellite antenna GDV based on terrestrial observations. We used the absolute GDV of four selected receiver antenna types and observation data of globally distributed reference stations that employ these antenna types to determine absolute GDV for the GPS, GLONASS, Galileo, BeiDou, and QZSS satellite antennas. Besides BeiDou-2 satellites whose GDV are known to reach up to 1.5 m peak-to-peak, the GPS satellites show the largest GDV at frequencies L1 and L5 with up to 0.3 and 0.4 m peak-to-peak, respectively. They also show the largest satellite-to-satellite variations within a constellation. The GDV of GLONASS-M satellites reach up to 25 cm at frequency G1; Galileo satellites exhibit the largest GDV at frequency E6 with up to 20 cm; BeiDou-3 satellites show the largest GDV of around 15 cm at frequencies B1-2 and B3. Frequencies L2 of GPS IIIA, E1 of Galileo FOC, and B2a/B2b of BeiDou-3 satellites are the least affected. Their variations are below 10 cm.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Technische Universität Dresden (1019)
    Keywords: ddc:526 ; Absolute group delay variations ; Code-minus-carrier combination ; GPS ; GLONASS ; Galileo ; BeiDou ; QZSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-07-19
    Description: Quick response in emergency situations is crucial, because any delay can result in dramatic consequences and potentially human losses. Therefore, many institutions/authorities are relying on development of strategies for emergency management, specially to have a quick response process using modern technologies like unmanned aerial vehicles. A key factor affecting this process is to have a quick geo-situation report of the emergency in real time, which reflects the current emergency situation and supports in right decision-making. Providing such geo-reports is still not an easy task because—in most cases—a priori known spatial data like map data (raster/vector) or geodatabases are outdated, and anyway would not provide an overview on the current situation. Therefore, this paper introduces a management methodology of spatial data focusing on enabling a free access and viewing the data of interest in real time and in situ to support emergency managers. The results of this work are twofold: on the one hand, an automated mechanism for spatial data synchronization and streaming was developed and on the other hand, a spatial data sharing concept was realized using web map tile service. For results assessment, an experimental framework through the joint research project ANKommEn (English acronym: Automated Navigation and Communication for Exploration) was implemented. The assessment procedure was achieved based on specific evaluation criteria like time consumption and performance and showed that the developed methodology can help in overcoming some of existing challenges and addressing the practically relevant questions concerning on the complexity in spatial data sharing and retrieval.
    Description: Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360
    Description: Technische Universität Braunschweig (1042)
    Keywords: ddc:526 ; Emergency ; Exploration ; Database ; Data retrieval ; Client interface
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-03-06
    Description: Rockfall is a natural hazard in mountainous areas not to be underestimated. Mass activities differing in rock volume may cause considerable economic damage. Accomplishing qualitative appraisal of high-potential zones for rockfall is a first step towards implementing mitigation strategies. Nowadays, Geographical Information Systems (GIS) are the state-of-the-art tool for a fast and economic approach of identifying potential hazard zones rather than using conventional mapping with in-situ field data. Primarily, current research focuses on designing and implementing user-friendly tools delineating potential rockfall hazard zonation (RHZ). The constructed model examines triggering factors like slope, aspect, elevation, lithology, structural lineament, rainfall intensity, and seismic activity focal depth of a mountainous coastal region (Gulf of Aqaba, Egypt). The extracted geomorphological parameters were based on a high-resolution TanDEM-X Digital Elevation Model. The enhanced Landsat ETM + 7 was used to generate the lithological and structural lineament parameters, while the rainfall data were collected from NASA project tool. The zonation model was implemented by means of ESRI’s ArcGIS Pro ModelBuilder. Google Earth Pro orthophotos compared with the generated rockfall hazard zonation map indicate the potential RHZ with high reliability. The achieved results show that 15 % of the study area qualifies as a high rockfall hazard zone. As the RHZs generated by the model depend on the input data and the selected rating scores and weights, obtaining ground truth is essential to get a trustworthy result. Finally, this study recommends employing the built RHZ model on similar terrains worldwide to support decision-makers involving any sustainable development projects.
    Keywords: ddc:526 ; Rockfall hazard zonation ; ModelBuilder ; GIS ; Sensitivity analysis ; Sinai Peninsula
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-23
    Description: The differential code biases (DCBs) of the global positioning system (GPS) receiver onboard low-Earth orbit (LEO) satellites are commonly estimated by a local spherical symmetry assumption together with the known GPS satellite DCBs from ground-based observations. Nowadays, more and more LEO satellites are equipped with GPS receivers for precise orbit determination, which provides a unique chance to estimate both satellite and receiver DCBs without any ground data. A new method to estimate the GPS satellite and receiver DCBs using a network of LEO receivers is proposed. A multi-layer mapping function (MF) is used to combine multi-LEO satellite data at varying orbit heights. First, model simulations are conducted to compare the vertical total electron content (VTEC) derived from the multi-layer MF and the reference VTEC obtained from the empirical ionosphere model International Reference Ionosphere and Global Core Plasmasphere Model. Second, GPS data are collected from five LEO missions, including ten receivers used to estimate both the satellite and receiver DCBs simultaneously with the multi-layer MF. The results show that the GPS satellite DCB solutions obtained from space-based data are consistent with ground-based solutions provided by the Centre for Orbit Determination in Europe. The proposed normalization procedure combining topside observations from different LEO missions has the potential to improve the accuracies of satellite DCBs of Global Navigation Satellite Systems as well as the receiver DCBs onboard LEO satellites, although the number of LEO missions and spatial–temporal coverage of topside observations are limited.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Global positioning system (GPS) ; Differential code bias (DCB) ; Normalization method ; Mapping function (MF)
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-23
    Description: Future generations of global navigation satellite systems (GNSSs) can benefit from optical technologies. Especially optical clocks could back-up or replace the currently used microwave clocks, having the potential to improve GNSS position determination enabled by their lower frequency instabilities. Furthermore, optical clock technologies—in combination with optical inter-satellite links—enable new GNSS architectures, e.g., by synchronization of distant optical frequency references within the constellation using time and frequency transfer techniques. Optical frequency references based on Doppler-free spectroscopy of molecular iodine are seen as a promising candidate for a future GNSS optical clock. Compact and ruggedized setups have been developed, showing frequency instabilities at the 10–15 level for averaging times between 1 s and 10,000 s. We introduce optical clock technologies for applications in future GNSS and present the current status of our developments of iodine-based optical frequency references.
    Description: DLR
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Optical clock ; Iodine reference ; Space instrumentation ; Future GNSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-12-15
    Description: Solar radiation pressure (SRP) is the dominant non-gravitational perturbation for GPS satellites. In the IGS (International GNSS Service), this perturbation is modeled differently by individual analysis centers (ACs). The two most widely used methods are the Empirical CODE orbit Model (ECOM, ECOM2) and the JPL GSPM model. When using ECOM models, a box-wing model or other a priori models, as well as stochastic pulses at noon or midnight, are optionally adopted by some ACs to compensate for the deficiencies of the ECOM or ECOM2 model. However, both box-wing and GSPM parameters were published many years ago. There could be an aging effect going with time. Also, optical properties and GSPM parameters of GPS Block IIF satellites are currently not yet published. In this contribution, we first determine Block-specific optical parameters of GPS satellites using GPS code and phase measurements of 6 years. Various physical effects, such as yaw bias, radiator emission in the satellite body-fixed − X and Y directions and the thermal radiation of solar panels, are considered as additional constant parameters in the optical parameter adjustment. With all the adjusted parameters, we form an enhanced box-wing model adding all the modeled physical effects. In addition, we determine Block-specific GSPM parameters by using the same GPS measurements. The enhanced box-wing model and the GSPM model are then taken as a priori model and are jointly used with ECOM and ECOM2 model, respectively. We find that the enhanced box-wing model performs similarly to the GSPM model outside eclipse seasons. RMSs of all the ECOM and ECOM2 parameters are reduced by 30% compared to results without the a priori model. Orbit misclosures and orbit predictions are improved by combining the enhanced box-wing model with ECOM and ECOM2 models. In particular, the improvement in orbit misclosures for the eclipsing Block IIR and IIF satellites, as well as the non-eclipsing IIA satellites, is about 25%, 10% and 10%, respectively, for the ECOM model. Therefore, the enhanced box-wing model is recommended as an a priori model in GPS satellite orbit determination.
