ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (24,139)
  • Maps
  • Public Library of Science
  • Biology  (24,139)
Collection
  • Journals
  • Articles  (24,139)
  • Maps
Years
Journal
Topic
  • 1
    Publication Date: 2021-08-10
    Description: Ultradian glucocorticoid rhythms are highly conserved across mammalian species, however, their functional significance is not yet fully understood. Here we demonstrate that pulsatile corticosterone replacement in adrenalectomised rats induces a dynamic pattern of glucocorticoid receptor (GR) binding at ~3,000 genomic sites in liver at the pulse peak, subsequently not found during the pulse nadir. In contrast, constant corticosterone replacement induced prolonged binding at the majority of these sites. Additionally, each pattern further induced markedly different transcriptional responses. During pulsatile treatment, intragenic occupancy by active RNA polymerase II exhibited pulsatile dynamics with transient changes in enrichment, either decreased or increased depending on the gene, which mostly returned to baseline during the inter-pulse interval. In contrast, constant corticosterone exposure induced prolonged effects on RNA polymerase II occupancy at the majority of gene targets, thus acting as a sustained regulatory signal for both transactivation and repression of glucocorticoid target genes. The nett effect of these differences were consequently seen in the liver transcriptome as RNA-seq analysis indicated that despite the same overall amount of corticosterone infused, twice the number of transcripts were regulated by constant corticosterone infusion, when compared to pulsatile. Target genes that were found to be differentially regulated in a pattern-dependent manner were enriched in functional pathways including carbohydrate, cholesterol, glucose and fat metabolism as well as inflammation, suggesting a functional role for dysregulated glucocorticoid rhythms in the development of metabolic dysfunction.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-20
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-10
    Description: Human travel is one of the primary drivers of infectious disease spread. Models of travel are often used that assume the amount of travel to a specific destination decreases as cost of travel increases with higher travel volumes to more populated destinations. Trip duration, the length of time spent in a destination, can also impact travel patterns. We investigated the spatial patterns of travel conditioned on trip duration and find distinct differences between short and long duration trips. In short-trip duration travel networks, trips are skewed towards urban destinations, compared with long-trip duration networks where travel is more evenly spread among locations. Using gravity models to inform connectivity patterns in simulations of disease transmission, we show that pathogens with shorter generation times exhibit initial patterns of spatial propagation that are more predictable among urban locations. Further, pathogens with a longer generation time have more diffusive patterns of spatial spread reflecting more unpredictable disease dynamics.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-25
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-25
    Description: With more microbiome studies being conducted by African-based research groups, there is an increasing demand for knowledge and skills in the design and analysis of microbiome studies and data. However, high-quality bioinformatics courses are often impeded by differences in computational environments, complicated software stacks, numerous dependencies, and versions of bioinformatics tools along with a lack of local computational infrastructure and expertise. To address this, H3ABioNet developed a 16S rRNA Microbiome Intermediate Bioinformatics Training course, extending its remote classroom model. The course was developed alongside experienced microbiome researchers, bioinformaticians, and systems administrators, who identified key topics to address. Development of containerised workflows has previously been undertaken by H3ABioNet, and Singularity containers were used here to enable the deployment of a standard replicable software stack across different hosting sites. The pilot ran successfully in 2019 across 23 sites registered in 11 African countries, with more than 200 participants formally enrolled and 106 volunteer staff for onsite support. The pulling, running, and testing of the containers, software, and analyses on various clusters were performed prior to the start of the course by hosting classrooms. The containers allowed the replication of analyses and results across all participating classrooms running a cluster and remained available posttraining ensuring analyses could be repeated on real data. Participants thus received the opportunity to analyse their own data, while local staff were trained and supported by experienced experts, increasing local capacity for ongoing research support. This provides a model for delivering topic-specific bioinformatics courses across Africa and other remote/low-resourced regions which overcomes barriers such as inadequate infrastructures, geographical distance, and access to expertise and educational materials.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-25
    Description: The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-25
    Description: Increased availability of drug response and genomics data for many tumor cell lines has accelerated the development of pan-cancer prediction models of drug response. However, it is unclear how much between-tissue differences in drug response and molecular characteristics may contribute to pan-cancer predictions. Also unknown is whether the performance of pan-cancer models could vary by cancer type. Here, we built a series of pan-cancer models using two datasets containing 346 and 504 cell lines, each with MEK inhibitor (MEKi) response and mRNA expression, point mutation, and copy number variation data, and found that, while the tissue-level drug responses are accurately predicted (between-tissue ρ = 0.88–0.98), only 5 of 10 cancer types showed successful within-tissue prediction performance (within-tissue ρ = 0.11–0.64). Between-tissue differences make substantial contributions to the performance of pan-cancer MEKi response predictions, as exclusion of between-tissue signals leads to a decrease in Spearman’s ρ from a range of 0.43–0.62 to 0.30–0.51. In practice, joint analysis of multiple cancer types usually has a larger sample size, hence greater power, than for one cancer type; and we observe that higher accuracy of pan-cancer prediction of MEKi response is almost entirely due to the sample size advantage. Success of pan-cancer prediction reveals how drug response in different cancers may invoke shared regulatory mechanisms despite tissue-specific routes of oncogenesis, yet predictions in different cancer types require flexible incorporation of between-cancer and within-cancer signals. As most datasets in genome sciences contain multiple levels of heterogeneity, careful parsing of group characteristics and within-group, individual variation is essential when making robust inference.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-25
    Description: The Hippo-YAP pathway responds to diverse environmental cues to manage tissue homeostasis, organ regeneration, tumorigenesis, and immunity. However, how phosphatase(s) directly target Yes-associated protein (YAP) and determine its physiological activity are still inconclusive. Here, we utilized an unbiased phosphatome screening and identified protein phosphatase magnesium-dependent 1A (PPM1A/PP2Cα) as the bona fide and physiological YAP phosphatase. We found that PPM1A was associated with YAP/TAZ in both the cytoplasm and the nucleus to directly eliminate phospho-S127 on YAP, which conferring YAP the nuclear distribution and transcription potency. Accordingly, genetic ablation or depletion of PPM1A in cells, organoids, and mice elicited an enhanced YAP/TAZ cytoplasmic retention and resulted in the diminished cell proliferation, severe gut regeneration defects in colitis, and impeded liver regeneration upon injury. These regeneration defects in murine model were largely rescued via a genetic large tumor suppressor kinase 1 (LATS1) deficiency or the pharmacological inhibition of Hippo-YAP signaling. Therefore, we identify a physiological phosphatase of YAP/TAZ, describe its critical effects in YAP/TAZ cellular distribution, and demonstrate its physiological roles in mammalian organ regeneration.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-25
    Description: The prospect of utilizing CRISPR-based gene-drive technology for controlling populations has generated much excitement. However, the potential for spillovers of gene-drive alleles from the target population to non-target populations has raised concerns. Here, using mathematical models, we investigate the possibility of limiting spillovers to non-target populations by designing differential-targeting gene drives, in which the expected equilibrium gene-drive allele frequencies are high in the target population but low in the non-target population. We find that achieving differential targeting is possible with certain configurations of gene drive parameters, but, in most cases, only under relatively low migration rates between populations. Under high migration, differential targeting is possible only in a narrow region of the parameter space. Because fixation of the gene drive in the non-target population could severely disrupt ecosystems, we outline possible ways to avoid this outcome. We apply our model to two potential applications of gene drives—field trials for malaria-vector gene drives and control of invasive species on islands. We discuss theoretical predictions of key requirements for differential targeting and their practical implications.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-25
    Description: Workflow management systems represent, manage, and execute multistep computational analyses and offer many benefits to bioinformaticians. They provide a common language for describing analysis workflows, contributing to reproducibility and to building libraries of reusable components. They can support both incremental build and re-entrancy—the ability to selectively re-execute parts of a workflow in the presence of additional inputs or changes in configuration and to resume execution from where a workflow previously stopped. Many workflow management systems enhance portability by supporting the use of containers, high-performance computing (HPC) systems, and clouds. Most importantly, workflow management systems allow bioinformaticians to delegate how their workflows are run to the workflow management system and its developers. This frees the bioinformaticians to focus on what these workflows should do, on their data analyses, and on their science. RiboViz is a package to extract biological insight from ribosome profiling data to help advance understanding of protein synthesis. At the heart of RiboViz is an analysis workflow, implemented in a Python script. To conform to best practices for scientific computing which recommend the use of build tools to automate workflows and to reuse code instead of rewriting it, the authors reimplemented this workflow within a workflow management system. To select a workflow management system, a rapid survey of available systems was undertaken, and candidates were shortlisted: Snakemake, cwltool, Toil, and Nextflow. Each candidate was evaluated by quickly prototyping a subset of the RiboViz workflow, and Nextflow was chosen. The selection process took 10 person-days, a small cost for the assurance that Nextflow satisfied the authors’ requirements. The use of prototyping can offer a low-cost way of making a more informed selection of software to use within projects, rather than relying solely upon reviews and recommendations by others.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-02-25
    Description: Genome-wide association studies (GWASs) have identified multiple susceptibility loci for Alzheimer’s disease (AD), which is characterized by early and progressive damage to the hippocampus. However, the association of hippocampal gene expression with AD and the underlying neurobiological pathways remain largely unknown. Based on the genomic and transcriptomic data of 111 hippocampal samples and the summary data of two large-scale meta-analyses of GWASs, a transcriptome-wide association study (TWAS) was performed to identify genes with significant associations between hippocampal expression and AD. We identified 54 significantly associated genes using an AD-GWAS meta-analysis of 455,258 individuals; 36 of the genes were confirmed in another AD-GWAS meta-analysis of 63,926 individuals. Fine-mapping models further prioritized 24 AD-related genes whose effects on AD were mediated by hippocampal expression, including APOE and two novel genes (PTPN9 and PCDHA4). These genes are functionally related to amyloid-beta formation, phosphorylation/dephosphorylation, neuronal apoptosis, neurogenesis and telomerase-related processes. By integrating the predicted hippocampal expression and neuroimaging data, we found that the hippocampal expression of QPCTL and ERCC2 showed significant difference between AD patients and cognitively normal elderly individuals as well as correlated with hippocampal volume. Mediation analysis further demonstrated that hippocampal volume mediated the effect of hippocampal gene expression (QPCTL and ERCC2) on AD. This study identifies two novel genes associated with AD by integrating hippocampal gene expression and genome-wide association data and reveals candidate hippocampus-mediated neurobiological pathways from gene expression to AD.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-02-25
    Description: We live in an increasingly data-driven world, where high-throughput sequencing and mass spectrometry platforms are transforming biology into an information science. This has shifted major challenges in biological research from data generation and processing to interpretation and knowledge translation. However, postsecondary training in bioinformatics, or more generally data science for life scientists, lags behind current demand. In particular, development of accessible, undergraduate data science curricula has the potential to improve research and learning outcomes as well as better prepare students in the life sciences to thrive in public and private sector careers. Here, we describe the Experiential Data science for Undergraduate Cross-Disciplinary Education (EDUCE) initiative, which aims to progressively build data science competency across several years of integrated practice. Through EDUCE, students complete data science modules integrated into required and elective courses augmented with coordinated cocurricular activities. The EDUCE initiative draws on a community of practice consisting of teaching assistants (TAs), postdocs, instructors, and research faculty from multiple disciplines to overcome several reported barriers to data science for life scientists, including instructor capacity, student prior knowledge, and relevance to discipline-specific problems. Preliminary survey results indicate that even a single module improves student self-reported interest and/or experience in bioinformatics and computer science. Thus, EDUCE provides a flexible and extensible active learning framework for integration of data science curriculum into undergraduate courses and programs across the life sciences.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-03-29
    Description: Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (37°C and 33°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host immune response dynamics, we investigated the impact of temperatures during SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses specifically induced by SARS-CoV or SARS-CoV-2, which amplitude was inversely proportional to their replication efficiencies at 33°C or 37°C. These data provide crucial insight on pivotal virus–host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-03-29
    Description: Here we show that multiple modes of Notch signaling activation specify the complexity of spatial cellular interactions necessary for stem cell niche assembly. In particular, we studied the formation of the germline stem cell niche in Drosophila ovaries, which is a two-step process whereby terminal filaments are formed first. Then, terminal filaments signal to the adjacent cap cell precursors, resulting in Notch signaling activation, which is necessary for the lifelong acquisition of stem cell niche cell fate. The genetic data suggest that in order to initiate the process of stem cell niche assembly, Notch signaling is activated among non-equipotent cells via distant induction, where germline Delta is delivered to somatic cells located several diameters away via cellular projections generated by primordial germ cells. At the same time, to ensure the robustness of niche formation, terminal filament cell fate can also be induced by somatic Delta via cis- or trans-inhibition. This exemplifies a double security mechanism that guarantees that the germline stem cell niche is formed, since it is indispensable for the adjacent germline precursor cells to acquire and maintain stemness necessary for successful reproduction. These findings contribute to our understanding of the formation of stem cell niches in their natural environment, which is important for stem cell biology and regenerative medicine.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-03-29
