ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (356)
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
  • Etna
Collection
  • 1
    Publication Date: 2020-11-26
    Description: Anecdotes of concurrent eruptions at Etna, Stromboli, and Vulcano (Southern Italy) have persisted for more than 2000 years and volcanologists in recent and past times have hypothesized a causal link among these volcanoes. Here this hypothesis is tested. To introduce the problem and provide examples of the type of expected volcanic phenomena, narratives of the most notable examples of concurrent eruptions are provided. Then the frequency of eruptions at each individual volcano is analysed for about the last 300 years and the expected probability of concurrent eruptions is calculated to compare it to the observed probability. Results show that the occurrence of concurrent eruptions is often more frequent than a random probability, particularly for the Stromboli-Vulcano pair. These results are integrated with a statistical analysis of the earthquake catalogue to find evidence of linked seismicity in the Etnean and Aeolian areas. Results suggest a moderate incidence of non-random concurrent eruptions, but available data are temporally limited and do not allow an unequivocal identification of plausible triggers; our results, however, are the first attempt to quantify a more-than-2000-years-old curious observation and constitute a starting point for more sophisticated analyses of new data in the future. We look forward to our prediction of a moderate incidence of concurrent eruptions being confirmed or refuted with the passage of time and occurrence of new events.
    Description: JCR Journal
    Description: open
    Keywords: Etna ; Stromboli ; Vulcano ; eruption, and earthquake ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-30
    Description: In this paper we present a probabilistic hazard assessment for tephra fallout at Mt. Etna (Italy) associated with both short- and long-lived eruptions. Eruptive scenarios and eruption source parameters were defined based on the geological record, while an advection–diffusion–sedimentation model was used to capture the variation in wind speed and direction with time after calibration with the field data. Two different types of eruptions were considered in our analysis: eruptions associated with strong short-lived plumes and eruptions associated with weak long-lived plumes. Our probabilistic approach was based on one eruption scenario for both types and on an eruption range scenario for eruptions producing weak long-lived plumes. Due to the prevailing wind direction, the eastern flanks are the most affected by tephra deposition, with the 122 BC Plinian and 2002–2003 eruptions showing the highest impact both on infrastructures and agriculture.
    Description: Published
    Description: 3221– 3233
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: tephra hazard assessment ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-10
    Description: The Gulf of Patti and its onshore sector represent one of the most seismically active regions of the Italian Peninsula. Over the period 1984–2014, about 1800 earthquakes with small-to-moderate magnitude and a maximum hypocentral depth of 40 km occurred in this area. Historical catalogues reveal that the same area was affected by several strong earthquakes such as the Mw = 6.1 event in April 1978 and the Mw = 6.2 one in March 1786 which have caused severe damages in the surrounding localities. The main seismotectonic feature affecting this area is represented by a NNW–SSE trending right-lateral strike-slip fault system called “Aeolian–Tindari–Letojanni” (ATLFS) which has been interpreted as a lithospheric transfer zone extending from the Aeolian Islands to the Ionian coast of Sicily. Although the large-scale role of the ATLFS is widely accepted, several issues about its structural architecture (i.e. distribution, attitude and slip of fault segments) and the active deformation pattern are poorly constrained, particularly in the offshore. An integrated analysis of field structural geology with marine geophysical and seismological data has allowed to better understand the structural fabric of the ATLFS which, in the study area, is expressed by two major NW–SE trending, en-echelon arranged fault segments. Minor NNE–SSW oriented extensional structures mainly occur in the overlap region between major faults, forming a dilatational stepover. Most faults display evidence of active deformation and appear to control the main morphobathymetric features. This aspect, together with diffused continental slope instability, must be considered for the revaluation of the seismic and geomorphological hazard of this sector of southern Tyrrhenian Sea.
    Description: Published
    Description: 253–272
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Active faulting ; Continental slope instability ; North-eastern Sicily ; Gulf of Patti ; Seismic profiles ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-12
    Description: In this paper we present a morphotectonic study of the Paganica–San Demetrio fault system (PSDFS) responsible for the Mw6.1 April 6, 2009 earthquake (L'Aquila, Central Italy). The discrepancy observed between the length of the seismologic–geodetic modeled fault, the limited size of the primary coseismic surface ruptures and the significant morphological expression of the PSDFS stimulated a debate about the maximum rupture length of the PSDFS and its capability to generate larger magnitude events. To image the PSDFS long-term morphological expression and define its surface geometrical arrangement (length, number of fault splays and boundaries), we took advantage of a high-resolution airborne LiDAR dataset. LiDAR topography substantially increased our confidence in detecting even subtle tectonic-controlled morphologies. We define the PSDFS as a ~ 19 km-long fault system that displays a complex structural setting characterized by two different sectors: 1) the Paganica sector to the NW, with a narrow deformation zone, and 2) the San Demetrio sector to SE, where the strain is accommodated by several fault-splays dissecting a wider Quaternary basin. We also defined a first-order hierarchy among the numerous fault splays across the PSDFS. The long-term geomorphic expression of the PSDFS suggests that it ruptured also involving the whole 19 km-long structure besides rupturing only small sections, as it occurred in 2009. This suggests a variable slip behavior. Empirical relations applied to this hypothesis allow up to M 6.6 earthquakes along the PSDFS. These results have a critical impact on the seismic hazard assessment of the area when compared with a M 6.1 event as the 2009.