    Description: Projekt DEAL
    Keywords: ddc:526 ; GPS solar radiation pressure ; Radiator ; Yaw bias ; GSPM ; Enhanced box-wing model
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-12-15
    Description: Turkey, as a developing country, is designing and performing massive construction projects around Istanbul. Beginning from the 1960s, rapid urbanization has been taking place due to industrialization, which brings an increase in the population. Yet, construction projects have been accelerated especially during the last decade, and many new projects are scheduled to be completed in a short time. Ground-based observations are generally carried out to monitor the deformations within construction sites, especially through geometric levelling, and GNSS techniques. However, in most cases, these monitoring measurements are only scheduled within the period of the construction process, and ensuing deformations are usually not considered. In addition to these techniques, the space-based interferometric technique can also be used to define the line of sight surface displacements with high accuracy, using the phase difference between image result for synthetic aperture radar images. In particular, Persistent Scatter Interferometry is one of the interferometric methods that are capable of defining the two-dimensional (vertical and horizontal) deformation for the desired epoch with a high temporal resolution. Thus it can be used as a complementary method for monitoring ground deformations, where the measurement is made by ground-based observations. In this study, the deforming areas related to underground metro construction are investigated through significant displacements between 2015 and 2018 of Sentinel-1 space-borne SAR data using the PSI technique. These results are validated by comparison with available levelling data corresponding to the new metro line.
    Description: Freie Universität Berlin (1008)
    Keywords: ddc:526 ; Surface deformation monitoring ; Sentinel-1 ; Levelling ; Persistent scatter interferometry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-12-16
    Description: The feasibility of precise real-time orbit determination of low earth orbit satellites using onboard GNSS observations is assessed using six months of flight data from the Sentinel-6A mission. Based on offline processing of dual-constellation pseudorange and carrier phase measurements as well as broadcast ephemerides in a sequential filter with a reduced dynamic force model, navigation solutions with a representative position error of 10 cm (3D RMS) are achieved. The overall performance is largely enabled by the superior quality of the Galileo broadcast ephemerides, which exhibits a two- to three-times smaller signal-in-space-range error than GPS and allows for geodetic-grade GNSS real-time orbit determination without a need for external correction services. Compared to GPS-only processing, a roughly two-times better navigation accuracy is achieved in a Galileo-only or mixed GPS/Galileo processing. On the other hand, GPS tracking offers a useful complement and additional robustness in view of a still incomplete Galileo constellation. Furthermore, it provides improved autonomy of the navigation process through the availability of earth orientation parameters in the new civil navigation message of the L2C signal. Overall, GNSS-based onboard orbit determination can now reach a similar performance as the DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) navigation system. It lends itself as a viable alternative for future remote sensing missions.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Orbit determination ; Broadcast ephemerides ; LEO satellites ; Galileo ; Sentinel-6 ; DORIS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-12-16
    Description: For more than 20 years, precise point positioning (PPP) has been a well-established technique for carrier phase-based navigation. Traditionally, it relies on precise orbit and clock products to achieve accuracies in the order of centimeters. With the modernization of legacy GNSS constellations and the introduction of new systems such as Galileo, a continued reduction in the signal-in-space range error (SISRE) can be observed. Supported by this fact, we analyze the feasibility and performance of PPP with broadcast ephemerides and observations of Galileo and GPS. Two different functional models for compensation of SISREs are assessed: process noise in the ambiguity states and the explicit estimation of a SISRE state for each channel. Tests performed with permanent reference stations show that the position can be estimated in kinematic conditions with an average three-dimensional (3D) root mean square (RMS) error of 29 cm for Galileo and 63 cm for GPS. Dual-constellation solutions can further improve the accuracy to 25 cm. Compared to standard algorithms without SISRE compensation, the proposed PPP approaches offer a 40% performance improvement for Galileo and 70% for GPS when working with broadcast ephemerides. An additional test with observations taken on a boat ride yielded 3D RMS accuracy of 39 cm for Galileo, 41 cm for GPS, and 27 cm for dual-constellation processing compared to a real-time kinematic reference solution. Compared to the use of process noise in the phase ambiguity estimation, the explicit estimation of SISRE states yields a slightly improved robustness and accuracy at the expense of increased algorithmic complexity. Overall, the test results demonstrate that the application of broadcast ephemerides in a PPP model is feasible with modern GNSS constellations and able to reach accuracies in the order of few decimeters when using proper SISRE compensation techniques.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Precise point positioning ; GPS ; Galileo ; Broadcast ephemerides ; Signal-in-space range error
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-07-03
    Description: Absolute gravimeters are used in geodesy, geophysics and physics for a wide spectrum of applications. Stable gravimetric measurements over timescales from several days to decades are required to provide relevant insight into geophysical processes. Users of absolute gravimeters participate in comparisons with a metrological reference in order to monitor the temporal stability of the instruments and determine the bias to that reference. However, since no measurement standard of higher-order accuracy currently exists, users of absolute gravimeters participate in key comparisons led by the International Committee for Weights and Measures. These comparisons provide the reference values of highest accuracy compared to the calibration against a single gravimeter operated at a metrological institute. The construction of stationary, large-scale atom interferometers paves the way for a new measurement standard in absolute gravimetry used as a reference with a potential stability up to 1 nm/s 2 at 1 s integration time. At the Leibniz University Hannover, we are currently building such a very long baseline atom interferometer with a 10-m-long interaction zone. The knowledge of local gravity and its gradient along and around the baseline is required to establish the instrument’s uncertainty budget and enable transfers of gravimetric measurements to nearby devices for comparison and calibration purposes. We therefore established a control network for relative gravimeters and repeatedly measured its connections during the construction of the atom interferometer. We additionally developed a 3D model of the host building to investigate the self-attraction effect and studied the impact of mass changes due to groundwater hydrology on the gravity field around the reference instrument. The gravitational effect from the building 3D model is in excellent agreement with the latest gravimetric measurement campaign which opens the possibility to transfer gravity values with an uncertainty below the 10 nm/s2 level.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Niedersächsisches Ministerium für Wissenschaft und Kultur http://dx.doi.org/10.13039/501100010570
    Description: https://www.bipm.org/kcdb
    Keywords: ddc:526 ; Atom interferometry ; Gravity acceleration ; Absolute gravimetry ; Gravimeter reference
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-07-03
    Description: XGM2019e is a combined global gravity field model represented by spheroidal harmonics up to degree and order (d/o) 5399, corresponding to a spatial resolution of 2′ (~ 4 km). As data sources, it includes the satellite model GOCO06s in the longer wavelength range up to d/o 300 combined with a ground gravity grid which also covers the shorter wavelengths. The ground data consist over land and ocean of gravity anomalies provided by courtesy of NGA (15′ resolution, identical to XGM2016) augmented with topographically derived gravity information over land (EARTH2014). Over the oceans, gravity anomalies derived from satellite altimetry are used (DTU13 with a resolution of 1′). The combination of the satellite data with the ground gravity observations is performed by using full normal equations up to d/o 719 (15′). Beyond d/o 719, a block-diagonal least squares solution is calculated for the high-resolution ground gravity data (from topography and altimetry). All calculations are performed in the spheroidal harmonic domain. In the spectral band up to d/o 719, the new model shows a slightly improved behaviour in the magnitude of a few mm RMS over land as compared to preceding models such as XGM2016, EIGEN6c4 or EGM2008 when validated with independent geoid information derived from GNSS/levelling. Over land and in the spectral range above d/o 719, the accuracy of XGM2019e marginally suffers from the sole use of topographic forward modelling, and geoid differences at GNSS/levelling stations are increased in the order of several mm RMS in well-surveyed areas, such as the US and Europe, compared to models containing real gravity data over their entire spectrum, e.g. EIGEN6c4 or EGM2008. However, GNSS/levelling validation also indicates that the performance of XGM2019e can be considered as globally more consistent and independent of existing high-resolution global models. Over the oceans, the model exhibits an enhanced performance (equal or better than preceding models), which is confirmed by comparison of the MDT’s computed from CNES/CLS 2015 mean sea surface and the high-resolution geoid models. The MDT based on XGM2019e shows fewer artefacts, particularly in the coastal regions, and fits globally better to DTU17MDT which is considered as an independent reference MDT.