    Description: The Sec complex catalyzes the translocation of proteins of the secretory pathway into the endoplasmic reticulum and the integration of membrane proteins into the endoplasmic reticulum membrane. Some substrate peptides require the presence and involvement of accessory proteins such as Sec63. Recently, a structure of the Sec complex from Saccharomyces cerevisiae, consisting of the Sec61 channel and the Sec62, Sec63, Sec71 and Sec72 proteins was determined by cryo-electron microscopy (cryo-EM). Here, we show by co-precipitation that the accessory membrane protein Sec62 is not required for formation of stable Sec63-Sec61 contacts. Molecular dynamics simulations started from the cryo-EM conformation of Sec61 bound to Sec63 and of unbound Sec61 revealed how Sec63 affects the conformation of Sec61 lateral gate, plug, pore region and pore ring diameter via three intermolecular contact regions. Molecular docking of SRP-dependent vs. SRP-independent peptide chains into the Sec61 channel showed that the pore regions affected by presence/absence of Sec63 play a crucial role in positioning the signal anchors of SRP-dependent substrates nearby the lateral gate.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-03-29
    Description: Expansion of the hexanucleotide repeat (HR) in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in Caucasians. All C9orf72-ALS/FTD patients share a common risk (R) haplotype. To study C9orf72 expression and splicing from the mutant R allele compared to the complementary normal allele in ALS/FTD patients, we initially created a detailed molecular map of the single nucleotide polymorphism (SNP) signature and the HR length of the various C9orf72 haplotypes in Caucasians. We leveraged this map to determine the allelic origin of transcripts per patient, and decipher the effects of pathological and normal HR lengths on C9orf72 expression and splicing. In C9orf72 ALS patients’ cells, the HR expanded allele, compared to non-R allele, was associated with decreased levels of a downstream initiated transcript variant and increased levels of transcripts initiated upstream of the HR. HR expanded R alleles correlated with high levels of unspliced intron 1 and activation of cryptic donor splice sites along intron 1. Retention of intron 1 was associated with sequential intron 2 retention. The SNP signature of C9orf72 haplotypes described here enables allele-specific analysis of transcriptional products and may pave the way to allele-specific therapeutic strategies.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-03-29
    Description: Candida albicans, an opportunistic fungal pathogen, is a significant cause of human infections, particularly in immunocompromised individuals. Phenotypic plasticity between two morphological phenotypes, yeast and hyphae, is a key mechanism by which C. albicans can thrive in many microenvironments and cause disease in the host. Understanding the decision points and key driver genes controlling this important transition and how these genes respond to different environmental signals is critical to understanding how C. albicans causes infections in the host. Here we build and analyze a Boolean dynamical model of the C. albicans yeast to hyphal transition, integrating multiple environmental factors and regulatory mechanisms. We validate the model by a systematic comparison to prior experiments, which led to agreement in 17 out of 22 cases. The discrepancies motivate alternative hypotheses that are testable by follow-up experiments. Analysis of this model revealed two time-constrained windows of opportunity that must be met for the complete transition from the yeast to hyphal phenotype, as well as control strategies that can robustly prevent this transition. We experimentally validate two of these control predictions in C. albicans strains lacking the transcription factor UME6 and the histone deacetylase HDA1, respectively. This model will serve as a strong base from which to develop a systems biology understanding of C. albicans morphogenesis.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-03-29
    Description: Planarians are flatworms and can perform whole-body regeneration. This ability involves a mechanism to distinguish between anterior-facing wounds that require head regeneration and posterior-facing wounds that require tail regeneration. How this head-tail regeneration polarity decision is made is studied to identify principles underlying tissue-identity specification in regeneration. We report that inhibition of activin-2, which encodes an Activin-like signaling ligand, resulted in the regeneration of ectopic posterior-facing heads following amputation. During tissue turnover in uninjured planarians, positional information is constitutively expressed in muscle to maintain proper patterning. Positional information includes Wnts expressed in the posterior and Wnt antagonists expressed in the anterior. Upon amputation, several wound-induced genes promote re-establishment of positional information. The head-versus-tail regeneration decision involves preferential wound induction of the Wnt antagonist notum at anterior-facing over posterior-facing wounds. Asymmetric activation of notum represents the earliest known molecular distinction between head and tail regeneration, yet how it occurs is unknown. activin-2 RNAi animals displayed symmetric wound-induced activation of notum at anterior- and posterior-facing wounds, providing a molecular explanation for their ectopic posterior-head phenotype. activin-2 RNAi animals also displayed anterior-posterior (AP) axis splitting, with two heads appearing in anterior blastemas, and various combinations of heads and tails appearing in posterior blastemas. This was associated with ectopic nucleation of anterior poles, which are head-tip muscle cells that facilitate AP and medial-lateral (ML) pattern, at posterior-facing wounds. These findings reveal a role for Activin signaling in determining the outcome of AP-axis-patterning events that are specific to regeneration.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-03-29
    Description: Atherosclerotic plaque rupture is responsible for a majority of acute vascular syndromes and this study aims to develop a prediction tool for plaque progression and rupture. Based on the follow-up coronary intravascular ultrasound imaging data, we performed patient-specific multi-physical modeling study on four patients to obtain the evolutional processes of the microenvironment during plaque progression. Four main pathophysiological processes, i.e., lipid deposition, inflammatory response, migration and proliferation of smooth muscle cells (SMCs), and neovascularization were coupled based on the interactions demonstrated by experimental and clinical observations. A scoring table integrating the dynamic microenvironmental indicators with the classical risk index was proposed to differentiate their progression to stable and unstable plaques. The heterogeneity of plaque microenvironment for each patient was demonstrated by the growth curves of the main microenvironmental factors. The possible plaque developments were predicted by incorporating the systematic index with microenvironmental indicators. Five microenvironmental factors (LDL, ox-LDL, MCP-1, SMC, and foam cell) showed significant differences between stable and unstable group (p 〈 0.01). The inflammatory microenvironments (monocyte and macrophage) had negative correlations with the necrotic core (NC) expansion in the stable group, while very strong positive correlations in unstable group. The inflammatory microenvironment is strongly correlated to the NC expansion in unstable plaques, suggesting that the inflammatory factors may play an important role in the formation of a vulnerable plaque. This prediction tool will improve our understanding of the mechanism of plaque progression and provide a new strategy for early detection and prediction of high-risk plaques.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-03-29
    Description: Vocalization in mammals, birds, reptiles, and amphibians occurs with airways that have wide openings to free-space for efficient sound radiations, but sound is also produced with occluded or semi-occluded airways that have small openings to free-space. It is hypothesized that pressures produced inside the airway with semi-occluded vocalizations have an overall widening effect on the airway. This overall widening then provides more opportunity to produce wide-narrow contrasts along the airway for variation in sound quality and loudness. For human vocalization described here, special emphasis is placed on the epilaryngeal airway, which can be adjusted for optimal aerodynamic power transfer and for optimal acoustic source-airway interaction. The methodology is three-fold, (1) geometric measurement of airway dimensions from CT scans, (2) aerodynamic and acoustic impedance calculation of the airways, and (3) simulation of acoustic signals with a self-oscillating computational model of the sound source and wave propagation.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-03-30
    Description: Public concern over the environmental and public health impacts of the emerging contaminant class “microplastics” has recently prompted government agencies to consider mitigation efforts. Microplastics do not easily fit within traditional risk-based regulatory frameworks because their persistence and extreme diversity (of size, shape, and chemical properties associated with sorbed chemicals) result in high levels of uncertainty in hazard and exposure estimates. Due to these serious complexities, addressing microplastics’ impacts requires open collaboration between scientists, regulators, and policymakers. Here we describe ongoing international mitigation efforts, with California as a case study, and draw lessons from a similarly diverse and environmentally persistent class of emerging contaminants (per- and polyfluoroalkyl substances) that is already disrupting traditional regulatory paradigms, discuss strategies to address challenges associated with developing health-protective regulations and policies related to microplastics, and suggest ways to maximize impacts of research.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-03-29
    Description: The SARS-CoV-2 pathogen is currently spreading worldwide and its propensity for presymptomatic and asymptomatic transmission makes it difficult to control. The control measures adopted in several countries aim at isolating individuals once diagnosed, limiting their social interactions and consequently their transmission probability. These interventions, which have a strong impact on the disease dynamics, can affect the inference of the epidemiological quantities. We first present a theoretical explanation of the effect caused by non-pharmaceutical intervention measures on the mean serial and generation intervals. Then, in a simulation study, we vary the assumed efficacy of control measures and quantify the effect on the mean and variance of realized generation and serial intervals. The simulation results show that the realized serial and generation intervals both depend on control measures and their values contract according to the efficacy of the intervention strategies. Interestingly, the mean serial interval differs from the mean generation time. The deviation between these two values depends on two factors. First, the number of undiagnosed infectious individuals. Second, the relationship between infectiousness, symptom onset and timing of isolation. Similarly, the standard deviations of realized serial and generation intervals do not coincide, with the former shorter than the latter on average. The findings of this study are directly relevant to estimates performed for the current COVID-19 pandemic. In particular, the effective reproduction number is often inferred using both daily incidence data and the generation interval. Failing to account for either contraction or mis-specification by using the serial interval could lead to biased estimates of the effective reproduction number. Consequently, this might affect the choices made by decision makers when deciding which control measures to apply based on the value of the quantity thereof.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-03-29
    Description: Predictions of COVID-19 case growth and mortality are critical to the decisions of political leaders, businesses, and individuals grappling with the pandemic. This predictive task is challenging due to the novelty of the virus, limited data, and dynamic political and societal responses. We embed a Bayesian time series model and a random forest algorithm within an epidemiological compartmental model for empirically grounded COVID-19 predictions. The Bayesian case model fits a location-specific curve to the velocity (first derivative) of the log transformed cumulative case count, borrowing strength across geographic locations and incorporating prior information to obtain a posterior distribution for case trajectories. The compartmental model uses this distribution and predicts deaths using a random forest algorithm trained on COVID-19 data and population-level characteristics, yielding daily projections and interval estimates for cases and deaths in U.S. states. We evaluated the model by training it on progressively longer periods of the pandemic and computing its predictive accuracy over 21-day forecasts. The substantial variation in predicted trajectories and associated uncertainty between states is illustrated by comparing three unique locations: New York, Colorado, and West Virginia. The sophistication and accuracy of this COVID-19 model offer reliable predictions and uncertainty estimates for the current trajectory of the pandemic in the U.S. and provide a platform for future predictions as shifting political and societal responses alter its course.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-03-29
    Description: Current dominant views hold that perceptual confidence reflects the probability that a decision is correct. Although these views have enjoyed some empirical support, recent behavioral results indicate that confidence and the probability of being correct can be dissociated. An alternative hypothesis suggests that confidence instead reflects the magnitude of evidence in favor of a decision while being relatively insensitive to the evidence opposing the decision. We considered how this alternative hypothesis might be biologically instantiated by developing a simple neural network model incorporating a known property of sensory neurons: tuned inhibition. The key idea of the model is that the level of inhibition that each accumulator unit receives from units with the opposite tuning preference, i.e. its inhibition ‘tuning’, dictates its contribution to perceptual decisions versus confidence judgments, such that units with higher tuned inhibition (computing relative evidence for different perceptual interpretations) determine perceptual discrimination decisions, and units with lower tuned inhibition (computing absolute evidence) determine confidence. We demonstrate that this biologically plausible model can account for several counterintuitive findings reported in the literature where confidence and decision accuracy dissociate. By comparing model fits, we further demonstrate that a full complement of behavioral data across several previously published experimental results—including accuracy, reaction time, mean confidence, and metacognitive sensitivity—is best accounted for when confidence is computed from units without, rather than units with, tuned inhibition. Finally, we discuss predictions of our results and model for future neurobiological studies. These findings suggest that the brain has developed and implements this alternative, heuristic theory of perceptual confidence computation by relying on the diversity of neural resources available.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-03-29
    Description: Mitochondria are essential for maintaining skeletal muscle metabolic homeostasis during adaptive response to a myriad of physiologic or pathophysiological stresses. The mechanisms by which mitochondrial function and contractile fiber type are concordantly regulated to ensure muscle function remain poorly understood. Evidence is emerging that the Folliculin interacting protein 1 (Fnip1) is involved in skeletal muscle fiber type specification, function, and disease. In this study, Fnip1 was specifically expressed in skeletal muscle in Fnip1-transgenic (Fnip1Tg) mice. Fnip1Tg mice were crossed with Fnip1-knockout (Fnip1KO) mice to generate Fnip1TgKO mice expressing Fnip1 only in skeletal muscle but not in other tissues. Our results indicate that, in addition to the known role in type I fiber program, FNIP1 exerts control upon muscle mitochondrial oxidative program through AMPK signaling. Indeed, basal levels of FNIP1 are sufficient to inhibit AMPK but not mTORC1 activity in skeletal muscle cells. Gain-of-function and loss-of-function strategies in mice, together with assessment of primary muscle cells, demonstrated that skeletal muscle mitochondrial program is suppressed via the inhibitory actions of FNIP1 on AMPK. Surprisingly, the FNIP1 actions on type I fiber program is independent of AMPK and its downstream PGC-1α. These studies provide a vital framework for understanding the intrinsic role of FNIP1 as a crucial factor in the concerted regulation of mitochondrial function and muscle fiber type that determine muscle fitness.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-03-29