    Description: Published
    Description: 108-121
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Active normal faulting; Tectonic geomorphology; Airborne LiDAR; 2009 L'Aquila earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: We report on the geochemical and chronological characterization of a tephra layer, here called RdV-T1, recovered within a continental sequence at Riparo di Venere site in the Fucino Basin (central Italy). Textural, mineralogical, and detailed geochemical (major and trace elements on single glass shard) analyses indicate thatMt. Etna is the volcanic source. Radiocarbon dating of charred materials above and belowthis tephra layer result in 13,380±40 (16,260–15,920 cal yrs BP) and 13,620±40 (16,625–16,230 cal yrs BP) 14C years BP, respectively. This age points out that RdV-T1 tephra derives fromthe Late Pleistocene activity of the Ellittico caldera-forming phase of Mt. Etna that is significantly (up to 1750 yrs) younger than the Biancavilla Ignimbrites and upper Acireale fall, which are the last known events of this eruptive cycle. In addition, the RdV-T1 tephra geochemical signature is distinctwith respect to the Biancavilla Ignimbrites and upper Acireale fall. Therefore, the radiocarbon and geochemical data consistently indicate that the RdV-T1 tephra may represent an explosive event following the Biancavilla Ignimbritesand the upper Acireale fall not yet identified.
    Description: Published
    Description: 106992
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: Etna ; Tephra ; Late Glacial
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-12
    Description: A fraction of the volcanic activity occurs intraplate, challenging our models of melting and magma transfer to the Earth's surface. A prominent example is Mt. Etna, eastern Sicily, offset from the asthenospheric tear below the Malta Escarpment proposed as its melt source. The nearby Hyblean volcanism, to the south, and the overall northward migration of the eastern Sicilian volcanism are also unexplained. Here we simulate crustal magma pathways beneath eastern Sicily, accounting for regional stresses and decompression due to the increase in the depth of the Malta Escarpment. We find non-vertical magma pathways, with the competition of tectonic and loading stresses controlling the trajectories' curvature and its change in time, causing the observed migration of volcanism. This suggests that the Hyblean and Etnean volcanism have been fed laterally from a melt pooling region below the Malta Escarpment. The case of eastern Sicily shows how the reconstruction of the evolution of magmatic provinces may require not only an assessment of the paleostresses, but also of the contribution of surface loads and their variations; at times, the latter may even prevail. Accounting for these competing stresses may help shed light on the distribution and wandering of intraplate volcanism
    Description: Published
    Description: 15-22
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: intraplate volcanism ; fault scarp ; dike propagation ; Malta Escarpment ; Hyblean volcanism ; Etna ; Mechanical models of magma transfer are used to backtrack the surface volcanism in Eastern Sicily. ; Our models account for regional stresses and decompression due to the deepening of the Malta Escarpment ; Both the Hyblean and Etnean volcanism has been laterally fed by a melt pooling region below the Malta Escarpment ; The Malta Escarpment played an active role in steering the shifting of Etnean and Hyblean volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-09
    Description: The 11–13 January 2011 eruptive episode at Etna volcano occurred after several months of increasing ash emissions from the summit craters, and was heralded by increasing SO2 output, which peaked at ∼5000 megagrams/day several hours before the start of the eruptive activity. The eruptive episode began with a phase of Strombolian activity from a pit crater on the eastern flank of the SE‐Crater. Explosions became more intense with time and eventually became transitional between Strombolian and fountaining, before moving into a lava fountaining phase. Fountaining was accompanied by lava output from the lower rim of the pit crater. Emplacement of the resulting lava flow field, as well as associated lava fountain‐ and Strombolian‐phases, was tracked using a remote sensing network comprising both thermal and visible cameras. Thermal surveys completed once the eruptive episode had ended also allowed us to reconstruct the emplacement of the lava flow field. Using a high temporal resolution geostationary satellite data we were also able to construct a detailed record of the heat flux during the fountain‐fed flow phase and its subsequent cooling. The dense rock volume of erupted lava obtained from the satellite data was 1.2 × 106 m3; this was emplaced over a period of about 6 h to give a mean output rate of ∼55 m3 s−1. By comparison, geologic data allowed us to estimate dense rock volumes of ∼0.85 × 106 m3 for the pyroclastics erupted during the lava fountain phase, and 0.84–1.7 × 106 m3 for lavas erupted during the effusive phase, resulting in a total erupted dense rock volume of 1.7–2.5 × 106 m3 and a mean output rate of 78–117 m3 s−1. The sequence of events and quantitative results presented here shed light on the shallow feeding system of the volcano.