    Description: European Space Agency http://dx.doi.org/10.13039/501100000844
    Keywords: ddc:526 ; Gravity ; Combined gravity field model ; Spherical harmonics ; Spheroidal harmonics ; Full normal equation systems ; High-performance computing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-07-03
    Description: The iteratively reweighted least-squares approach to self-tuning robust adjustment of parameters in linear regression models with autoregressive (AR) and t-distributed random errors, previously established in Kargoll et al. (in J Geod 92(3):271–297, 2018. https://doi.org/10.1007/s00190-017-1062-6), is extended to multivariate approaches. Multivariate models are used to describe the behavior of multiple observables measured contemporaneously. The proposed approaches allow for the modeling of both auto- and cross-correlations through a vector-autoregressive (VAR) process, where the components of the white-noise input vector are modeled at every time instance either as stochastically independent t-distributed (herein called “stochastic model A”) or as multivariate t-distributed random variables (herein called “stochastic model B”). Both stochastic models are complementary in the sense that the former allows for group-specific degrees of freedom (df) of the t-distributions (thus, sensor-component-specific tail or outlier characteristics) but not for correlations within each white-noise vector, whereas the latter allows for such correlations but not for different dfs. Within the observation equations, nonlinear (differentiable) regression models are generally allowed for. Two different generalized expectation maximization (GEM) algorithms are derived to estimate the regression model parameters jointly with the VAR coefficients, the variance components (in case of stochastic model A) or the cofactor matrix (for stochastic model B), and the df(s). To enable the validation of the fitted VAR model and the selection of the best model order, the multivariate portmanteau test and Akaike’s information criterion are applied. The performance of the algorithms and of the white noise test is evaluated by means of Monte Carlo simulations. Furthermore, the suitability of one of the proposed models and the corresponding GEM algorithm is investigated within a case study involving the multivariate modeling and adjustment of time-series data at four GPS stations in the EUREF Permanent Network (EPN).
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:526 ; Regression time series ; Vector-autoregressive model ; Cross-correlations ; Multivariate scaled t-distribution ; Self-tuning robust estimator ; Generalized expectation maximization algorithm ; Iteratively reweighted least squares ; Multivariate portmanteau test ; Monte Carlo simulation ; GPS time series
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-07-03
    Description: For low Earth orbit (LEO) satellites, activities such as precise orbit determination, gravity field retrieval, and thermospheric density estimation from accelerometry require modeled accelerations due to radiation pressure. To overcome inconsistencies and better understand the propagation of modeling errors into estimates, we here suggest to extend the standard analytical LEO radiation pressure model with emphasis on removing systematic errors in time-dependent radiation data products for the Sun and the Earth. Our extended unified model of Earth radiation pressure accelerations is based on hourly CERES SYN1deg data of the Earth’s outgoing radiation combined with angular distribution models. We apply this approach to the GRACE (Gravity Recovery and Climate Experiment) data. Validations with 1 year of calibrated accelerometer measurements suggest that the proposed model extension reduces RMS fits between 5 and 27%, depending on how measurements were calibrated. In contrast, we find little changes when implementing, e.g., thermal reradiation or anisotropic reflection at the satellite’s surface. The refined model can be adopted to any satellite, but insufficient knowledge of geometry and in particular surface properties remains a limitation. In an inverse approach, we therefore parametrize various combinations of possible systematic errors to investigate estimability and understand correlations of remaining inconsistencies. Using GRACE-A accelerometry data, we solve for corrections of material coefficients and CERES fluxes separately over ocean and land. These results are encouraging and suggest that certain physical radiation pressure model parameters could indeed be determined from satellite accelerometry data.
    Description: Deutsches Zentrum für Luft- und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: ftp://ftp.tugraz.at/outgoing/ITSG/tvgogo/orbits/GRACE/
    Description: ftp://podaac-ftp.jpl.nasa.gov/allData/grace/L1B/JPL/
    Keywords: ddc:526 ; Solar radiation pressure ; Earth radiation pressure ; Satellite force models ; Parameter estimation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-07-03
    Description: Quantum optical technology provides an opportunity to develop new kinds of gravity sensors and to enable novel measurement concepts for gravimetry. Two candidates are considered in this study: the cold atom interferometry (CAI) gradiometer and optical clocks. Both sensors show a high sensitivity and long-term stability. They are assumed on board of a low-orbit satellite like gravity field and steady-state ocean circulation explorer (GOCE) and gravity recovery and climate experiment (GRACE) to determine the Earth’s gravity field. Their individual contributions were assessed through closed-loop simulations which rigorously mapped the sensors’ sensitivities to the gravity field coefficients. Clocks, which can directly obtain the gravity potential (differences) through frequency comparison, show a high sensitivity to the very long-wavelength gravity field. In the GRACE orbit, clocks with an uncertainty level of 1.0 × 10−18 are capable to retrieve temporal gravity signals below degree 12, while 1.0 × 10−17 clocks are useful for detecting the signals of degree 2 only. However, it poses challenges for clocks to achieve such uncertainties in a short time. In space, the CAI gradiometer is expected to have its ultimate sensitivity and a remarkable stability over a long time (measurements are precise down to very low frequencies). The three diagonal gravity gradients can properly be measured by CAI gradiometry with a same noise level of 5.0 mE/√Hz. They can potentially lead to a 2–5 times better solution of the static gravity field than that of GOCE above degree and order 50, where the GOCE solution is mainly dominated by the gradient measurements. In the lower degree part, benefits from CAI gradiometry are still visible, but there, solutions from GRACE-like missions are superior.
    Description: Deutsche Forschungsgemeinschaft
    Description: http://icgem.gfz-potsdam.de/tom_longtime
    Description: https://earth.esa.int/web/guest/-/goce-data-access-7219
    Description: ftp://podaac.jpl.nasa.gov/allData/grace/L1B/JPL/
    Keywords: ddc:526 ; Quantum optical sensors ; Optical clocks ; Relativistic geodesy ; Atomic gradiometry ; Gravity field
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-06-21
    Description: Currently, many commercial airline aircraft cannot perform three-dimensionally guided approaches based on satellite-based augmentation systems. We propose a system to rebroadcast the correction and integrity data via a data link as provided by the ground-based augmentation system such that aircraft equipped with a GPS landing system (GLS) can use the wide-area corrections and perform localizer performance with vertical guidance (LPV) approaches while maintaining the same level of integrity. In consequence, the system loses some availability and the time to alert is slightly increased. We build a prototype system and present data collected for one week, confirming technical feasibility. There is a loss of 5.3 percent of availability during a 1-week data collection cycle in which we compared our system to standalone LPV service. We tested our prototype with two commercially available GLS receivers with positive results and successfully demonstrated the functionality with a conventional Airbus 319 equipped with a standard GLS receiver.