    Description: High-throughput B-cell sequencing has opened up new avenues for investigating complex mechanisms underlying our adaptive immune response. These technological advances drive data generation and the need to mine and analyze the information contained in these large datasets, in particular the identification of therapeutic antibodies (Abs) or those associated with disease exposure and protection. Here, we describe our efforts to use artificial intelligence (AI)-based image-analyses for prospective classification of Abs based solely on sequence information. We hypothesized that Abs recognizing the same part of an antigen share a limited set of features at the binding interface, and that the binding site regions of these Abs share share common structure and physicochemical property patterns that can serve as a “fingerprint” to recognize uncharacterized Abs. We combined large-scale sequence-based protein-structure predictions to generate ensembles of 3-D Ab models, reduced the Ab binding interface to a 2-D image (fingerprint), used pre-trained convolutional neural networks to extract features, and trained deep neural networks (DNNs) to classify Abs. We evaluated this approach using Ab sequences derived from human HIV and Ebola viral infections to differentiate between two Abs, Abs belonging to specific B-cell family lineages, and Abs with different epitope preferences. In addition, we explored a different type of DNN method to detect one class of Abs from a larger pool of Abs. Testing on Ab sets that had been kept aside during model training, we achieved average prediction accuracies ranging from 71–96% depending on the complexity of the classification task. The high level of accuracies reached during these classification tests suggests that the DNN models were able to learn a series of structural patterns shared by Abs belonging to the same class. The developed methodology provides a means to apply AI-based image recognition techniques to analyze high-throughput B-cell sequencing datasets (repertoires) for Ab classification.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-03-29
    Description: To better combat the expansion of antibiotic resistance in pathogens, new compounds, particularly those with novel mechanisms-of-action [MOA], represent a major research priority in biomedical science. However, rediscovery of known antibiotics demonstrates a need for approaches that accurately identify potential novelty with higher throughput and reduced labor. Here we describe an explainable artificial intelligence classification methodology that emphasizes prediction performance and human interpretability by using a Hierarchical Ensemble of Classifiers model optimized with a novel feature selection algorithm called Clairvoyance; collectively referred to as a CoHEC model. We evaluated our methods using whole transcriptome responses from Escherichia coli challenged with 41 FDA-approved antibiotics and 9 crude extracts while depositing 306 transcriptomes. Our CoHEC model can properly predict the primary MOA of previously unobserved compounds in both purified forms and crude extracts at an accuracy above 99%, while also correctly identifying darobactin, a newly discovered antibiotic, as having a novel MOA. In addition, we deploy our methods on a recent E. coli transcriptomics dataset in a different strain and a Mycobacterium smegmatis metabolomics timeseries dataset and showcase exceptionally high performance; improving upon the performance metrics of the original publications. We not only provide insight into the biological interpretation of our model but also that the concept of MOA is a non-discrete heuristic with diverse effects for different compounds within the same MOA, suggesting substantial antibiotic diversity awaiting discovery within existing MOA.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-03-29
    Description: The mechanisms underlying the emergence of seizures are one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous or endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-03-29
    Description: Imaging Mass Cytometry (IMC) combines laser ablation and mass spectrometry to quantitate metal-conjugated primary antibodies incubated in intact tumor tissue slides. This strategy allows spatially-resolved multiplexing of dozens of simultaneous protein targets with 1μm resolution. Each slide is a spatial assay consisting of high-dimensional multivariate observations (m-dimensional feature space) collected at different spatial positions and capturing data from a single biological sample or even representative spots from multiple samples when using tissue microarrays. Often, each of these spatial assays could be characterized by several regions of interest (ROIs). To extract meaningful information from the multi-dimensional observations recorded at different ROIs across different assays, we propose to analyze such datasets using a two-step graph-based approach. We first construct for each ROI a graph representing the interactions between the m covariates and compute an m dimensional vector characterizing the steady state distribution among features. We then use all these m-dimensional vectors to construct a graph between the ROIs from all assays. This second graph is subjected to a nonlinear dimension reduction analysis, retrieving the intrinsic geometric representation of the ROIs. Such a representation provides the foundation for efficient and accurate organization of the different ROIs that correlates with their phenotypes. Theoretically, we show that when the ROIs have a particular bi-modal distribution, the new representation gives rise to a better distinction between the two modalities compared to the maximum a posteriori (MAP) estimator. We applied our method to predict the sensitivity to PD-1 axis blockers treatment of lung cancer subjects based on IMC data, achieving 97.3% average accuracy on two IMC datasets. This serves as empirical evidence that the graph of graphs approach enables us to integrate multiple ROIs and the intra-relationships between the features at each ROI, giving rise to an informative representation that is strongly associated with the phenotypic state of the entire image.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-03-24
    Description: Neurogenesis in the developing neocortex begins with the generation of the preplate, which consists of early-born neurons including Cajal-Retzius (CR) cells and subplate neurons. Here, utilizing the Ebf2-EGFP transgenic mouse in which EGFP initially labels the preplate neurons then persists in CR cells, we reveal the dynamic transcriptome profiles of early neurogenesis and CR cell differentiation. Genome-wide RNA-seq and ChIP-seq analyses at multiple early neurogenic stages have revealed the temporal gene expression dynamics of early neurogenesis and distinct histone modification patterns in early differentiating neurons. We have identified a new set of coding genes and lncRNAs involved in early neuronal differentiation and validated with functional assays in vitro and in vivo. In addition, at E15.5 when Ebf2-EGFP+ cells are mostly CR neurons, single-cell sequencing analysis of purified Ebf2-EGFP+ cells uncovers molecular heterogeneities in CR neurons, but without apparent clustering of cells with distinct regional origins. Along a pseudotemporal trajectory these cells are classified into three different developing states, revealing genetic cascades from early generic neuronal differentiation to late fate specification during the establishment of CR neuron identity and function. Our findings shed light on the molecular mechanisms governing the early differentiation steps during cortical development, especially CR neuron differentiation.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-03-24
    Description: Slow-timescale (tonic) changes in dopamine (DA) contribute to a wide variety of processes in reinforcement learning, interval timing, and other domains. Furthermore, changes in tonic DA exert distinct effects depending on when they occur (e.g., during learning vs. performance) and what task the subject is performing (e.g., operant vs. classical conditioning). Two influential theories of tonic DA—the average reward theory and the Bayesian theory in which DA controls precision—have each been successful at explaining a subset of empirical findings. But how the same DA signal performs two seemingly distinct functions without creating crosstalk is not well understood. Here we reconcile the two theories under the unifying framework of ‘rational inattention,’ which (1) conceptually links average reward and precision, (2) outlines how DA manipulations affect this relationship, and in so doing, (3) captures new empirical phenomena. In brief, rational inattention asserts that agents can increase their precision in a task (and thus improve their performance) by paying a cognitive cost. Crucially, whether this cost is worth paying depends on average reward availability, reported by DA. The monotonic relationship between average reward and precision means that the DA signal contains the information necessary to retrieve the precision. When this information is needed after the task is performed, as presumed by Bayesian inference, acute manipulations of DA will bias behavior in predictable ways. We show how this framework reconciles a remarkably large collection of experimental findings. In reinforcement learning, the rational inattention framework predicts that learning from positive and negative feedback should be enhanced in high and low DA states, respectively, and that DA should tip the exploration-exploitation balance toward exploitation. In interval timing, this framework predicts that DA should increase the speed of the internal clock and decrease the extent of interference by other temporal stimuli during temporal reproduction (the central tendency effect). Finally, rational inattention makes the new predictions that these effects should be critically dependent on the controllability of rewards, that post-reward delays in intertemporal choice tasks should be underestimated, and that average reward manipulations should affect the speed of the clock—thus capturing empirical findings that are unexplained by either theory alone. Our results suggest that a common computational repertoire may underlie the seemingly heterogeneous roles of DA.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-03-24
    Description: Faithful replication of the entire genome requires replication forks to copy large contiguous tracts of DNA, and sites of persistent replication fork stalling present a major threat to genome stability. Understanding the distribution of sites at which replication forks stall, and the ensuing fork processing events, requires genome-wide methods that profile replication fork position and the formation of recombinogenic DNA ends. Here, we describe Transferase-Activated End Ligation sequencing (TrAEL-seq), a method that captures single-stranded DNA 3′ ends genome-wide and with base pair resolution. TrAEL-seq labels both DNA breaks and replication forks, providing genome-wide maps of replication fork progression and fork stalling sites in yeast and mammalian cells. Replication maps are similar to those obtained by Okazaki fragment sequencing; however, TrAEL-seq is performed on asynchronous populations of wild-type cells without incorporation of labels, cell sorting, or biochemical purification of replication intermediates, rendering TrAEL-seq far simpler and more widely applicable than existing replication fork direction profiling methods. The specificity of TrAEL-seq for DNA 3′ ends also allows accurate detection of double-strand break sites after the initiation of DNA end resection, which we demonstrate by genome-wide mapping of meiotic double-strand break hotspots in a dmc1Δ mutant that is competent for end resection but not strand invasion. Overall, TrAEL-seq provides a flexible and robust methodology with high sensitivity and resolution for studying DNA replication and repair, which will be of significant use in determining mechanisms of genome instability.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-03-22
    Description: Across the life sciences, processing next generation sequencing data commonly relies upon a computationally expensive process where reads are mapped onto a reference sequence. Prior to such processing, however, there is a vast amount of information that can be ascertained from the reads, potentially obviating the need for processing, or allowing optimized mapping approaches to be deployed. Here, we present a method termed FlexTyper which facilitates a “reverse mapping” approach in which high throughput sequence queries, in the form of k-mer searches, are run against indexed short-read datasets in order to extract useful information. This reverse mapping approach enables the rapid counting of target sequences of interest. We demonstrate FlexTyper’s utility for recovering depth of coverage, and accurate genotyping of SNP sites across the human genome. We show that genotyping unmapped reads can correctly inform a sample’s population, sex, and relatedness in a family setting. Detection of pathogen sequences within RNA-seq data was sensitive and accurate, performing comparably to existing methods, but with increased flexibility. We present two examples of ways in which this flexibility allows the analysis of genome features not well-represented in a linear reference. First, we analyze contigs from African genome sequencing studies, showing how they distribute across families from three distinct populations. Second, we show how gene-marking k-mers for the killer immune receptor locus allow allele detection in a region that is challenging for standard read mapping pipelines. The future adoption of the reverse mapping approach represented by FlexTyper will be enabled by more efficient methods for FM-index generation and biology-informed collections of reference queries. In the long-term, selection of population-specific references or weighting of edges in pan-population reference genome graphs will be possible using the FlexTyper approach. FlexTyper is available at https://github.com/wassermanlab/OpenFlexTyper.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-03-22
    Description: Our sense of touch helps us encounter the richness of our natural world. Across a myriad of contexts and repetitions, we have learned to deploy certain exploratory movements in order to elicit perceptual cues that are salient and efficient. The task of identifying optimal exploration strategies and somatosensory cues that underlie our softness perception remains relevant and incomplete. Leveraging psychophysical evaluations combined with computational finite element modeling of skin contact mechanics, we investigate an illusion phenomenon in exploring softness; where small-compliant and large-stiff spheres are indiscriminable. By modulating contact interactions at the finger pad, we find this elasticity-curvature illusion is observable in passive touch, when the finger is constrained to be stationary and only cutaneous responses from mechanosensitive afferents are perceptible. However, these spheres become readily discriminable when explored volitionally with musculoskeletal proprioception available. We subsequently exploit this phenomenon to dissociate relative contributions from cutaneous and proprioceptive signals in encoding our percept of material softness. Our findings shed light on how we volitionally explore soft objects, i.e., by controlling surface contact force to optimally elicit and integrate proprioceptive inputs amidst indiscriminable cutaneous contact cues. Moreover, in passive touch, e.g., for touch-enabled displays grounded to the finger, we find those spheres are discriminable when rates of change in cutaneous contact are varied between the stimuli, to supplant proprioceptive feedback.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-03-22
    Description: The scientific community is focused on developing antiviral therapies to mitigate the impacts of the ongoing novel coronavirus disease 2019 (COVID-19) outbreak. This will be facilitated by improved understanding of viral dynamics within infected hosts. Here, using a mathematical model in combination with published viral load data, we compare within-host viral dynamics of SARS-CoV-2 with analogous dynamics of MERS-CoV and SARS-CoV. Our quantitative analyses using a mathematical model revealed that the within-host reproduction number at symptom onset of SARS-CoV-2 was statistically significantly larger than that of MERS-CoV and similar to that of SARS-CoV. In addition, the time from symptom onset to the viral load peak for SARS-CoV-2 infection was shorter than those of MERS-CoV and SARS-CoV. These findings suggest the difficulty of controlling SARS-CoV-2 infection by antivirals. We further used the viral dynamics model to predict the efficacy of potential antiviral drugs that have different modes of action. The efficacy was measured by the reduction in the viral load area under the curve (AUC). Our results indicate that therapies that block de novo infection or virus production are likely to be effective if and only if initiated before the viral load peak (which appears 2–3 days after symptom onset), but therapies that promote cytotoxicity of infected cells are likely to have effects with less sensitivity to the timing of treatment initiation. Furthermore, combining a therapy that promotes cytotoxicity and one that blocks de novo infection or virus production synergistically reduces the AUC with early treatment. Our unique modeling approach provides insights into the pathogenesis of SARS-CoV-2 and may be useful for development of antiviral therapies.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-03-22