    Description: Published
    Description: B11207
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: Etna ; lava fountains ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-09
    Description: We present a new method that uses cooling curves, apparent in high temporal resolution thermal data acquired by geostationary sensors, to estimate erupted volumes and mean output rates during short lava fountaining events. The 15 minute temporal resolution of the data allows phases of waxing and peak activity to be identified during short (150-to- 810 minute-long) events. Cooling curves, which decay over 8-to-21 hour-periods following the fountaining event, can also be identified. Application to 19 fountaining events recorded at Etna by MSG’s SEVIRI sensor between 10 January 2011 and 9 January 2012, yields a total erupted dense rock lava volume of 28 106 m3, with a maximum intensity of 227 m3 s 1 being obtained for the 12 August 2011 event. The timeaveraged output over the year was 0.9 m3 s 1, this being the same as the rate that has characterized Etna’s effusive activity for the last 40 years.
    Description: We are grateful to EUMETSAT for SEVIRI data.
    Description: Published
    Description: L06305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: satellite ; lava fountains ; Etna ; erupted volume ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-07-16
    Description: Morphological changes of the summit craters of active volcanoes are of pivotal interest in volcano monitoring because they could be the consequences of volcanic activities and represent the prelude of dangerous events. Several methodologies have been used during the years in the volcanological monitoring, starting from ground measurements and remote sensing techniques such as aerial observation and satellite data analysis. However, in the last decade UAVs have emerged in monitoring active volcanoes. In fact, they represent tools of indisputable value due to their relatively low cost, speed in mission planning, repeatability of surveys for data acquisition and increased operator safety. During the last 4 Years we performed 15 UAVs surveys and 3 from helicopter to monitor the four summit craters of ETNA. The acquired data have been processed through structure-from-motion photogrammetric software to extract DEMs and orthomosaics with resolution ranging between 5 and 20 cm. A multi-temporal comparison of the extracted data has been successively performed on a GIS platform with the final aims of performing morpho-structural analyses of Etna summit craters, identifying areas of structural weakness, that could indicate areas of possible lateral collapses, and computing volume balances between gained and lost volumes. The presented elaborations could help to quantify the hazard related to Etna summit eruptive activity and to mitigate the risk on an area visited by several tourists, especially in summer time. Powered by
    Description: Published
    Description: Online conference
    Description: 5V. Processi eruttivi e post-eruttivi
    Keywords: Etna ; morpho-structural analyses ; structure-from-motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-13
    Description: Magma transfer in an open-conduit volcano is a complex process that is still open to debate and not entirely understood. For this reason, a multidisciplinary monitoring of active volcanoes is not only welcome, but also necessary for a correct comprehension of how volcanoes work. Mt. Etna is probably one of the best test sites for doing this, because of the large multidisciplinary monitoring network setup by the Osservatorio Etneo of Istituto Nazionale di Geofisica e Vulcanologia (INGV-OE), the high frequency of eruptions and the relatively easy access to most of its surface. We present new data on integrated monitoring of volcanic tremor, plume sulphur dioxide (SO2) flux and soil hydrogen (H2) and carbon dioxide (CO2) concentration from Mt. Etna. The RMS amplitude of volcanic tremor was measured by seismic stations at various distances from the summit craters, plume SO2 flux was measured from nine stations around the volcano and soil gases were measured in a station located in a low-temperature (T ∼ 85 °C) fumarole field on the upper north side of the volcano. During our monitoring period, we observed clear and marked anomalous changes in all parameters, with a nice temporal sequence that started with a soil CO2 and SO2 flux increase, followed a few days later by a soil H2 spike-like increase and finally with sharp spike-like increases in RMS amplitude (about 24 h after the onset of the anomaly in H2) at all seismic stations. After the initial spikes, all parameters returned more or less slowly to their background levels. Geochemical data, however, showed persistence of slight anomalous degassing for some more weeks, even in the apparent absence of RMS amplitude triggers. This suggests that the conditions of slight instability in the degassing magma column inside the volcano conduits lasted for a long period, probably until return to some sort of balance with the “normal” pressure conditions. The RMS amplitude increase accompanied the onset of strong Strombolian activity at the Northeast Crater, one of the four summit craters of Mt. Etna, which continued during the following period of moderate geochemical anomalies. This suggests a cause-effect relationship between the anomalies observed in all parameters and magma migration inside the central conduits of the volcano. Volcanic tremor is a well-established key parameter in the assessment of the probability of eruptive activity at Etna and it is actually used as a basis for a multistation system for detection of volcanic anomalies that has been developed by INGV-OE at Etna. Adding the information provided by our geochemical parameters gave us more solid support to this system, helping us understand better the mechanisms of magma migration inside of an active, open-conduit basaltic volcano.
    Description: Published
    Description: online (due to Covid pandemic)
    Description: 4V. Processi pre-eruttivi
    Keywords: integrated monitoring ; soil gases ; plume SO2 ; volcanic tremor ; magma transfer ; Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...