    Keywords: ddc:526 ; SBAS ; Satellite ; Navigation ; Augmentation ; Aviation ; GPS ; GNSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-06-21
    Description: The GPS satellite transmitter antenna phase center offsets (PCOs) can be estimated in a global adjustment by constraining the ground station coordinates to the current International Terrestrial Reference Frame (ITRF). Therefore, the derived PCO values rest on the terrestrial scale parameter of the frame. Consequently, the PCO values transfer this scale to any subsequent GNSS solution. A method to derive scale-independent PCOs without introducing the terrestrial scale of the frame is the prerequisite to derive an independent GNSS scale factor that can contribute to the datum definition of the next ITRF realization. By fixing the Galileo satellite transmitter antenna PCOs to the ground calibrated values from the released metadata, the GPS satellite PCOs in the z-direction (z-PCO) and a GNSS-based terrestrial scale parameter can be determined in GPS + Galileo processing. An alternative method is based on the gravitational constraint on low earth orbiters (LEOs) in the integrated processing of GPS and LEOs. We determine the GPS z-PCO and the GNSS-based scale using both methods by including the current constellation of Galileo and the three LEOs of the Swarm mission. For the first time, direct comparison and crosscheck of the two methods are performed. They provide mean GPS z-PCO corrections of −186 ± 25 mm and −221 ± 37 mm with respect to the IGS values and +1.55 ± 0.22 ppb (parts per billion) and +1.72 ± 0.31 in the terrestrial scale with respect to the IGS14 reference frame. The results of both methods agree with each other with only small differences. Due to the larger number of Galileo observations, the Galileo-PCO-fixed method leads to more precise and stable results. In the joint processing of GPS + Galileo + Swarm in which both methods are applied, the constraint on Galileo dominates the results. We discuss and analyze how fixing either the Galileo transmitter antenna z-PCO or the Swarm receiver antenna z-PCO in the combined GPS + Galileo + Swarm processing propagates to the respective freely estimated z-PCO of Swarm and Galileo.
    Description: Chinese Government Scholarship http://dx.doi.org/10.13039/501100010890
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:526 ; GNSS ; PCO ; Galileo ; Terrestrial scale ; LEOs
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-06-19
    Description: Tidal ecosystems like the Wadden Sea are particularly valuable for their ecological and economic importance. Here, the natural dynamics of the abiotic and biotic processes is threatened by the human pressure, and great efforts are made on mapping and monitoring programs. Remote sensing techniques (e.g., satellite and airborne sources) are commonly used on land and intertidal areas, whereas hydroacoustic devices are deployed in the subtidal zones. The overlap of hydroacoustics (sidescan sonar) and airborne Lidar data in such sensitive transitional zone (inter- to subtidal) is rather uncommon. In order to test the limitations of both techniques in extremely shallow waters (0.7 m min, water depth) and to find the most efficient methods for the spatial classification of intertidal areas, a portion of the backbarrier tidal flat of Norderney was investigated. Lidar bathymetric data were used for extracting high resolution morphological information. Sidescan sonar mosaics were collected in two following years under contrasting weather conditions. An expert classification based on sidescan sonar backscatter intensity, seafloor texture, morphology, and surface sediment data subdivided the research area into 10 classes. The outcomes were compared with an existing RapidEye-based classification. The tested methods showed both advantages and limitations, which were discussed based on statistical analyses. Satellite and Lidar approaches were most suitable for mapping biogenic features (e.g., shellfish beds) over large areas, whereas sidescan sonar was superior for detail detection and discrimination of morpho-sedimentary regions. As an outlook, it is postulated to perform ground-truthed hydroacoustic mapping on small testing areas, and to use the obtained classification for training satellite-based classification algorithms.
    Description: Senckenberg Gesellschaft für Naturforschung (SGN) (3507)
    Keywords: ddc:526 ; remote sensing ; sidescan sonar ; seafloor classification
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-06-19
    Description: Beaches are characterized by high morphodynamic activity, and high-frequency measurements are needed to understand their states and rates of change. Ideally, beach survey methods should be at once accurate, rapid and low-cost. Recently, unmanned aerial systems (drones) have been increasingly utilized to measure beach topography. In this paper, we present a review of the state of art in drones and photogrammetry for beach surveys and the respective achieved measurement quality (where reported). We then show how drones with a minimal configuration and a low-cost setup can meet the high accuracy and rapidity required for beach surveys. To test a minimal drone and ground control point configuration, we used consumer-grade equipment to perform the same flight path with different cameras and at different altitudes. We then used photogrammetry to produce digital elevation models of the beach. Using a GNSS-RTK system, we collected 2950 independent control points to evaluate the accuracy of the digital elevation models. Results show that, once a few potential sources of uncertainties in the final digital elevation model are taken into account, the average RMSE(z) of the digital elevation models was ~5 cm, with a survey efficiency of ca. 3 m2 min−1. Digital elevation models taken at different times were used to calculate the before–after sediment budget following a storm that hit a sandy coast in Sylt Island at the German North Sea coast.
    Description: Leibniz-Zentrum für Marine Tropenforschung (ZMT) GmbH (3494)
    Keywords: ddc:526 ; sand beach topography ; photogrammetry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-07-04
    Description: In the analysis of very long baseline interferometry (VLBI) observations, many geophysical models are used for correcting the theoretical signal delay. In addition to the conventional models described by Petit and Luzum (eds) (IERS Conventions, 2010), we are applying different parts of non-tidal site loading, namely the atmospheric, oceanic, and hydrological ones. To investigate their individual contributions, these parts are considered both separately and combined to a total loading. The application of the corresponding site displacements is performed at two distinct levels of the geodetic parameter estimation process (observation and normal equation level), which turn out to give very similar results in many cases. To validate our findings internally, the site displacements are provided by two different data centres: the Earth-System-Modelling group at the Deutsches GeoForschungsZentrum in Potsdam (ESMGFZ, see Dill and Dobslaw, J Geophys Res Solid Earth, 2013. https://doi.org/10.1002/jgrb.50353)] and the International Mass Loading Service [IMLS, see Petrov (The international mass loading service, 2015)]. We show that considering non-tidal loading is actually useful for mitigating systematic effects in the VLBI results, like annual signals in the station height time series. If the sum of all non-tidal loading parts is considered, the WRMS of the station heights and baseline lengths is reduced in 80–90% of all cases, and the relative improvement is about − 3.5% on average. The main differences between our chosen providers originate from hydrological loading.
    Description: Technische Universität München (1025)
    Description: ftp://cddis.nasa.gov/vlbi/ivsdata/vgosdb/
    Description: http://rz-vm115.gfz-potsdam.de:8080/repository
    Keywords: ddc:526 ; VLBI ; Non-tidal loading ; Normal equation level ; ESMGFZ ; IMLS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-06-20
    Description: In 2016, an application programming interface was added to the Android operating systems, which enables the access of GNSS raw observations. Since then, an in-depth evaluation of the performance of smartphone GNSS chips is very much simplified. We analyzed the quality of the GNSS observations, especially the carrier phase observations, of the dual-frequency GNSS chip Kirin 980 built into Huawei P30 and other smartphones. More than 80 h of static observations were collected at several locations. The code and carrier phase observations were processed in baseline mode with reference to observations of geodetic-grade equipment. We were able to fix carrier phase ambiguities for GPS L1 observations. Furthermore, we performed an antenna calibration for this frequency, which revealed that the horizontal phase center offsets from the central vertical axis of the smartphone and also the phase center variations do not exceed 1–2 cm. After successful ambiguity fixing, the 3D position errors (standard deviations) are smaller 4 cm after 5 min of static observation session and 2 cm for long observation session.