    Description: The BAF complex plays an important role in the development of a wide range of tissues by modulating gene expression programs at the chromatin level. However, its role in neural crest development has remained unclear. To determine the role of the BAF complex, we deleted BAF155/BAF170, the core subunits required for the assembly, stability, and functions of the BAF complex in neural crest cells (NCCs). Neural crest-specific deletion of BAF155/BAF170 leads to embryonic lethality due to a wide range of developmental defects including craniofacial, pharyngeal arch artery, and OFT defects. RNAseq and transcription factor enrichment analysis revealed that the BAF complex modulates the expression of multiple signaling pathway genes including Hippo and Notch, essential for the migration, proliferation, and differentiation of the NCCs. Furthermore, we demonstrated that the BAF complex is essential for the Brg1-Yap-Tead-dependent transcription of target genes in NCCs. Together, our results demonstrate an important role of the BAF complex in modulating the gene regulatory network essential for neural crest development.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-03-22
    Description: Sesquiterpene synthases (STSs) catalyze the formation of a large class of plant volatiles called sesquiterpenes. While thousands of putative STS sequences from diverse plant species are available, only a small number of them have been functionally characterized. Sequence identity-based screening for desired enzymes, often used in biotechnological applications, is difficult to apply here as STS sequence similarity is strongly affected by species. This calls for more sophisticated computational methods for functionality prediction. We investigate the specificity of precursor cation formation in these elusive enzymes. By inspecting multi-product STSs, we demonstrate that STSs have a strong selectivity towards one precursor cation. We use a machine learning approach combining sequence and structure information to accurately predict precursor cation specificity for STSs across all plant species. We combine this with a co-evolutionary analysis on the wealth of uncharacterized putative STS sequences, to pinpoint residues and distant functional contacts influencing cation formation and reaction pathway selection. These structural factors can be used to predict and engineer enzymes with specific functions, as we demonstrate by predicting and characterizing two novel STSs from Citrus bergamia.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-03-22
    Description: In contrast to common meiotic gene conversion, mitotic gene conversion, because it is so rare, is often ignored as a process influencing allelic diversity. We show that if there is a large enough number of premeiotic cell divisions, as seen in many organisms without early germline sequestration, such as plants, this is an unsafe position. From examination of 1.1 million rice plants, we determined that the rate of mitotic gene conversion events, per mitosis, is 2 orders of magnitude lower than the meiotic rate. However, owing to the large number of mitoses between zygote and gamete and because of long mitotic tract lengths, meiotic and mitotic gene conversion can be of approximately equivalent importance in terms of numbers of markers converted from zygote to gamete. This holds even if we assume a low number of premeiotic cell divisions (approximately 40) as witnessed in Arabidopsis. A low mitotic rate associated with long tracts is also seen in yeast, suggesting generality of results. For species with many mitoses between each meiotic event, mitotic gene conversion should not be overlooked.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-03-22
    Description: Polymerase theta-mediated end joining (TMEJ) is a chromosome break repair pathway that is able to rescue the lethality associated with the loss of proteins involved in early steps in homologous recombination (e.g., BRCA1/2). This is due to the ability of polymerase theta (Pol θ) to use resected, 3’ single stranded DNA tails to repair chromosome breaks. These resected DNA tails are also the starting substrate for homologous recombination. However, it remains unknown if TMEJ can compensate for the loss of proteins involved in more downstream steps during homologous recombination. Here we show that the Holliday junction resolvases SLX4 and GEN1 are required for viability in the absence of Pol θ in Drosophila melanogaster, and lack of all three proteins results in high levels of apoptosis. Flies deficient in Pol θ and SLX4 are extremely sensitive to DNA damaging agents, and mammalian cells require either Pol θ or SLX4 to survive. Our results suggest that TMEJ and Holliday junction formation/resolution share a common DNA substrate, likely a homologous recombination intermediate, that when left unrepaired leads to cell death. One major consequence of Holliday junction resolution by SLX4 and GEN1 is cancer-causing loss of heterozygosity due to mitotic crossing over. We measured mitotic crossovers in flies after a Cas9-induced chromosome break, and observed that this mutagenic form of repair is increased in the absence of Pol θ. This demonstrates that TMEJ can function upstream of the Holiday junction resolvases to protect cells from loss of heterozygosity. Our work argues that Pol θ can thus compensate for the loss of the Holliday junction resolvases by using homologous recombination intermediates, suppressing mitotic crossing over and preserving the genomic stability of cells.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-03-22
    Description: The maintenance of synaptic changes resulting from long-term potentiation (LTP) is essential for brain function such as memory and learning. Different LTP phases have been associated with diverse molecular processes and pathways, and the molecular underpinnings of LTP on the short, as well as long time scales, are well established. However, the principles on the intermediate time scale of 1-6 hours that mediate the early phase of LTP (E-LTP) remain elusive. We hypothesize that the interplay between specific features of postsynaptic receptor trafficking is responsible for sustaining synaptic changes during this LTP phase. We test this hypothesis by formalizing a biophysical model that integrates several experimentally-motivated mechanisms. The model captures a wide range of experimental findings and predicts that synaptic changes are preserved for hours when the receptor dynamics are shaped by the interplay of structural changes of the spine in conjunction with increased trafficking from recycling endosomes and the cooperative binding of receptors. Furthermore, our model provides several predictions to verify our findings experimentally.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-03-22
    Description: XIST establishes inactivation across its chromosome of origin, even when expressed from autosomal transgenes. To identify the regions of human XIST essential for recruiting heterochromatic marks we generated a series of overlapping deletions in an autosomal inducible XIST transgene present in 8p of the HT1080 male fibrosarcoma cell line. We examined the ability of each construct to enrich its unified XIST territory with the histone marks established by PRC1 and PRC2 as well as the heterochromatin factors MacroH2A and SMCHD1. Chromatin enrichment of ubH2A by PRC1 required four distinct regions of XIST, and these were completely distinct from the two domains crucial for enrichment of H3K27me3 by PRC2. Both the domains required, as well as the impact of PRC1 and PRC2 inhibitors, suggest that PRC1 is required for SMCHD1 while PRC2 function is necessary for MacroH2A recruitment, although incomplete overlap of regions implicates roles for additional factors. This cooperativity between factors contributes to the requirement for multiple separate domains being required for each feature examined. The independence of the PRC1/PRC2 pathways was observed when XIST was expressed both autosomally or from the X chromosome suggesting that these observations are not purely a result of the context in which XIST operates. Although independent domains were required for the PRC1 and PRC2 pathways overall all regions tested were important for some aspect of XIST functionality, demonstrating both modularity and cooperativity across the XIST lncRNA.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-02-01
    Description: Nuclear Magnetic Resonance (NMR) spectroscopy is one of the three primary experimental means of characterizing macromolecular structures, including protein structures. Structure determination by solution NMR spectroscopy has traditionally relied heavily on distance restraints derived from nuclear Overhauser effect (NOE) measurements. While structure determination of proteins from NOE-based restraints is well understood and broadly used, structure determination from Residual Dipolar Couplings (RDCs) is relatively less well developed. Here, we describe the new features of the protein structure modeling program REDCRAFT and focus on the new Adaptive Decimation (AD) feature. The AD plays a critical role in improving the robustness of REDCRAFT to missing or noisy data, while allowing structure determination of larger proteins from less data. In this report we demonstrate the successful application of REDCRAFT in structure determination of proteins ranging in size from 50 to 145 residues using experimentally collected data, and of larger proteins (145 to 573 residues) using simulated RDC data. In both cases, REDCRAFT uses only RDC data that can be collected from perdeuterated proteins. Finally, we compare the accuracy of structure determination from RDCs alone with traditional NOE-based methods for the structurally novel PF.2048.1 protein. The RDC-based structure of PF.2048.1 exhibited 1.0 Å BB-RMSD with respect to a high-quality NOE-based structure. Although optimal strategies would include using RDC data together with chemical shift, NOE, and other NMR data, these studies provide proof-of-principle for robust structure determination of largely-perdeuterated proteins from RDC data alone using REDCRAFT.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-02-01
    Description: Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-02-01
    Description: RNA is considered as an attractive target for new small molecule drugs. Designing active compounds can be facilitated by computational modeling. Most of the available tools developed for these prediction purposes, such as molecular docking or scoring functions, are parametrized for protein targets. The performance of these methods, when applied to RNA-ligand systems, is insufficient. To overcome these problems, we developed AnnapuRNA, a new knowledge-based scoring function designed to evaluate RNA-ligand complex structures, generated by any computational docking method. We also evaluated three main factors that may influence the structure prediction, i.e., the starting conformer of a ligand, the docking program, and the scoring function used. We applied the AnnapuRNA method for a post-hoc study of the recently published structures of the FMN riboswitch. Software is available at https://github.com/filipspl/AnnapuRNA.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-03-22
    Description: Altered patterns of recombination on 21q have long been associated withthe nondisjunction chromosome21within oocytes and the increased risk of having a child with Down syndrome. Unfortunately the genetic etiology of these altered patterns of recombination have yet to be elucidated. We for the first time genotyped the gene MCM9, a candidate gene for recombination regulation and DNA repair in mothers with or without children with Down syndrome. In our approach, we identified the location of recombination on the maternal chromosome 21 using short tandem repeat markers, then stratified our population by the origin of meiotic error and age at conception. We observed that twenty-five out of forty-one single nucleotide polymorphic sites within MCM9 exhibited an association with meiosis I error (N = 700), but not with meiosis II error (N = 125). This association was maternal age-independent. Several variants exhibited aprotective association with MI error, some were neutral. Maternal age stratified characterization of cases revealed that MCM9 risk variants were associated with an increased chance of reduced recombination on 21q within oocytes. The spatial distribution of single observed recombination events revealed no significant change in the location of recombination among women harbouring MCM9 risk, protective, or neutral variant. Additionally, we identified a total of six novel polymorphic variants and two novel alleles that were either risk imparting or protective against meiosis I nondisjunction. In silico analyses using five different programs suggest the risk variants either cause a change in protein function or may alter the splicing pattern of transcripts and disrupt the proportion of different isoforms of MCM9 products within oocytes. These observations bring us a significant step closer to understanding the molecular basis of recombination errors in chromosome 21 nondisjunction within oocytes that leads to birth of child with Down syndrome.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-03-22
    Description: DNA methylation is found throughout all domains of life, yet the extent and function of DNA methylation differ among eukaryotes. Strains of the plant pathogenic fungus Zymoseptoria tritici appeared to lack cytosine DNA methylation (5mC) because gene amplification followed by Repeat-Induced Point mutation (RIP) resulted in the inactivation of the dim2 DNA methyltransferase gene. 5mC is, however, present in closely related sister species. We demonstrate that inactivation of dim2 occurred recently as some Z. tritici isolates carry a functional dim2 gene. Moreover, we show that dim2 inactivation occurred by a different path than previously hypothesized. We mapped the genome-wide distribution of 5mC in strains with or without functional dim2 alleles. Presence of functional dim2 correlates with high levels of 5mC in transposable elements (TEs), suggesting a role in genome defense. We identified low levels of 5mC in strains carrying non-functional dim2 alleles, suggesting that 5mC is maintained over time, presumably by an active Dnmt5 DNA methyltransferase. Integration of a functional dim2 allele in strains with mutated dim2 restored normal 5mC levels, demonstrating de novo cytosine methylation activity of Dim2. To assess the importance of 5mC for genome evolution, we performed an evolution experiment, comparing genomes of strains with high levels of 5mC to genomes of strains lacking functional dim2. We found that presence of a functional dim2 allele alters nucleotide composition by promoting C to T transitions (C→T) specifically at CpA (CA) sites during mitosis, likely contributing to TE inactivation. Our results show that 5mC density at TEs is a polymorphic trait in Z. tritici populations that can impact genome evolution.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-03-23
    Description: Synthetic gene drive constructs could, in principle, provide the basis for highly efficient interventions to control disease vectors and other pest species. This efficiency derives in part from leveraging natural processes of dispersal and gene flow to spread the construct and its impacts from one population to another. However, sometimes (for example, with invasive species) only specific populations are in need of control, and impacts on non-target populations would be undesirable. Many gene drive designs use nucleases that recognise and cleave specific genomic sequences, and one way to restrict their spread would be to exploit sequence differences between target and non-target populations. In this paper we propose and model a series of low threshold double drive designs for population suppression, each consisting of two constructs, one imposing a reproductive load on the population and the other inserted into a differentiated locus and controlling the drive of the first. Simple deterministic, discrete-generation computer simulations are used to assess the alternative designs. We find that the simplest double drive designs are significantly more robust to pre-existing cleavage resistance at the differentiated locus than single drive designs, and that more complex designs incorporating sex ratio distortion can be more efficient still, even allowing for successful control when the differentiated locus is neutral and there is up to 50% pre-existing resistance in the target population. Similar designs can also be used for population replacement, with similar benefits. A population genomic analysis of CRISPR PAM sites in island and mainland populations of the malaria mosquito Anopheles gambiae indicates that the differentiation needed for our methods to work can exist in nature. Double drives should be considered when efficient but localised population genetic control is needed and there is some genetic differentiation between target and non-target populations.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-03-19
    Description: Adenosine receptors (ARs) have been demonstrated to be potential therapeutic targets against Parkinson’s disease (PD). In the present study, we describe a multistage virtual screening approach that identifies dual adenosine A1 and A2A receptor antagonists using deep learning, pharmacophore models, and molecular docking methods. Nineteen hits from the ChemDiv library containing 1,178,506 compounds were selected and further tested by in vitro assays (cAMP functional assay and radioligand binding assay); of these hits, two compounds (C8 and C9) with 1,2,4-triazole scaffolds possessing the most potent binding affinity and antagonistic activity for A1/A2A ARs at the nanomolar level (pKi of 7.16–7.49 and pIC50 of 6.31–6.78) were identified. Further molecular dynamics (MD) simulations suggested similarly strong binding interactions of the complexes between the A1/A2A ARs and two compounds (C8 and C9). Notably, the 1,2,4-triazole derivatives (compounds C8 and C9) were identified as the most potent dual A1/A2A AR antagonists in our study and could serve as a basis for further development. The effective multistage screening approach developed in this study can be utilized to identify potent ligands for other drug targets.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-03-19
    Description: Impaired formation of the intrahepatic biliary network leads to cholestatic liver diseases, which are frequently associated with autoimmune disorders. Using a chemical mutagenesis strategy in zebrafish combined with computational network analysis, we screened for novel genes involved in intrahepatic biliary network formation. We positionally cloned a mutation in the nckap1l gene, which encodes a cytoplasmic adaptor protein for the WAVE regulatory complex. The mutation is located in the last exon after the stop codon of the primary splice isoform, only disrupting a previously unannotated minor splice isoform, which indicates that the minor splice isoform is responsible for the intrahepatic biliary network phenotype. CRISPR/Cas9-mediated nckap1l deletion, which disrupts both the primary and minor isoforms, showed the same defects. In the liver of nckap1l mutant larvae, WAVE regulatory complex component proteins are degraded specifically in biliary epithelial cells, which line the intrahepatic biliary network, thus disrupting the actin organization of these cells. We further show that nckap1l genetically interacts with the Cdk5 pathway in biliary epithelial cells. These data together indicate that although nckap1l was previously considered to be a hematopoietic cell lineage-specific protein, its minor splice isoform acts in biliary epithelial cells to regulate intrahepatic biliary network formation.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-03-18
    Description: Extensive amounts of multi-omics data and multiple cancer subtyping methods have been developed rapidly, and generate discrepant clustering results, which poses challenges for cancer molecular subtype research. Thus, the development of methods for the identification of cancer consensus molecular subtypes is essential. The lack of intuitive and easy-to-use analytical tools has posed a barrier. Here, we report on the development of the COnsensus Molecular SUbtype of Cancer (COMSUC) web server. With COMSUC, users can explore consensus molecular subtypes of more than 30 cancers based on eight clustering methods, five types of omics data from public reference datasets or users’ private data, and three consensus clustering methods. The web server provides interactive and modifiable visualization, and publishable output of analysis results. Researchers can also exchange consensus subtype results with collaborators via project IDs. COMSUC is now publicly and freely available with no login requirement at http://comsuc.bioinforai.tech/ (IP address: http://59.110.25.27/). For a video summary of this web server, see S1 Video and S1 File.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-03-24
    Description: The cohesin complex spatially organizes interphase chromatin by bringing distal genomic loci into close physical proximity, looping out the intervening DNA. Mutation of cohesin complex subunits is observed in cancer and developmental disorders, but the mechanisms through which these mutations may contribute to disease remain poorly understood. Here, we investigate a recurrent missense mutation to the hinge domain of the cohesin subunit SMC1A, observed in acute myeloid leukemia. Engineering this mutation into murine embryonic stem cells caused widespread changes in gene expression, including dysregulation of the pluripotency gene expression program. This mutation reduced cohesin levels at promoters and enhancers, decreased DNA loops and interactions across short genomic distances, and weakened insulation at CTCF-mediated DNA loops. These findings provide insight into how altered cohesin function contributes to disease and identify a requirement for the cohesin hinge domain in three-dimensional chromatin structure.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-03-24
    Description: Since entering the human population, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; the causative agent of Coronavirus Disease 2019 [COVID-19]) has spread worldwide, causing 〉100 million infections and 〉2 million deaths. While large-scale sequencing efforts have identified numerous genetic variants in SARS-CoV-2 during its circulation, it remains largely unclear whether many of these changes impact adaptation, replication, or transmission of the virus. Here, we characterized 14 different low-passage replication-competent human SARS-CoV-2 isolates representing all major European clades observed during the first pandemic wave in early 2020. By integrating viral sequencing data from patient material, virus stocks, and passaging experiments, together with kinetic virus replication data from nonhuman Vero-CCL81 cells and primary differentiated human bronchial epithelial cells (BEpCs), we observed several SARS-CoV-2 features that associate with distinct phenotypes. Notably, naturally occurring variants in Orf3a (Q57H) and nsp2 (T85I) were associated with poor replication in Vero-CCL81 cells but not in BEpCs, while SARS-CoV-2 isolates expressing the Spike D614G variant generally exhibited enhanced replication abilities in BEpCs. Strikingly, low-passage Vero-derived stock preparation of 3 SARS-CoV-2 isolates selected for substitutions at positions 5/6 of E and were highly attenuated in BEpCs, revealing a key cell-specific function to this region. Rare isolate-specific deletions were also observed in the Spike furin cleavage site during Vero-CCL81 passage, but these were rapidly selected against in BEpCs, underscoring the importance of this site for SARS-CoV-2 replication in primary human cells. Overall, our study uncovers sequence features in SARS-CoV-2 variants that determine cell-specific replication and highlights the need to monitor SARS-CoV-2 stocks carefully when phenotyping newly emerging variants or potential variants of concern.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-03-24
    Description: While vision evokes a dense network of feedforward and feedback neural processes in the brain, visual processes are primarily modeled with feedforward hierarchical neural networks, leaving the computational role of feedback processes poorly understood. Here, we developed a generative autoencoder neural network model and adversarially trained it on a categorically diverse data set of images. We hypothesized that the feedback processes in the ventral visual pathway can be represented by reconstruction of the visual information performed by the generative model. We compared representational similarity of the activity patterns in the proposed model with temporal (magnetoencephalography) and spatial (functional magnetic resonance imaging) visual brain responses. The proposed generative model identified two segregated neural dynamics in the visual brain. A temporal hierarchy of processes transforming low level visual information into high level semantics in the feedforward sweep, and a temporally later dynamics of inverse processes reconstructing low level visual information from a high level latent representation in the feedback sweep. Our results append to previous studies on neural feedback processes by presenting a new insight into the algorithmic function and the information carried by the feedback processes in the ventral visual pathway.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-03-18
    Description: Developing mathematical models to accurately predict microbial growth dynamics remains a key challenge in ecology, evolution, biotechnology, and public health. To reproduce and grow, microbes need to take up essential nutrients from the environment, and mathematical models classically assume that the nutrient uptake rate is a saturating function of the nutrient concentration. In nature, microbes experience different levels of nutrient availability at all environmental scales, yet parameters shaping the nutrient uptake function are commonly estimated for a single initial nutrient concentration. This hampers the models from accurately capturing microbial dynamics when the environmental conditions change. To address this problem, we conduct growth experiments for a range of micro-organisms, including human fungal pathogens, baker’s yeast, and common coliform bacteria, and uncover the following patterns. We observed that the maximal nutrient uptake rate and biomass yield were both decreasing functions of initial nutrient concentration. While a functional form for the relationship between biomass yield and initial nutrient concentration has been previously derived from first metabolic principles, here we also derive the form of the relationship between maximal nutrient uptake rate and initial nutrient concentration. Incorporating these two functions into a model of microbial growth allows for variable growth parameters and enables us to substantially improve predictions for microbial dynamics in a range of initial nutrient concentrations, compared to keeping growth parameters fixed.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-03-18
    Description: Spatial expansion of a population of cells can arise from growth of microorganisms, plant cells, and mammalian cells. It underlies normal or dysfunctional tissue development, and it can be exploited as the foundation for programming spatial patterns. This expansion is often driven by continuous growth and division of cells within a colony, which in turn pushes the peripheral cells outward. This process generates a repulsion velocity field at each location within the colony. Here we show that this process can be approximated as coarse-grained repulsive-expansion kinetics. This framework enables accurate and efficient simulation of growth and gene expression dynamics in radially symmetric colonies with homogenous z-directional distribution. It is robust even if cells are not spherical and vary in size. The simplicity of the resulting mathematical framework also greatly facilitates generation of mechanistic insights.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-03-18
    Description: DNA double-strand breaks arise in vivo when a dicentric chromosome (two centromeres on one chromosome) goes through mitosis with the two centromeres attached to opposite spindle pole bodies. Repair of the DSBs generates phenotypic diversity due to the range of monocentric derivative chromosomes that arise. To explore whether DSBs may be differentially repaired as a function of their spatial position in the chromosome, we have examined the structure of monocentric derivative chromosomes from cells containing a suite of dicentric chromosomes in which the distance between the two centromeres ranges from 6.5 kb to 57.7 kb. Two major classes of repair products, homology-based (homologous recombination (HR) and single-strand annealing (SSA)) and end-joining (non-homologous (NHEJ) and micro-homology mediated (MMEJ)) were identified. The distribution of repair products varies as a function of distance between the two centromeres. Genetic dependencies on double strand break repair (Rad52), DNA ligase (Lif1), and S phase checkpoint (Mrc1) are indicative of distinct repair pathway choices for DNA breaks in the pericentromeric chromatin versus the arms.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-03-18
    Description: Many initiatives have addressed the global need to upskill biologists in bioinformatics tools and techniques. Australia is not unique in its requirement for such training, but due to its large size and relatively small and geographically dispersed population, Australia faces specific challenges. A combined training approach was implemented by the authors to overcome these challenges. The “hybrid” method combines guidance from experienced trainers with the benefits of both webinar-style delivery and concurrent face-to-face hands-on practical exercises in classrooms. Since 2017, the hybrid method has been used to conduct 9 hands-on bioinformatics training sessions at international scale in which over 800 researchers have been trained in diverse topics on a range of software platforms. The method has become a key tool to ensure scalable and more equitable delivery of short-course bioinformatics training across Australia and can be easily adapted to other locations, topics, or settings.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-03-10
    Description: Human red blood cells (RBCs) have a circulatory lifespan of about four months. Under constant oxidative and mechanical stress, but devoid of organelles and deprived of biosynthetic capacity for protein renewal, RBCs undergo substantial homeostatic changes, progressive densification followed by late density reversal among others, changes assumed to have been harnessed by evolution to sustain the rheological competence of the RBCs for as long as possible. The unknown mechanisms by which this is achieved are the subject of this investigation. Each RBC traverses capillaries between 1000 and 2000 times per day, roughly one transit per minute. A dedicated Lifespan model of RBC homeostasis was developed as an extension of the RCM introduced in the previous paper to explore the cumulative patterns predicted for repetitive capillary transits over a standardized lifespan period of 120 days, using experimental data to constrain the range of acceptable model outcomes. Capillary transits were simulated by periods of elevated cell/medium volume ratios and by transient deformation-induced permeability changes attributed to PIEZO1 channel mediation as outlined in the previous paper. The first unexpected finding was that quantal density changes generated during single capillary transits cease accumulating after a few days and cannot account for the observed progressive densification of RBCs on their own, thus ruling out the quantal hypothesis. The second unexpected finding was that the documented patterns of RBC densification and late reversal could only be emulated by the implementation of a strict time-course of decay in the activities of the calcium and Na/K pumps, suggestive of a selective mechanism enabling the extended longevity of RBCs. The densification pattern over most of the circulatory lifespan was determined by calcium pump decay whereas late density reversal was shaped by the pattern of Na/K pump decay. A third finding was that both quantal changes and pump-decay regimes were necessary to account for the documented lifespan pattern, neither sufficient on their own. A fourth new finding revealed that RBCs exposed to levels of PIEZO1-medited calcium permeation above certain thresholds in the circulation could develop a pattern of early or late hyperdense collapse followed by delayed density reversal. When tested over much reduced lifespan periods the results reproduced the known circulatory fate of irreversible sickle cells, the cell subpopulation responsible for vaso-occlusion and for most of the clinical manifestations of sickle cell disease. Analysis of the results provided an insightful new understanding of the mechanisms driving the changes in RBC homeostasis during circulatory aging in health and disease.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-03-10
    Description: Cell migration in 3D microenvironments is a complex process which depends on the coordinated activity of leading edge protrusive force and rear retraction in a push-pull mechanism. While the potentiation of protrusions has been widely studied, the precise signalling and mechanical events that lead to retraction of the cell rear are much less well understood, particularly in physiological 3D extra-cellular matrix (ECM). We previously discovered that rear retraction in fast moving cells is a highly dynamic process involving the precise spatiotemporal interplay of mechanosensing by caveolae and signalling through RhoA. To further interrogate the dynamics of rear retraction, we have adopted three distinct mathematical modelling approaches here based on (i) Boolean logic, (ii) deterministic kinetic ordinary differential equations (ODEs) and (iii) stochastic simulations. The aims of this multi-faceted approach are twofold: firstly to derive new biological insight into cell rear dynamics via generation of testable hypotheses and predictions; and secondly to compare and contrast the distinct modelling approaches when used to describe the same, relatively under-studied system. Overall, our modelling approaches complement each other, suggesting that such a multi-faceted approach is more informative than methods based on a single modelling technique to interrogate biological systems. Whilst Boolean logic was not able to fully recapitulate the complexity of rear retraction signalling, an ODE model could make plausible population level predictions. Stochastic simulations added a further level of complexity by accurately mimicking previous experimental findings and acting as a single cell simulator. Our approach highlighted the unanticipated role for CDK1 in rear retraction, a prediction we confirmed experimentally. Moreover, our models led to a novel prediction regarding the potential existence of a ‘set point’ in local stiffness gradients that promotes polarisation and rapid rear retraction.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-03-02