    Keywords: ddc:526 ; GNSS ; Smartphone ; Carrier phase ; Antenna calibration ; Centimeter-accuracy
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-06-23
    Description: Low-pass filters are commonly used for the processing of airborne gravity observations. In this paper, for the first time, we include the resulting correlations consistently in the functional and stochastic model of residual least-squares collocation. We demonstrate the necessity of removing high-frequency noise from airborne gravity observations, and derive corresponding parameters for a Gaussian low-pass filter. Thereby, we intend an optimal combination of terrestrial and airborne gravity observations in the mountainous area of Colorado. We validate the combination in the frame of our participation in ‘the 1 cm geoid experiment’. This regional geoid modeling inter-comparison exercise allows the calculation of a reference solution, which is defined as the mean value of 13 independent height anomaly results in this area. Our result performs among the best and with 7.5 mm shows the lowest standard deviation to the reference. From internal validation we furthermore conclude that the input from airborne and terrestrial gravity observations is consistent in large parts of the target area, but not necessarily in the highly mountainous areas. Therefore, the relative weighting between these two data sets turns out to be a main driver for the final result, and is an important factor in explaining the remaining differences between various height anomaly results in this experiment.
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Residual least-squares collocation ; Regional geoid modeling ; 1 cm geoid experiment ; GRAV-D ; Low-pass filter ; Airborne gravimetry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-06-16
    Description: Along with the rapid development of GNSS, not only BeiDou, but also Galileo, and the newly launched GPS satellites can provide signals on three frequencies at present. To fully take advantage of the multi-frequency multi-system GNSS observations on precise point positioning (PPP) technology, this study aims to implement the triple-frequency ambiguity resolution (AR) for GPS, Galileo, and BeiDou-2 combined PPP using the raw observation model. The processing of inter-frequency clock bias (IFCB) estimation and correction in the context of triple-frequency PPP AR has been addressed, with which the triple-frequency uncalibrated phase delay (UPD) estimation is realized for real GPS observations for the first time. In addition, the GPS extra-wide-line UPD quality is significantly improved with the IFCB correction. Because of not being contaminated by the IFCB, the raw UPD estimation method is directly employed for Galileo which currently has 24 satellites in operation. An interesting phenomenon is found that all Galileo satellites except E24 have a zero extra-wide-lane UPD value. With the multi-GNSS observations provided by MGEX covering 15 days, the positioning solutions of GPS + Galileo + BeiDou triple-frequency PPP AR have been conducted and analyzed. The triple-frequency kinematic GNSS PPP AR can achieve an averaged 3D positioning error of 2.2 cm, and an averaged convergence time of 10.8 min. The average convergence time can be reduced by triple-frequency GNSS PPP AR by 15.6% compared with dual-frequency GNSS PPP AR, respectively. However, the additional third frequency has only a marginal contribution to positioning accuracy after convergence.
    Description: China National Funds for Distinguished Young Scientists http://dx.doi.org/10.13039/501100005153
    Keywords: ddc:526 ; Triple-frequency ambiguity resolution ; Precise point positioning ; Raw observable model ; Inter-frequency clock bias ; Global navigation satellite system
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-06-16
    Description: The use of the GLONASS legacy signals for real-time kinematic positioning is considered. Due to the FDMA multiplexing scheme, the conventional CDMA observation model has to be modified to restore the integer estimability of the ambiguities. This modification has a strong impact on positioning capabilities. In particular, the ambiguity resolution performance of this model is clearly weaker than for CDMA systems, so that fast and reliable full ambiguity resolution is usually not feasible for standalone GLONASS, and adding GLONASS data in a multi-GNSS approach can reduce the ambiguity resolution performance of the combined model. Partial ambiguity resolution was demonstrated to be a suitable tool to overcome this weakness (Teunissen in GPS Solut 23(4):100, 2019). We provide an exhaustive formal analysis of the positioning precision and ambiguity resolution capabilities for short, medium, and long baselines in a multi-GNSS environment with GPS, Galileo, BeiDou, QZSS, and GLONASS. Simulations are used to show that with a difference test-based partial ambiguity resolution method, adding GLONASS data improves the positioning performance in all considered cases. Real data from different baselines are used to verify these findings. When using all five available systems, instantaneous centimeter-level positioning is possible on an 88.5 km baseline with the ionosphere weighted model, and on average, only 3.27 epochs are required for a long baseline with the ionosphere float model, thereby enabling near instantaneous solutions.
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Description: https://saegnss2.curtin.edu/ldc/
    Description: ftp://cddis.gsfc.nasa.gov/gnss/data/
    Description: ftp://ftp.gfz-potsdam.de/GNSS/products/mgex/
    Keywords: ddc:526 ; RTK ; GLONASS FDMA ; Integer ambiguity resolution ; Partial fixing ; Difference test ; Best integer equivariant estimation ; Multi-GNSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-06-16
    Description: Miniaturized atomic clocks with high frequency stability as local oscillators in global navigation satellite system (GNSS) receivers promise to improve real-time kinematic applications. For a number of years, such oscillators are being investigated regarding their overall technical applicability, i.e., transportability, and performance in dynamic environments. The short-term frequency stability of these clocks is usually specified by the manufacturer, being valid for stationary applications. Since the performance of most oscillators is likely degraded in dynamic conditions, various oscillators are tested to find the limits of receiver clock modeling in dynamic cases and consequently derive adequate stochastic models to be used in navigation. We present the performance of three different oscillators (Microsemi MAC SA.35m, Spectratime LCR-900 and Stanford Research Systems SC10) for static and dynamic applications. For the static case, all three oscillators are characterized in terms of their frequency stability at Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The resulting Allan deviations agree well with the manufacturer's data. Furthermore, a flight experiment was conducted in order to evaluate the performance of the oscillators under dynamic conditions. Here, each oscillator is replacing the internal oscillator of a geodetic-grade GNSS receiver and the stability of the receiver clock biases is determined. The time and frequency offsets of the oscillators are characterized with regard to the flight dynamics recorded by a navigation-grade inertial measurement unit. The results of the experiment show that the frequency stability of each oscillator is degraded by about at least one order of magnitude compared to the static case. Also, the two quartz oscillators show a significant g-sensitivity resulting in frequency shifts of − 1.2 × 10−9 and + 1.5 × 10−9, respectively, while the rubidium clocks are less sensitive, thus enabling receiver clock modeling and strengthening of the navigation performance even in high dynamics.
    Description: Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360
    Description: Gottfried Wilhelm Leibniz Universität Hannover (1038)
    Keywords: ddc:526 ; Allan variance ; Miniaturized atomic clocks ; Frequency stability ; Flight navigation ; GNSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-06-16
    Description: Global navigation satellite system (GNSS) remote sensing of the troposphere, called GNSS meteorology, is already a well-established tool in post-processing applications. Real-time GNSS meteorology has been possible since 2013, when the International GNSS Service (IGS) established its real-time service. The reported accuracy of the real-time zenith total delay (ZTD) has not improved significantly over time and usually remains at the level of 5–18 mm, depending on the station and test period studied. Millimeter-level improvements are noticed due to GPS ambiguity resolution, gradient estimation, or multi-GNSS processing. However, neither are these achievements combined in a single processing strategy, nor is the impact of other processing parameters on ZTD accuracy analyzed. Therefore, we discuss these shortcomings in detail and present a comprehensive analysis of the sensitivity of real-time ZTD on processing parameters. First, we identify a so-called common strategy, which combines processing parameters that are identified to be the most popular among published papers on the topic. We question the popular elevation-dependent weighting function and introduce an alternative one. We investigate the impact of selected processing parameters, i.e., PPP functional model, GNSS selection and combination, inter-system weighting, elevation-dependent weighting function, and gradient estimation. We define an advanced strategy dedicated to real-time GNSS meteorology, which is superior to the common one. The a posteriori error of estimated ZTD is reduced by 41%. The accuracy of ZTD estimates with the proposed strategy is improved by 17% with respect to the IGS final products and varies over stations from 5.4 to 10.1 mm. Finally, we confirm the latitude dependency of ZTD accuracy, but also detect its seasonality.