    Description: In the last two decades rodents have been on the rise as a dominant model for visual neuroscience. This is particularly true for earlier levels of information processing, but a number of studies have suggested that also higher levels of processing such as invariant object recognition occur in rodents. Here we provide a quantitative and comprehensive assessment of this claim by comparing a wide range of rodent behavioral and neural data with convolutional deep neural networks. These networks have been shown to capture hallmark properties of information processing in primates through a succession of convolutional and fully connected layers. We find that performance on rodent object vision tasks can be captured using low to mid-level convolutional layers only, without any convincing evidence for the need of higher layers known to simulate complex object recognition in primates. Our approach also reveals surprising insights on assumptions made before, for example, that the best performing animals would be the ones using the most abstract representations–which we show to likely be incorrect. Our findings suggest a road ahead for further studies aiming at quantifying and establishing the richness of representations underlying information processing in animal models at large.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-03-02
    Description: Microbes can metabolize more chemical compounds than any other group of organisms. As a result, their metabolism is of interest to investigators across biology. Despite the interest, information on metabolism of specific microbes is hard to access. Information is buried in text of books and journals, and investigators have no easy way to extract it out. Here we investigate if neural networks can extract out this information and predict metabolic traits. For proof of concept, we predicted two traits: whether microbes carry one type of metabolism (fermentation) or produce one metabolite (acetate). We collected written descriptions of 7,021 species of bacteria and archaea from Bergey’s Manual. We read the descriptions and manually identified (labeled) which species were fermentative or produced acetate. We then trained neural networks to predict these labels. In total, we identified 2,364 species as fermentative, and 1,009 species as also producing acetate. Neural networks could predict which species were fermentative with 97.3% accuracy. Accuracy was even higher (98.6%) when predicting species also producing acetate. Phylogenetic trees of species and their traits confirmed that predictions were accurate. Our approach with neural networks can extract information efficiently and accurately. It paves the way for putting more metabolic traits into databases, providing easy access of information to investigators.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-03-12
    Description: PDkit is an open source software toolkit supporting the collaborative development of novel methods of digital assessment for Parkinson’s Disease, using symptom measurements captured continuously by wearables (passive monitoring) or by high-use-frequency smartphone apps (active monitoring). The goal of the toolkit is to help address the current lack of algorithmic and model transparency in this area by facilitating open sharing of standardised methods that allow the comparison of results across multiple centres and hardware variations. PDkit adopts the information-processing pipeline abstraction incorporating stages for data ingestion, quality of information augmentation, feature extraction, biomarker estimation and finally, scoring using standard clinical scales. Additionally, a dataflow programming framework is provided to support high performance computations. The practical use of PDkit is demonstrated in the context of the CUSSP clinical trial in the UK. The toolkit is implemented in the python programming language, the de facto standard for modern data science applications, and is widely available under the MIT license.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-03-09
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-03-09
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-02-17
    Description: Computational models of animal biosonar seek to identify critical aspects of echo processing responsible for the superior, real-time performance of echolocating bats and dolphins in target tracking and clutter rejection. The Spectrogram Correlation and Transformation (SCAT) model replicates aspects of biosonar imaging in both species by processing wideband biosonar sounds and echoes with auditory mechanisms identified from experiments with bats. The model acquires broadband biosonar broadcasts and echoes, represents them as time-frequency spectrograms using parallel bandpass filters, translates the filtered signals into ten parallel amplitude threshold levels, and then operates on the resulting time-of-occurrence values at each frequency to estimate overall echo range delay. It uses the structure of the echo spectrum by depicting it as a series of local frequency nulls arranged regularly along the frequency axis of the spectrograms after dechirping them relative to the broadcast. Computations take place entirely on the timing of threshold-crossing events for each echo relative to threshold-events for the broadcast. Threshold-crossing times take into account amplitude-latency trading, a physiological feature absent from conventional digital signal processing. Amplitude-latency trading transposes the profile of amplitudes across frequencies into a profile of time-registrations across frequencies. Target shape is extracted from the spacing of the object’s individual acoustic reflecting points, or glints, using the mutual interference pattern of peaks and nulls in the echo spectrum. These are merged with the overall range-delay estimate to produce a delay-based reconstruction of the object’s distance as well as its glints. Clutter echoes indiscriminately activate multiple parts in the null-detecting system, which then produces the equivalent glint-delay spacings in images, thus blurring the overall echo-delay estimates by adding spurious glint delays to the image. Blurring acts as an anticorrelation process that rejects clutter intrusion into perceptions.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-02-17
    Description: Coronavirus Disease 2019 (COVID-19), caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected over 30 million globally to date. Although high rates of venous thromboembolism and evidence of COVID-19-induced endothelial dysfunction have been reported, the precise aetiology of the increased thrombotic risk associated with COVID-19 infection remains to be fully elucidated. Therefore, we assessed clinical platelet parameters and circulating platelet activity in patients with severe and nonsevere COVID-19. An assessment of clinical blood parameters in patients with severe COVID-19 disease (requiring intensive care), patients with nonsevere disease (not requiring intensive care), general medical in-patients without COVID-19, and healthy donors was undertaken. Platelet function and activity were also assessed by secretion and specific marker analysis. We demonstrated that routine clinical blood parameters including increased mean platelet volume (MPV) and decreased platelet:neutrophil ratio are associated with disease severity in COVID-19 upon hospitalisation and intensive care unit (ICU) admission. Strikingly, agonist-induced ADP release was 30- to 90-fold higher in COVID-19 patients compared with hospitalised controls and circulating levels of platelet factor 4 (PF4), soluble P-selectin (sP-selectin), and thrombopoietin (TPO) were also significantly elevated in COVID-19. This study shows that distinct differences exist in routine full blood count and other clinical laboratory parameters between patients with severe and nonsevere COVID-19. Moreover, we have determined all COVID-19 patients possess hyperactive circulating platelets. These data suggest abnormal platelet reactivity may contribute to hypercoagulability in COVID-19 and confirms the role that platelets/clotting has in determining the severity of the disease and the complexity of the recovery path.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-02-17
    Description: Lung cancer is one of the leading causes of cancer-related deaths worldwide and is characterized by hijacking immune system for active growth and aggressive metastasis. Neutrophils, which in their original form should establish immune activities to the tumor as a first line of defense, are undermined by tumor cells to promote tumor invasion in several ways. In this study, we investigate the mutual interactions between the tumor cells and the neutrophils that facilitate tumor invasion by developing a mathematical model that involves taxis-reaction-diffusion equations for the critical components in the interaction. These include the densities of tumor and neutrophils, and the concentrations of signaling molecules and structure such as neutrophil extracellular traps (NETs). We apply the mathematical model to a Boyden invasion assay used in the experiments to demonstrate that the tumor-associated neutrophils can enhance tumor cell invasion by secreting the neutrophil elastase. We show that the model can both reproduce the major experimental observation on NET-mediated cancer invasion and make several important predictions to guide future experiments with the goal of the development of new anti-tumor strategies. Moreover, using this model, we investigate the fundamental mechanism of NET-mediated invasion of cancer cells and the impact of internal and external heterogeneity on the migration patterning of tumour cells and their response to different treatment schedules.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-02-02
    Description: Finding non-standard or new metabolic pathways has important applications in metabolic engineering, synthetic biology and the analysis and reconstruction of metabolic networks. Branched metabolic pathways dominate in metabolic networks and depict a more comprehensive picture of metabolism compared to linear pathways. Although progress has been developed to find branched metabolic pathways, few efforts have been made in identifying branched metabolic pathways via atom group tracking. In this paper, we present a pathfinding method called BPFinder for finding branched metabolic pathways by atom group tracking, which aims to guide the synthetic design of metabolic pathways. BPFinder enumerates linear metabolic pathways by tracking the movements of atom groups in metabolic network and merges the linear atom group conserving pathways into branched pathways. Two merging rules based on the structure of conserved atom groups are proposed to accurately merge the branched compounds of linear pathways to identify branched pathways. Furthermore, the integrated information of compound similarity, thermodynamic feasibility and conserved atom groups is also used to rank the pathfinding results for feasible branched pathways. Experimental results show that BPFinder is more capable of recovering known branched metabolic pathways as compared to other existing methods, and is able to return biologically relevant branched pathways and discover alternative branched pathways of biochemical interest. The online server of BPFinder is available at http://114.215.129.245:8080/atomic/. The program, source code and data can be downloaded from https://github.com/hyr0771/BPFinder.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-03-10
    Description: Bacterial opportunistic human pathogens frequently exhibit intrinsic antibiotic tolerance and resistance, resulting in infections that can be nearly impossible to eradicate. We asked whether this recalcitrance could be driven by these organisms’ evolutionary history as environmental microbes that engage in chemical warfare. Using Pseudomonas aeruginosa as a model, we demonstrate that the self-produced antibiotic pyocyanin (PYO) activates defenses that confer collateral tolerance specifically to structurally similar synthetic clinical antibiotics. Non-PYO-producing opportunistic pathogens, such as members of the Burkholderia cepacia complex, likewise display elevated antibiotic tolerance when cocultured with PYO-producing strains. Furthermore, by widening the population bottleneck that occurs during antibiotic selection and promoting the establishment of a more diverse range of mutant lineages, PYO increases apparent rates of mutation to antibiotic resistance to a degree that can rival clinically relevant hypermutator strains. Together, these results reveal an overlooked mechanism by which opportunistic pathogens that produce natural toxins can dramatically modulate the efficacy of clinical antibiotics and the evolution of antibiotic resistance, both for themselves and other members of clinically relevant polymicrobial communities.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-03-10
    Description: Pacemaking dysfunction (PD) may result in heart rhythm disorders, syncope or even death. Current treatment of PD using implanted electronic pacemakers has some limitations, such as finite battery life and the risk of repeated surgery. As such, the biological pacemaker has been proposed as a potential alternative to the electronic pacemaker for PD treatment. Experimentally and computationally, it has been shown that bio-engineered pacemaker cells can be generated from non-rhythmic ventricular myocytes (VMs) by knocking out genes related to the inward rectifier potassium channel current (IK1) or by overexpressing hyperpolarization-activated cyclic nucleotide gated channel genes responsible for the “funny” current (If). However, it is unclear if a bio-engineered pacemaker based on the modification of IK1- and If-related channels simultaneously would enhance the ability and stability of bio-engineered pacemaking action potentials. In this study, the possible mechanism(s) responsible for VMs to generate spontaneous pacemaking activity by regulating IK1 and If density were investigated by a computational approach. Our results showed that there was a reciprocal interaction between IK1 and If in ventricular pacemaker model. The effect of IK1 depression on generating ventricular pacemaker was mono-phasic while that of If augmentation was bi-phasic. A moderate increase of If promoted pacemaking activity but excessive increase of If resulted in a slowdown in the pacemaking rate and even an unstable pacemaking state. The dedicated interplay between IK1 and If in generating stable pacemaking and dysrhythmias was evaluated. Finally, a theoretical analysis in the IK1/If parameter space for generating pacemaking action potentials in different states was provided. In conclusion, to the best of our knowledge, this study provides a wide theoretical insight into understandings for generating stable and robust pacemaker cells from non-pacemaking VMs by the interplay of IK1 and If, which may be helpful in designing engineered biological pacemakers for application purposes.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-03-18
    Description: The genetic basis of general plant vigor is of major interest to food producers, yet the trait is recalcitrant to genetic mapping because of the number of loci involved, their small effects, and linkage. Observations of heterosis in many crops suggests that recessive, malfunctioning versions of genes are a major cause of poor performance, yet we have little information on the mutational spectrum underlying these disruptions. To address this question, we generated a long-read assembly of a tropical japonica rice (Oryza sativa) variety, Carolina Gold, which allowed us to identify structural mutations (〉50 bp) and orient them with respect to their ancestral state using the outgroup, Oryza glaberrima. Supporting prior work, we find substantial genome expansion in the sativa branch. While transposable elements (TEs) account for the largest share of size variation, the majority of events are not directly TE-mediated. Tandem duplications are the most common source of insertions and are highly enriched among 50-200bp mutations. To explore the relative impact of various mutational classes on crop fitness, we then track these structural events over the last century of US rice improvement using 101 resequenced varieties. Within this material, a pattern of temporary hybridization between medium and long-grain varieties was followed by recent divergence. During this long-term selection, structural mutations that impact gene exons have been removed at a greater rate than intronic indels and single-nucleotide mutations. These results support the use of ab initio estimates of mutational burden, based on structural data, as an orthogonal predictor in genomic selection.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-03-18
    Description: The winged insects of the order Diptera are colloquially named for their most recognizable phenotype: flight. These insects rely on flight for a number of important life history traits, such as dispersal, foraging, and courtship. Despite the importance of flight, relatively little is known about the genetic architecture of flight performance. Accordingly, we sought to uncover the genetic modifiers of flight using a measure of flies’ reaction and response to an abrupt drop in a vertical flight column. We conducted a genome wide association study (GWAS) using 197 of the Drosophila Genetic Reference Panel (DGRP) lines, and identified a combination of additive and marginal variants, epistatic interactions, whole genes, and enrichment across interaction networks. Egfr, a highly pleiotropic developmental gene, was among the most significant additive variants identified. We functionally validated 13 of the additive candidate genes’ (Adgf-A/Adgf-A2/CG32181, bru1, CadN, flapper (CG11073), CG15236, flippy (CG9766), CREG, Dscam4, form3, fry, Lasp/CG9692, Pde6, Snoo), and introduce a novel approach to whole gene significance screens: PEGASUS_flies. Additionally, we identified ppk23, an Acid Sensing Ion Channel (ASIC) homolog, as an important hub for epistatic interactions. We propose a model that suggests genetic modifiers of wing and muscle morphology, nervous system development and function, BMP signaling, sexually dimorphic neural wiring, and gene regulation are all important for the observed differences flight performance in a natural population. Additionally, these results represent a snapshot of the genetic modifiers affecting drop-response flight performance in Drosophila, with implications for other insects.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-03-18
    Description: Disease epidemic outbreaks on human metapopulation networks are often driven by a small number of superspreader nodes, which are primarily responsible for spreading the disease throughout the network. Superspreader nodes typically are characterized either by their locations within the network, by their degree of connectivity and centrality, or by their habitat suitability for the disease, described by their reproduction number (R). Here we introduce a model that considers simultaneously the effects of network properties and R on superspreaders, as opposed to previous research which considered each factor separately. This type of model is applicable to diseases for which habitat suitability varies by climate or land cover, and for direct transmitted diseases for which population density and mitigation practices influences R. We present analytical models that quantify the superspreader capacity of a population node by two measures: probability-dependent superspreader capacity, the expected number of neighboring nodes to which the node in consideration will randomly spread the disease per epidemic generation, and time-dependent superspreader capacity, the rate at which the node spreads the disease to each of its neighbors. We validate our analytical models with a Monte Carlo analysis of repeated stochastic Susceptible-Infected-Recovered (SIR) simulations on randomly generated human population networks, and we use a random forest statistical model to relate superspreader risk to connectivity, R, centrality, clustering, and diffusion. We demonstrate that either degree of connectivity or R above a certain threshold are sufficient conditions for a node to have a moderate superspreader risk factor, but both are necessary for a node to have a high-risk factor. The statistical model presented in this article can be used to predict the location of superspreader events in future epidemics, and to predict the effectiveness of mitigation strategies that seek to reduce the value of R, alter host movements, or both.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-03-18
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-03-18
    Description: A systematic and reproducible “workflow”—the process that moves a scientific investigation from raw data to coherent research question to insightful contribution—should be a fundamental part of academic data-intensive research practice. In this paper, we elaborate basic principles of a reproducible data analysis workflow by defining 3 phases: the Explore, Refine, and Produce Phases. Each phase is roughly centered around the audience to whom research decisions, methodologies, and results are being immediately communicated. Importantly, each phase can also give rise to a number of research products beyond traditional academic publications. Where relevant, we draw analogies between design principles and established practice in software development. The guidance provided here is not intended to be a strict rulebook; rather, the suggestions for practices and tools to advance reproducible, sound data-intensive analysis may furnish support for both students new to research and current researchers who are new to data-intensive work.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-03-11
    Description: Transcriptional rewiring is the regulation of different target genes by orthologous regulators in different organisms. While this phenomenon has been observed, it has not been extensively studied, particularly in core regulatory systems. Several global cell cycle regulators are conserved in the Alphaproteobacteria, providing an excellent model to study this phenomenon. First characterized in Caulobacter crescentus, GcrA and CcrM compose a DNA methylation-based regulatory system that helps coordinate the complex life cycle of this organism. These regulators are well-conserved across Alphaproteobacteria, but the extent to which their regulatory targets are conserved is not known. In this study, the regulatory targets of GcrA and CcrM were analyzed by SMRT-seq, RNA-seq, and ChIP-seq technologies in the Alphaproteobacterium Brevundimonas subvibrioides, and then compared to those of its close relative C. crescentus that inhabits the same environment. Although the regulators themselves are highly conserved, the genes they regulate are vastly different. GcrA directly regulates 204 genes in C. crescentus, and though B. subvibrioides has orthologs to 147 of those genes, only 48 genes retained GcrA binding in their promoter regions. Additionally, only 12 of those 48 genes demonstrated significant transcriptional change in a gcrA mutant, suggesting extensive transcriptional rewiring between these organisms. Similarly, out of hundreds of genes CcrM regulates in each of these organisms, only 2 genes were found in common. When multiple Alphaproteobacterial genomes were analyzed bioinformatically for potential GcrA regulatory targets, the regulation of genes involved in DNA replication and cell division was well conserved across the Caulobacterales but not outside this order. This work suggests that significant transcriptional rewiring can occur in cell cycle regulatory systems even over short evolutionary distances.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2021-03-11
    Description: The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-03-11
    Description: Loss in intraspecific diversity can alter ecosystem functions, but the underlying mechanisms are still elusive, and intraspecific biodiversity–ecosystem function (iBEF) relationships have been restrained to primary producers. Here, we manipulated genetic and functional richness of a fish consumer (Phoxinus phoxinus) to test whether iBEF relationships exist in consumer species and whether they are more likely sustained by genetic or functional richness. We found that both genotypic and functional richness affected ecosystem functioning, either independently or interactively. Loss in genotypic richness reduced benthic invertebrate diversity consistently across functional richness treatments, whereas it reduced zooplankton diversity only when functional richness was high. Finally, losses in genotypic and functional richness altered functions (decomposition) through trophic cascades. We concluded that iBEF relationships lead to substantial top-down effects on entire food chains. The loss of genotypic richness impacted ecological properties as much as the loss of functional richness, probably because it sustains “cryptic” functional diversity.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-03-01
    Description: Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. The altered gene expression patterns and developmental rates described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2021-03-11
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2021-03-08
    Description: Previous research on risk factors for obstructive heart defects (OHDs) focused on maternal and infant genetic variants, prenatal environmental exposures, and their potential interaction effects. Less is known about the role of paternal genetic variants or environmental exposures and risk of OHDs. We examined parent-of-origin effects in transmission of alleles in the folate, homocysteine, or transsulfuration pathway genes on OHD occurrence in offspring. We used data on 569 families of liveborn infants with OHDs born between October 1997 and August 2008 from the National Birth Defects Prevention Study to conduct a family-based case-only study. Maternal, paternal, and infant DNA were genotyped using an Illumina Golden Gate custom single nucleotide polymorphism (SNP) panel. Relative risks (RR), 95% confidence interval (CI), and likelihood ratio tests from log-linear models were used to estimate the parent-of-origin effect of 877 SNPs in 60 candidate genes in the folate, homocysteine, and transsulfuration pathways on the risk of OHDs. Bonferroni correction was applied for multiple testing. We identified 3 SNPs in the transsulfuration pathway and 1 SNP in the folate pathway that were statistically significant after Bonferroni correction. Among infants who inherited paternally-derived copies of the G allele for rs6812588 in the RFC1 gene, the G allele for rs1762430 in the MGMT gene, and the A allele for rs9296695 and rs4712023 in the GSTA3 gene, RRs for OHD were 0.11 (95% CI: 0.04, 0.29, P = 9.16x10-7), 0.30 (95% CI: 0.17, 0.53, P = 9.80x10-6), 0.34 (95% CI: 0.20, 0.57, P = 2.28x10-5), and 0.34 (95% CI: 0.20, 0.58, P = 3.77x10-5), respectively, compared to infants who inherited maternally-derived copies of the same alleles. We observed statistically significant decreased risk of OHDs among infants who inherited paternal gene variants involved in folate and transsulfuration pathways.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2021-03-08
    Description: The function of Sprouty2 (Spry2) in T cells is unknown. Using 2 different (inducible and T cell–targeted) knockout mouse strains, we found that Spry2 positively regulated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by modulating the activity of LCK. Spry2−/− CD4+ T cells were unable to activate LCK, proliferate, differentiate into T helper cells, or produce cytokines. Spry2 deficiency abrogated type 2 inflammation and airway hyperreactivity in a murine model of asthma. Spry2 expression was higher in blood and airway CD4+ T cells from patients with asthma, and Spry2 knockdown impaired human T cell proliferation and cytokine production. Spry2 deficiency up-regulated the lipid raft protein caveolin-1, enhanced its interaction with CSK, and increased CSK interaction with LCK, culminating in augmented inhibitory phosphorylation of LCK. Knockdown of CSK or dislodgment of caveolin-1–bound CSK restored ERK1/2 activation in Spry2−/− T cells, suggesting an essential role for Spry2 in LCK activation and T cell function.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-03-08
    Description: Traditional predictive models for transcriptome-wide association studies (TWAS) consider only single nucleotide polymorphisms (SNPs) local to genes of interest and perform parameter shrinkage with a regularization process. These approaches ignore the effect of distal-SNPs or other molecular effects underlying the SNP-gene association. Here, we outline multi-omics strategies for transcriptome imputation from germline genetics to allow more powerful testing of gene-trait associations by prioritizing distal-SNPs to the gene of interest. In one extension, we identify mediating biomarkers (CpG sites, microRNAs, and transcription factors) highly associated with gene expression and train predictive models for these mediators using their local SNPs. Imputed values for mediators are then incorporated into the final predictive model of gene expression, along with local SNPs. In the second extension, we assess distal-eQTLs (SNPs associated with genes not in a local window around it) for their mediation effect through mediating biomarkers local to these distal-eSNPs. Distal-eSNPs with large indirect mediation effects are then included in the transcriptomic prediction model with the local SNPs around the gene of interest. Using simulations and real data from ROS/MAP brain tissue and TCGA breast tumors, we show considerable gains of percent variance explained (1–2% additive increase) of gene expression and TWAS power to detect gene-trait associations. This integrative approach to transcriptome-wide imputation and association studies aids in identifying the complex interactions underlying genetic regulation within a tissue and important risk genes for various traits and disorders.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-03-30
    Description: Microplastics (MPs), plastic particles
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2021-03-25
    Description: The activity of a border ownership selective (BOS) neuron indicates where a foreground object is located relative to its (classical) receptive field (RF). A population of BOS neurons thus provides an important component of perceptual grouping, the organization of the visual scene into objects. In previous theoretical work, it has been suggested that this grouping mechanism is implemented by a population of dedicated grouping (“G”) cells that integrate the activity of the distributed feature cells representing an object and, by feedback, modulate the same cells, thus making them border ownership selective. The feedback modulation by G cells is thought to also provide the mechanism for object-based attention. A recent modeling study showed that modulatory common feedback, implemented by synapses with N-methyl-D-aspartate (NMDA)-type glutamate receptors, accounts for the experimentally observed synchrony in spike trains of BOS neurons and the shape of cross-correlations between them, including its dependence on the attentional state. However, that study was limited to pairs of BOS neurons with consistent border ownership preferences, defined as two neurons tuned to respond to the same visual object, in which attention decreases synchrony. But attention has also been shown to increase synchrony in neurons with inconsistent border ownership selectivity. Here we extend the computational model from the previous study to fully understand these effects of attention. We postulate the existence of a second type of G-cell that represents spatial attention by modulating the activity of all BOS cells in a spatially defined area. Simulations of this model show that a combination of spatial and object-based mechanisms fully accounts for the observed pattern of synchrony between BOS neurons. Our results suggest that modulatory feedback from G-cells may underlie both spatial and object-based attention.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2021-03-25
    Description: The sequences of antibodies from a given repertoire are highly diverse at few sites located on the surface of a genome-encoded larger scaffold. The scaffold is often considered to play a lesser role than highly diverse, non-genome-encoded sites in controlling binding affinity and specificity. To gauge the impact of the scaffold, we carried out quantitative phage display experiments where we compare the response to selection for binding to four different targets of three different antibody libraries based on distinct scaffolds but harboring the same diversity at randomized sites. We first show that the response to selection of an antibody library may be captured by two measurable parameters. Second, we provide evidence that one of these parameters is determined by the degree of affinity maturation of the scaffold, affinity maturation being the process by which antibodies accumulate somatic mutations to evolve towards higher affinities during the natural immune response. In all cases, we find that libraries of antibodies built around maturated scaffolds have a lower response to selection to other arbitrary targets than libraries built around germline-based scaffolds. We thus propose that germline-encoded scaffolds have a higher selective potential than maturated ones as a consequence of a selection for this potential over the long-term evolution of germline antibody genes. Our results are a first step towards quantifying the evolutionary potential of biomolecules.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2021-02-16