    Description: H2020 Marie Skłodowska-Curie Actions http://dx.doi.org/10.13039/100010665
    Keywords: ddc:526 ; GNSS ; Meteorology ; Real time ; ZTD
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-06-16
    Description: GPS Block IIF satellites are able to redistribute the transmit power between the signal components. This ability is called flex power, and it has been developed as a remedy against jamming. Since it is operationally not possible to increase the transmit power for all signal components simultaneously, a redistribution between them is necessary under certain operational situations. Flex power has been active on Block IIF satellites since January 2017 over a specific regional area and has an impact on differential code bias estimation as well as the signal-to-noise density ratio. A network of the International GNSS Service stations containing only Septentrio PolaRx5 and PolaRx5TR receivers between August 1 and November 21, 2019 has been used for differential code bias estimation using GPS L1 C/A, L1 P(Y), L2 P(Y), and L2C signals with and without consideration of the flex power in the estimation process for Block IIF satellites. The estimation results are compared with the German Aerospace Center as well as the Chinese Academy of Sciences DCB products to validate the results.
    Keywords: ddc:526 ; Differential Code Biases ; Flex Power ; GPS Block IIF
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-06-16
    Description: The access to Android-based Global Navigation Satellite Systems (GNSS) raw measurements has become a strong motivation to investigate the feasibility of smartphone-based positioning. Since the beginning of this research, the smartphone GNSS antenna has been recognized as one of the main limitations. Besides multipath (MP), the radiation pattern of the antenna is the main site-dependent error source of GNSS observations. An absolute antenna calibration has been performed for the dual-frequency Huawei Mate20X. Antenna phase center offset (PCO) and variations (PCV) have been estimated to correct for antenna impact on the L1 and L5 phase observations. Accordingly, we show the relevance of considering the individual PCO and PCV for the two frequencies. The PCV patterns indicate absolute values up to 2 cm and 4 cm for L1 and L5, respectively. The impact of antenna corrections has been assessed in different multipath environments using a high-accuracy positioning algorithm employing an undifferenced observation model and applying ambiguity resolution. Successful ambiguity resolution is shown for a smartphone placed in a low multipath environment on the ground of a soccer field. For a rooftop open-sky test case with large multipath, ambiguity resolution was successful in 19 out of 35 data sets. Overall, the antenna calibration is demonstrated being an asset for smartphone-based positioning with ambiguity resolution, showing cm-level 2D root mean square error (RMSE).
    Description: Gottfried Wilhelm Leibniz Universität Hannover (1038)
    Keywords: ddc:526 ; Absolute robot antenna calibration ; GNSS ; Smartphone-based high-accuracy positioning
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-06-16
    Description: The realization of Coordinated Universal Time, one of the tasks of the International Bureau of Weights and Measures, relies on a network of international time links which currently is organized in a star-like scheme that links all contributing laboratories. GPS signal reception is the technique most widely employed by the laboratories. The PTB currently plays a unique role in the process due to its function as the central pivot in the time transfer between the participating laboratories. We discuss how the PTB meets its obligations to the international timekeeping community as well as to its users in Germany. In its role as an National Metrology Institute (NMI), PTB is entrusted with the realization and dissemination of legal time in Germany. The services were offered to the public support measurements and timing applications traceable to the national and international standards to be made in calibration laboratories and in many industrial sectors. We thus discuss the meaning and definition of traceability, how different GNSS systems can be used to establish traceability and their performance in doing so.
    Keywords: ddc:526 ; GNSS ; GPS ; Galileo ; Time and frequency metrology ; Traceability
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-06-14
    Description: This study presents a solution of the ‘1 cm Geoid Experiment’ (Colorado Experiment) using spherical radial basis functions (SRBFs). As the only group using SRBFs among the fourteen participated institutions from all over the world, we highlight the methodology of SRBFs in this paper. Detailed explanations are given regarding the settings of the four most important factors that influence the performance of SRBFs in gravity field modeling, namely (1) the choosing bandwidth, (2) the locations of the SRBFs, (3) the type of the SRBFs as well as (4) the extensions of the data zone for reducing the edge effect. Two types of basis functions covering the same spectral range are used for the terrestrial and the airborne measurements, respectively. The non-smoothing Shannon function is applied to the terrestrial data to avoid the loss of spectral information. The cubic polynomial (CuP) function which has smoothing features is applied to the airborne data as a low-pass filter for filtering the high-frequency noise. Although the idea of combining different SRBFs for different observations was proven in theory to be possible, it is applied to real data for the first time, in this study. The RMS error of our height anomaly result along the GSVS17 benchmarks w.r.t the validation data (which is the mean results of the other contributions in the ‘Colorado Experiment’) drops by 5% when combining the Shannon function for the terrestrial data and the CuP function for the airborne data, compared to those obtained by using the Shannon function for both the two data sets. This improvement indicates the validity and benefits of using different SRBFs for different observation types. Global gravity model (GGM), topographic model, the terrestrial gravity data, as well as the airborne gravity data are combined, and the contribution of each data set to the final solution is discussed. By adding the terrestrial data to the GGM and the topographic model, the RMS error of the height anomaly result w.r.t the validation data drops from 4 to 1.8 cm, and it is further reduced to 1 cm by including the airborne data. Comparisons with the mean results of all the contributions show that our height anomaly and geoid height solutions at the GSVS17 benchmarks have an RMS error of 1.0 cm and 1.3 cm, respectively; and our height anomaly results give an RMS value of 1.6 cm in the whole study area, which are all the smallest among the participants.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:526 ; ‘1 cm Geoid Experiment’ ; Spherical radial basis functions ; Regional geoid modeling ; Heterogeneous data combination
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-06-08
    Description: Satellite altimetry has been widely used to determine surface elevation changes in polar ice sheets. The original height measurements are irregularly distributed in space and time. Gridded surface elevation changes are commonly derived by repeat altimetry analysis (RAA) and subsequent spatial interpolation of height change estimates. This article assesses how methodological choices related to those two steps affect the accuracy of surface elevation changes, and how well this accuracy is represented by formal uncertainties. In a simulation environment resembling CryoSat-2 measurements acquired over a region in northeast Greenland between December 2010 and January 2014, different local topography modeling approaches and different cell sizes for RAA, and four interpolation approaches are tested. Among the simulated cases, the choice of either favorable or unfavorable RAA affects the accuracy of results by about a factor of 6, and the different accuracy levels are propagated into the results of interpolation. For RAA, correcting local topography by an external digital elevation model (DEM) is best, if a very precise DEM is available, which is not always the case. Yet the best DEM-independent local topography correction (nine-parameter model within a 3,000 m diameter cell) is comparable to the use of a perfect DEM, which exactly represents the ice sheet topography, on the same cell size. Interpolation by heterogeneous measurement-error-filtered kriging is significantly more accurate (on the order of 50% error reduction) than interpolation methods, which do not account for heterogeneous errors.
    Description: German Research Foundation
    Keywords: ddc:526 ; Satellite altimetry ; Kriging ; Repeat altimetry ; Interpolation ; Ice sheet
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-02-14
    Description: The precise orbit determination (POD) of Global Navigation Satellite System (GNSS) satellites and low Earth orbiters (LEOs) are usually performed independently. It is a potential way to improve the GNSS orbits by integrating LEOs onboard observations into the processing, especially for the developing GNSS, e.g., Galileo with a sparse sensor station network and Beidou with a regional distributed operating network. In recent years, few studies combined the processing of ground- and space-based GNSS observations. The integrated POD of GPS satellites and seven LEOs, including GRACE-A/B, OSTM/Jason-2, Jason-3 and, Swarm-A/B/C, is discussed in this study. GPS code and phase observations obtained by onboard GPS receivers of LEOs and ground-based receivers of the International GNSS Service (IGS) tracking network are used together in one least-squares adjustment. The POD solutions of the integrated processing with different subsets of LEOs and ground stations are analyzed in detail. The derived GPS satellite orbits are validated by comparing with the official IGS products and internal comparison based on the differences of overlapping orbits and satellite positions at the day-boundary epoch. The differences between the GPS satellite orbits derived based on a 26-station network and the official IGS products decrease from 37.5 to 23.9 mm (34% improvement) in 1D-mean RMS when adding seven LEOs. Both the number of the space-based observations and the LEO orbit geometry affect the GPS satellite orbits derived in the integrated processing. In this study, the latter one is proved to be more critical. By including three LEOs in three different orbital planes, the GPS satellite orbits improve more than from adding seven well-selected additional stations to the network. Experiments with a ten-station and regional network show an improvement of the GPS satellite orbits from about 25 cm to less than five centimeters in 1D-mean RMS after integrating the seven LEOs.
    Description: Chinese Government Scholarship http://dx.doi.org/10.13039/501100010890
    Keywords: ddc:526 ; POD ; Integrated processing ; Sparse ground network ; GPS ; LEOs ; GRACE ; Jason ; Swarm
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-03-12
    Description: The Russian Global Navigation Satellite System (GLONASS) satellites have a stretched body shape and take a specific attitude mode inside the eclipse. Based on previous studies, the new Empirical CODE orbit model (ECOM2) performs better than the classical ECOM model if a satellite has elongated shape or does not maintain yaw-steering mode, and the use of an a priori box-wing (BW) model improves the orbits significantly when employing the ECOM model. However, we find that the ECOM model performs better than the ECOM2 model for GLONASS satellites outside eclipse seasons, while it performs two times worse in eclipse seasons. The use of the conventional box-wing model results in very little improvement. By assessing the ECOM Y〈sub〉0〈/sub〉 estimates, we conclude that there are potential radiators on the -x surface of GLONASS satellites causing orbit perturbations also inside the eclipse. The higher-order Fourier terms of the ECOM2 model can compensate for such effects better than the ECOM model. Based on this finding, we first confirm that GLONASS-K satellites take a similar attitude mode as GLONASS-M satellites inside the eclipse. Then, we adjust optical parameters of GLONASS satellites as part of precise orbit determination (POD) considering the potential radiator and thermal radiation effects. Finally, the adjusted parameters are introduced into a new box-wing model and jointly used with the ECOM and ECOM2 model, respectively. Results show that the amplitude and the dependency of the empirical parameters on the β angle are greatly reduced for both ECOM and ECOM2 models. Rather than the conventional box-wing model, the new box-wing model reduces the orbit misclosure between two consecutive arcs for both GLONASS-M and GLONASS-K satellites. In particular, the improvement in GLONASS-M satellites is more than 30% for the ECOM model during eclipse seasons. Further evaluation from 24-h predicted orbits demonstrates that the improvement during eclipse seasons is mainly in along- and cross-track directions. Finally, we validate GLONASS satellite orbits using Satellite Laser Ranging (SLR) observations. The use of the new box-wing model reduces the spurious pattern of the SLR residuals as a function of β and Δu significantly, and the linear dependency of the SLR residuals on the elongation drops from as large as -0.760 mm/deg to almost zero for both ECOM and ECOM2 models. In general, GLONASS-M satellites benefit more from the new a priori box-wing model and the BW+ECOM model results in the best SLR residuals, with an improvement of about 50% and 20%, respectively, for the mean and standard deviation (STD) values with respect to the orbit products without a priori model.
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Solar radiation pressure ; Eclipse ; Radiator ; GLONASS ; Box-wing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: Near-infrared room temperature tunable diode lasers(TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in volcanology are still limited to a few examples. Here, we explored the potential of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) for measurement of volcanic CO2 mixing ratios, and ultimately for estimating the volcanic CO2 flux. Our field tests were conducted at Campi Flegrei near Pozzuoli, Southern Italy, where the GasFinder was used during three campaigns in October 2012, January 2013 and May 2013 to repeatedly measure the path-integrated mixing ratios of CO2 along cross sections of the atmospheric plumes of two major fumarolic fields (Solfatara and Pisciarelli). By using a tomographic post-processing routine, we resolved, for each of the two fields, the contour maps of CO2 mixing ratios in the atmosphere, from the integration of which (and after multiplication by the plumes’ transport speeds) the CO2 fluxes were finally obtained. We evaluate a total CO2 output from the Campi Flegrei fumaroles of ∼490 Mg/day, in line with independent estimates based on in situ (Multi-GAS) observations. We conclude that TDL technique may enable CO2 flux quantification at other volcanoes worldwide.
    Description: 1- Progetto V2 “Precursori” DPC-INGV research agreement 2012-2013; 2- Miur (PRIN 2009; PI M.V.), and 3-European Research Council under the European Union’s Seventh Framework Programme (FP7/2007/2013)/ERC grant agreement n1305377 (PI, A.A).
    Description: Published
    Description: 812
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Tunable diode lasers ; Atmospheric CO2 monitoring ; gas sensing ; spectroscopy ; Volcanic CO2 fluxes ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: Editor’s Note: The following comment and reply arise from an article published in Geophysical Research Letters by Voigt et al. (2014). The article addresses a volcanology topic, and the commenters take issue with some conclusions and offer an analysis of their own. Voigt and co-authors have responded. Why is this comment-and-reply being published in the Bulletin? It is because Geophysical Research Letters is one of a number of journals that do not offer any published forum for discussion of the papers they publish. This is a matter of editorial policy and a decision for each journal. The Bulletin of Volcanology does provide a forum for discussion of articles published. When contacted by Marcello Liotta with the request that the Bulletin consider hosting a discussion of the Voigt et al. volcanology article in GRL, I agreed to do so if the GRL authors were willing to engage with the comment. Voigt and co-authors were willing to do so and have been allowed a small amount of additional space to summarize for Bulletin readers the key points of the GRL paper under discussion before responding directly to the comment from Liotta and Rizzo. I hope that Bulletin readers find the discussion and reply of interest.