    Description: Evolutionary branching occurs when a population with a unimodal phenotype distribution diversifies into a multimodally distributed population consisting of two or more strains. Branching results from frequency-dependent selection, which is caused by interactions between individuals. For example, a population performing a social task may diversify into a cooperator strain and a defector strain. Branching can also occur in multi-dimensional phenotype spaces, such as when two tasks are performed simultaneously. In such cases, the strains may diverge in different directions: possible outcomes include division of labor (with each population performing one of the tasks) or the diversification into a strain that performs both tasks and another that performs neither. Here we show that the shape of the population’s phenotypic distribution plays a role in determining the direction of branching. Furthermore, we show that the shape of the distribution is, in turn, contingent on the direction of approach to the evolutionary branching point. This results in a distribution–selection feedback that is not captured in analytical models of evolutionary branching, which assume monomorphic populations. Finally, we show that this feedback can influence long-term evolutionary dynamics and promote the evolution of division of labor.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2021-02-16
    Description: Sweating is a basic skin function in body temperature control. In sweat glands, salt excretion and reabsorption are regulated to avoid electrolyte imbalance. To date, the mechanism underlying such regulation is not fully understood. Corin is a transmembrane protease that activates atrial natriuretic peptide (ANP), a cardiac hormone essential for normal blood volume and pressure. Here, we report an unexpected role of corin in sweat glands to promote sweat and salt excretion in regulating electrolyte homeostasis. In human and mouse eccrine sweat glands, corin and ANP are expressed in the luminal epithelial cells. In corin-deficient mice on normal- and high-salt diets, sweat and salt excretion is reduced. This phenotype is associated with enhanced epithelial sodium channel (ENaC) activity that mediates Na+ and water reabsorption. Treatment of amiloride, an ENaC inhibitor, normalizes sweat and salt excretion in corin-deficient mice. Moreover, treatment of aldosterone decreases sweat and salt excretion in wild-type (WT), but not corin-deficient, mice. These results reveal an important regulatory function of corin in eccrine sweat glands to promote sweat and salt excretion.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-02-16
    Description: Contemporary accounts of the initiation of cardiac arrhythmias typically rely on after-depolarizations as the trigger for reentrant activity. The after-depolarizations are usually triggered by calcium entry or spontaneous release within the cells of the myocardium or the conduction system. Here we propose an alternative mechanism whereby arrhythmias are triggered autonomously by cardiac cells that fail to repolarize after a normal heartbeat. We investigated the proposal by representing the heart as an excitable medium of FitzHugh-Nagumo cells where a proportion of cells were capable of remaining depolarized indefinitely. As such, those cells exhibit bistable membrane dynamics. We found that heterogeneous media can tolerate a surprisingly large number of bistable cells and still support normal rhythmic activity. Yet there is a critical limit beyond which the medium is persistently arrhythmogenic. Numerical analysis revealed that the critical threshold for arrhythmogenesis depends on both the strength of the coupling between cells and the extent to which the abnormal cells resist repolarization. Moreover, arrhythmogenesis was found to emerge preferentially at tissue boundaries where cells naturally have fewer neighbors to influence their behavior. These findings may explain why atrial fibrillation typically originates from tissue boundaries such as the cuff of the pulmonary vein.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-02-16
    Description: Spectral similarity is used as a proxy for structural similarity in many tandem mass spectrometry (MS/MS) based metabolomics analyses such as library matching and molecular networking. Although weaknesses in the relationship between spectral similarity scores and the true structural similarities have been described, little development of alternative scores has been undertaken. Here, we introduce Spec2Vec, a novel spectral similarity score inspired by a natural language processing algorithm—Word2Vec. Spec2Vec learns fragmental relationships within a large set of spectral data to derive abstract spectral embeddings that can be used to assess spectral similarities. Using data derived from GNPS MS/MS libraries including spectra for nearly 13,000 unique molecules, we show how Spec2Vec scores correlate better with structural similarity than cosine-based scores. We demonstrate the advantages of Spec2Vec in library matching and molecular networking. Spec2Vec is computationally more scalable allowing structural analogue searches in large databases within seconds.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-02-17
    Description: Surgical interventions in epileptic patients aimed at the removal of the epileptogenic zone have success rates at only 60-70%. This failure can be partly attributed to the insufficient spatial sampling by the implanted intracranial electrodes during the clinical evaluation, leading to an incomplete picture of spatio-temporal seizure organization in the regions that are not directly observed. Utilizing the partial observations of the seizure spreading through the brain network, complemented by the assumption that the epileptic seizures spread along the structural connections, we infer if and when are the unobserved regions recruited in the seizure. To this end we introduce a data-driven model of seizure recruitment and propagation across a weighted network, which we invert using the Bayesian inference framework. Using a leave-one-out cross-validation scheme on a cohort of 45 patients we demonstrate that the method can improve the predictions of the states of the unobserved regions compared to an empirical estimate that does not use the structural information, yet it is on the same level as the estimate that takes the structure into account. Furthermore, a comparison with the performed surgical resection and the surgery outcome indicates a link between the inferred excitable regions and the actual epileptogenic zone. The results emphasize the importance of the structural connectome in the large-scale spatio-temporal organization of epileptic seizures and introduce a novel way to integrate the patient-specific connectome and intracranial seizure recordings in a whole-brain computational model of seizure spread.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-02-02
    Description: A population’s spatial structure affects the rate of genetic change and the outcome of natural selection. These effects can be modeled mathematically using the Birth-death process on graphs. Individuals occupy the vertices of a weighted graph, and reproduce into neighboring vertices based on fitness. A key quantity is the probability that a mutant type will sweep to fixation, as a function of the mutant’s fitness. Graphs that increase the fixation probability of beneficial mutations, and decrease that of deleterious mutations, are said to amplify selection. However, fixation probabilities are difficult to compute for an arbitrary graph. Here we derive an expression for the fixation probability, of a weakly-selected mutation, in terms of the time for two lineages to coalesce. This expression enables weak-selection fixation probabilities to be computed, for an arbitrary weighted graph, in polynomial time. Applying this method, we explore the range of possible effects of graph structure on natural selection, genetic drift, and the balance between the two. Using exhaustive analysis of small graphs and a genetic search algorithm, we identify families of graphs with striking effects on fixation probability, and we analyze these families mathematically. Our work reveals the nuanced effects of graph structure on natural selection and neutral drift. In particular, we show how these notions depend critically on the process by which mutations arise.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-03-25
    Description: Adaptive immune system uses T cell receptors (TCRs) to recognize pathogens and to consequently initiate immune responses. TCRs can be sequenced from individuals and methods analyzing the specificity of the TCRs can help us better understand individuals’ immune status in different disorders. For this task, we have developed TCRGP, a novel Gaussian process method that predicts if TCRs recognize specified epitopes. TCRGP can utilize the amino acid sequences of the complementarity determining regions (CDRs) from TCRα and TCRβ chains and learn which CDRs are important in recognizing different epitopes. Our comprehensive evaluation with epitope-specific TCR sequencing data shows that TCRGP achieves on average higher prediction accuracy in terms of AUROC score than existing state-of-the-art methods in epitope-specificity predictions. We also propose a novel analysis approach for combined single-cell RNA and TCRαβ (scRNA+TCRαβ) sequencing data by quantifying epitope-specific TCRs with TCRGP and identify HBV-epitope specific T cells and their transcriptomic states in hepatocellular carcinoma patients.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-03-26
    Description: Simple choices (e.g., eating an apple vs. an orange) are made by integrating noisy evidence that is sampled over time and influenced by visual attention; as a result, fluctuations in visual attention can affect choices. But what determines what is fixated and when? To address this question, we model the decision process for simple choice as an information sampling problem, and approximate the optimal sampling policy. We find that it is optimal to sample from options whose value estimates are both high and uncertain. Furthermore, the optimal policy provides a reasonable account of fixations and choices in binary and trinary simple choice, as well as the differences between the two cases. Overall, the results show that the fixation process during simple choice is influenced dynamically by the value estimates computed during the decision process, in a manner consistent with optimal information sampling.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-03-26
    Description: Decades of reductionist approaches in biology have achieved spectacular progress, but the proliferation of subdisciplines, each with its own technical and social practices regarding data, impedes the growth of the multidisciplinary and interdisciplinary approaches now needed to address pressing societal challenges. Data integration is key to a reintegrated biology able to address global issues such as climate change, biodiversity loss, and sustainable ecosystem management. We identify major challenges to data integration and present a vision for a “Data as a Service”-oriented architecture to promote reuse of data for discovery. The proposed architecture includes standards development, new tools and services, and strategies for career-development and sustainability.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-03-26
    Description: Complex age-associated phenotypes are caused, in part, by an interaction between an individual’s genotype and age. The mechanisms governing such interactions are however not entirely understood. Here, we provide a novel transcriptional mechanism-based framework–SNiPage, to investigate such interactions, whereby a transcription factor (TF) whose expression changes with age (age-associated TF), binds to a polymorphic regulatory element in an allele-dependent fashion, rendering the target gene’s expression dependent on both, the age and the genotype. Applying SNiPage to GTEx, we detected ~637 significant TF-SNP-Gene triplets on average across 25 tissues, where the TF binds to a regulatory SNP in the gene’s promoter or putative enhancer and potentially regulates its expression in an age- and allele-dependent fashion. The detected SNPs are enriched for epigenomic marks indicative of regulatory activity, exhibit allele-specific chromatin accessibility, and spatial proximity to their putative gene targets. Furthermore, the TF-SNP interaction-dependent target genes have established links to aging and to age-associated diseases. In six hypertension-implicated tissues, detected interactions significantly inform hypertension state of an individual. Lastly, the age-interacting SNPs exhibit a greater proximity to the reported phenotype/diseases-associated SNPs than eSNPs identified in an interaction-independent fashion. Overall, we present a novel mechanism-based model, and a novel framework SNiPage, to identify functionally relevant SNP-age interactions in transcriptional control and illustrate their potential utility in understanding complex age-associated phenotypes.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-03-30
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-03-25
    Description: Sequential behaviour is often compositional and organised across multiple time scales: a set of individual elements developing on short time scales (motifs) are combined to form longer functional sequences (syntax). Such organisation leads to a natural hierarchy that can be used advantageously for learning, since the motifs and the syntax can be acquired independently. Despite mounting experimental evidence for hierarchical structures in neuroscience, models for temporal learning based on neuronal networks have mostly focused on serial methods. Here, we introduce a network model of spiking neurons with a hierarchical organisation aimed at sequence learning on multiple time scales. Using biophysically motivated neuron dynamics and local plasticity rules, the model can learn motifs and syntax independently. Furthermore, the model can relearn sequences efficiently and store multiple sequences. Compared to serial learning, the hierarchical model displays faster learning, more flexible relearning, increased capacity, and higher robustness to perturbations. The hierarchical model redistributes the variability: it achieves high motif fidelity at the cost of higher variability in the between-motif timings.
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-03-25
    Description: Loading of the MCM replicative helicase at origins of replication is a highly regulated process that precedes DNA replication in all eukaryotes. The stoichiometry of MCM loaded at origins has been proposed to be a key determinant of when those origins initiate replication during S phase. Nevertheless, the genome-wide regulation of MCM loading stoichiometry and its direct effect on replication timing remain unclear. In order to investigate why some origins load more MCM than others, we perturbed MCM levels in budding yeast cells and, for the first time, directly measured MCM levels and replication timing in the same experiment. Reduction of MCM levels through degradation of Mcm4, one of the six obligate components of the MCM complex, slowed progression through S phase and increased sensitivity to replication stress. Reduction of MCM levels also led to differential loading at origins during G1, revealing origins that are sensitive to reductions in MCM and others that are not. Sensitive origins loaded less MCM under normal conditions and correlated with a weak ability to recruit the origin recognition complex (ORC). Moreover, reduction of MCM loading at specific origins of replication led to a delay in their replication during S phase. In contrast, overexpression of MCM had no effects on cell cycle progression, relative MCM levels at origins, or replication timing, suggesting that, under optimal growth conditions, cellular MCM levels are not limiting for MCM loading. Our results support a model in which the loading capacity of origins is the primary determinant of MCM stoichiometry in wild-type cells, but that stoichiometry is controlled by origins’ ability to recruit ORC and compete for MCM when MCM becomes limiting.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-03-25
    Description: Saltatorial locomotion is a type of hopping gait that in mammals can be found in rabbits, hares, kangaroos, and some species of rodents. The molecular mechanisms that control and fine-tune the formation of this type of gait are unknown. Here, we take advantage of one strain of domesticated rabbits, the sauteur d’Alfort, that exhibits an abnormal locomotion behavior defined by the loss of the typical jumping that characterizes wild-type rabbits. Strikingly, individuals from this strain frequently adopt a bipedal gait using their front legs. Using a combination of experimental crosses and whole genome sequencing, we show that a single locus containing the RAR related orphan receptor B gene (RORB) explains the atypical gait of these rabbits. We found that a splice-site mutation in an evolutionary conserved site of RORB results in several aberrant transcript isoforms incorporating intronic sequence. This mutation leads to a drastic reduction of RORB-positive neurons in the spinal cord, as well as defects in differentiation of populations of spinal cord interneurons. Our results show that RORB function is required for the performance of saltatorial locomotion in rabbits.
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...