    Description: Published
    Description: 865
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Volcanic degassing ; Volcanic plume ; Etna ; Chemical evolution of trace gases ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: We report the results of 16 months of continuous measurements of soil CO2 flux at a fumarole field in the summit area of Mt. Etna. The patterns of soil CO2 emissions suggest two contrasting degassing regimes. During the period of observation, volcanic activity at the summit craters displayed striking extremes, ranging from passive to explosive degassing, which culminated in lava fountains. These changes in activity coincided with fluctuation between the two degassing patterns. Building on the findings of previous studies, we propose an interpretative framework that explains the observed correlation in terms of a modification of the dynamics of magma supply. We argue that periods of higher CO2 flux are associated with deep open system degassing conditions, whereas low-level CO2 flux signals closed system degassing and less efficient discharge of deeply exsolved gas. An important implication of our study is that, in relation to the two degassing regimes, two types of activity are expected at the summit craters. Thus, our measurements represent a valuable tool for the evaluation of the evolution of volcanic activity
    Description: Published
    Description: 846
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Magma supply dynamics ; Soil CO2 emissions ; Lava fountain ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: Editor’s Note: The following comment and reply arise from an article published in Geophysical Research Letters by Voigt et al. (2014). The article addresses a volcanology topic, and the commenters take issue with some conclusions and offer an analysis of their own. Voigt and co-authors have responded. Why is this comment-and-reply being published in the Bulletin? It is because Geophysical Research Letters is one of a number of journals that do not offer any published forum for discussion of the papers they publish. This is a matter of editorial policy, and a decision for each journal. The Bulletin of Volcanology does provide a forum for discussion of articles published. When contacted by Marcello Liotta with the request that the Bulletin consider hosting a discussion of the Voigt et al. volcanology article in GRL, I agreed to do so if the GRL authors were willing to engage with the comment. Voigt and co-authors were willing to do so, and have been allowed a small amount of additional space to summarize for Bulletin readers the key points of the GRL paper under discussion before responding directly to the comment from Liotta and Rizzo. I hope that Bulletin readers find the discussion and reply of interest. James D.L. White Executive Editor, Bulletin of Volcanology
    Description: Published
    Description: 864
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Evolution . Mt. Etna . Volcanic plumes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-25
    Description: The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0. 03 kg s-1 (2. 8 Mg day-1). The observed H2 content in the plume is consistent with previous estimates of redox conditions in the lava lake inferred from mineral compositions and the observed CO2/CO ratio in the gas plume (~0. 9 log units below the quartz-fayalite-magnetite buffer). These measurements suggest that H2 does not combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the signature of the high-temperature chemical equilibrium reached in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period of ~10 min. These cycles correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted as signs of a pulsatory magma supply at the top of the magmatic conduit.
    Description: Published
    Description: 2109 – 2120
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Erebus volcano; Hydrogen; Lava lake; Magma redox conditions; Volcanic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-01-27
    Description: One of the major objectives of volcanology remains relating variations in surface monitoring signals to the magmatic processes at depth that cause these variations. We present a method that enables compositional and temporal information stored in zoning of minerals (olivine in this case) to be linked to observations of real-time degassing data. The integrated record may reveal details of the dynamics of gradual evolution of a plumbing system during eruption. We illustrate our approach using the 2006 summit eruptive episodes of Mt. Etna. We find that the history tracked by olivine crystals, and hence, most likely the magma pathways within the shallow plumbing system of Mt. Etna, differed considerably between the July and October eruptions. The compositional and temporal record preserved in the olivine zoning patterns reveal two mafic recharge events within months of each other (June and September 2006), and each of these magma supplies may have triggered the initiation of different eruptive cycles (July 14–24 and August 31–December 14). Correlation of these observations with gas monitoring data shows that the systematic rise of the CO2/SO2gas values is associated with the gradual (preand syn-eruptive) supply of batches of gas-rich mafic magma into segments of Etna’s shallow plumbing system, where mixing with pre-existing and more evolved magma occurred.
    Description: This work was funded by the German Science Foundation as part of the collaborative research centre (SFB) on Rheology of the Crust—from the upper crust to the subduction zone (SFB 526).
    Description: Published
    Description: 692
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Crystal zoning ; Plumbing system Mt. Etna ; Magma mixing ; Gas monitoring ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-05-09
    Description: Abstract A geochemical survey of fumarolic and submerged gases from fluid discharges located in the Nea Kameni and Palea Kameni islets (Santorini Island, Greece) was carried out before, during, and after the unrest related to the anomalously high seismic and ground deformation activity that affected this volcanic system since January 2011. Our data show that from May 2011 to February 2012, the Nea Kameni fumaroles showed a significant increase of H2 concentrations. After this period, an abrupt decrease in the H2 contents, accompanied by decreasing seismic events, was recorded. A similar temporal pattern was shown by the F−, Cl−, SO4 2−, and NH4 + concentrations in the fumarolic condensates. During the sharp increase of H2 concentrations, when values up to 158 mmol/ mol were measured, the δ13C–CO2 values, which prior to January 2011 were consistent with a dominant CO2 thermometamorphic source, have shown a significant decrease, suggesting an increase of mantle CO2 contribution. Light hydrocarbons, including CH4, which are controlled by chemical reactions kinetically slower than H2 production from H2O dissociation, displayed a sharp increase in March 2012, under enhanced reducing conditions caused by the high H2 concentrations of May 2011–February 2012. The general increase in light hydrocarbons continued up to July 2012, notwithstanding the contemporaneous H2 decrease. The temporal patterns of CO2 concentrations and N2/Ar ratios increased similarly to that of H2, possibly due to sealing processes in the fumarolic conduits that diminished the contamination related to the entrance of atmospheric gases in the fumarolic conduits. The compositional evolution of the Nea Kameni fumaroles can be explained by a convective heat pulse from depth associated with the seismic activation of the NE–SW-oriented Kameni tectonic lineament, possibly triggered by either injection of new magma below Nea Kameni island, as apparently suggested by the evolution of the seismic and ground deformation activity, or increased permeability of the volcanic plumbing system resulting from the tectonic movements affecting the area. The results of the present study demonstrate that the geophysical and geochemical signals at Santorini are interrelated and may be precursory signals of renewed volcanic activity and encourage the development of interdisciplinary monitoring program to mitigate the volcanic risk in the most tourist-visited island of the Mediterranean Sea.
    Description: Published
    Description: 711
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Santorini Island . ; Fluid geochemistry ; Geochemical monitoring ; Seismic crisis ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: Between 1994 and 2010, we completed 16 thermal surveys of Vulcano’s Fossa fumarole field (Aeolian Islands, Italy). In each survey, between 400 and 1,200 vent temperatures were collected using a thermal infrared thermometer from distances of ∼1 m. The results show a general decrease in average vent temperature during 1994–2003, with the average for the entire field falling from ∼220°C in 1994 to ∼150°C by 2003. However, between 2004 and 2010, we witnessed heating, with the average increasing to ∼190°C by 2010. Alongside these annual-scale field-wide trends, we record a spatial re-organisation of the fumarole field, characterised by shut down of vent zones towards the crater floor, matched by rejuvenation of zones located towards the crater rim. Heating may be expected to be associated with deflation because increased amounts of vaporisation will remove volume from the hydrothermal system Gambino and Guglielmino (J Geophys Res 113: B07402, 2008). However, over the 2004–2010 heating period, no ground deformation was observed. Instead, the number of seismic events increased from a typical rate of 37 events per month during 1994–2000 to 195 events per month during 2004–2010. As part of this increase, we noticed a much greater number of high-frequency events associated with rock fracturing. We thus suggest that the heating event of 2004–2010 was the result of changed permeability conditions, rather than change in the heat supply from the deeper magmatic source. Within this scenario, cooling causes shut down of lower sectors and re-establishment of pathways located towards the crater rim, causing fracturing, increased seismicity and heat flow in these regions. This is consistent with the zone of rejuvenation (which lies towards and at the rim) being the most favourable location for fracturing given the stress field of the Fossa cone Schöpa et al. (J Volcanol Geotherm Res 203:133–145, 2011); it is also the most established zone, having been active at least since the early twentieth century. Our data show the value of deploying multi-disciplinary geophysical campaigns at degassing (fumarolic) hydrothermal systems. This allows more complete and constrained understanding of the true heat loss dynamics of the system. In the case study presented here, it allows us to distinguish true heating from apparent heating phases. While the former are triggered from the bottom-up, i.e. they are driven by increases in heat supply from the magmatic source, the latter are triggered from the top-down, i.e. by changing permeability conditions in the uppermost portion of the system to allow more efficient heat flow over zones predisposed to fracturing.
    Description: Published
    Description: 1293-1311
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Fumaroles ; Vulcano ; Vent temperature ; Seismicity ; Ground Deformation ; Permeability ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...