ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
  • Geophysik, Meteorologie, Ozeanographie
  • Mt. Etna
  • Windenergie
  • Copernicus  (7)
  • INGV  (6)
  • Essen : Verl. Glückauf
Collection
Keywords
Years
  • 1
    Publication Date: 2021-01-07
    Description: Monitoring of hydrothermal fluid emissions can provide detailed information about convective upwelling of geothermal fluids and their geochemical characteristics, as a function of tectonic stress or deeper gas input. In particular, at the Salinelle of Mt. Etna Geosite (Paternò and Belpasso, Eastern Sicily) natural emissions mainly consist of a fluid phase made of salty water, mud, gas and liquid hydrocarbons from an admixture of magmatic and hydrothermal gases. In this framework, our study mainly focused on the thermal and geochemical monitoring of hydrothermal fluids of the most active site, Salinelle dei Cappuccini. Nearby hydrothermal vents (Salinelle del Fiume; Salinelle di San Biagio), were also investigated. Analysis of the magnitude and frequency of seismic events all around Mt. Etna were conducted as well. Analysis of daily temperatures showed a constant trend: higher values (〉 35° C) within the first monitoring period, followed by a strong decrease (down to 9° C), and a new gradual increase over the following months. This trend seems to be linked to magmatic processes occurring at depth below Mt. Etna, and could lead to a modification of the geochemical and thermal characteristics of the fluids issuing at the mud-pools and gas vents of Salinelle. The higher the frequency of seismic events corresponding to higher daily energy released, the higher fluid temperatures observed. Understanding how these fluids blend and what is their relationship with Mt. Etna volcanism can be of great importance in forecasting new eruptive cycles in the case they precede changes in volcanic activity.
    Description: Published
    Description: GD670
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: Salinelle ; Mud volcanoes ; Mt. Etna ; Geothermal fluids ; Hydrothermal fluid emissions ; 04.02. Exploration geophysics ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Volcanoes represent an important natural source of several trace elements to the atmosphere. For some species (e.g., As, Cd, Pb and Se) they may be the main natural source and thereby strongly influencing geochemical cycles from the local to the global scale. Mount Etna is one of the most actively degassing volcanoes in the world, and it is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. To estimate the environmental impact of magma-derived trace metals and their depositions processes, rainwater and snow samples were collected at Mount Etna area. Five bulk collectors have been deployed at various altitudes on the upper flanks around the summit craters of the volcano; samples were collected every two week for a period of one year and analyzed for the main chemical-physical parameters (electric conductivity and pH) and for major and trace elements concentrations. Chemical analysis of rainwater clearly shows that the volcanic contribution is always prevailing in the sampling site closest to the summit crater (about 1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction) volcanic contribution has been detected only following an ash deposition event. About 30 samples of fresh snow were collected in the upper part of the volcano, during the winters 2006 and 2007 to estimate deposition processes at high altitude during cold periods. Some of the samples were collected immediately after a major explosive event from the summit craters to understand the interaction between snow and fresh erupted ash. Sulphur, Chlorine and Fluorine, are the major elements that prevailingly characterize the volcanic contribution in atmospheric precipitation on Mount Etna, but high concentrations of many trace elements are also detected in the studied samples. In particular, bulk deposition samples display high concentration of Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag, in the site most exposed to the volcanic emissions: median concentration values are about two orders of magnitude higher than those measured in our background site. Also in the snow samples the volcanic signature is clearly detectable and decreases with distance from the summit craters. Some of the analysed elements display very high enrichment values with respect to the average crust and, in the closest site to the summit craters, also deposition values higher than those measured in polluted urban or industrial sites.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chloride (HCl) and hydrogen fluoride (HF) concentrations in the volcanic plumes (typically several minutes to a few hours old) were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10,000 μg/m3 at 0.1 km from Etna’s vents down to ~7 _μg/m3 at ~10km distance), reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free) volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.
    Description: Published
    Description: 1441-1450
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; volcanic gas plumes ; tropospheric processing ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-04
    Description: In order to verify the duration magnitude MD we calculated local magnitude ML values of 288 earthquakes occurring from October 2002 to April 2003 at Mt. Etna. The analysis was computed at three digital stations of the permanent seismic network of Istituto Nazionale di Geofisica e Vulcanologia of Catania, using the relationship ML = logA+alog?-b, where A is maximum half-amplitude of the horizontal component of the seismic recording measured in mm and the term «+alog?-b» takes the place of the term «-logA0» of Richter relationship. In particular, a = 0.15 for ?〈200 km, b=0.16 for ?〈200 km. Duration magnitude MD values, moment magnitude MW values and other local magnitude values were compared. Differences between ML and MD were obtained for the strong seismic swarms occurring on October 27, during the onset of 2002-2003 Mt. Etna eruption, characterized by a high earthquake rate, with very strong events (seismogram results clipped in amplitude on drum recorder trace) and high level of volcanic tremor, which not permit us to estimate the duration of the earthquakes correctly. ML and MD relationships were related and therefore a new relationship for MD is proposed. Cumulative strain release calculated after the eruption using ML values is about 1.75E+06 J1/2 higher than the one calculated using MD values.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: local magnitude ; Mt. Etna ; volcano seismicity ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1084373 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-04
    Description: An analysis of observations from 1948-1998 suggests that the atmosphere in the North Atlantic region does respond to North Atlantic Sea-Surface Temperatures (SSTs) throughout the annual cycle. In the subtropics, high geopotential heights are seen to be a local response to warm SSTs. In winter, the North Atlantic Oscillation responds to a «tripole» pattern in North Atlantic SSTs. In summer, anticyclonicity over the U.K. is seen downstream of warm SST anomalies off Newfoundland and is possibly also related to warm subtropical SSTs. Such responses imply a degree of seasonal predictability and help quantify the strength of natural ocean-atmosphere coupled modes of variability. The average of an ensemble of 10 simulations of the HadAM3 atmospheric model forced with observed SSTs for the same period produces robust ocean-forced responses which agree well with those identifi ed in the observations and with a previous model. The agreement is encouraging as it confi rms the physical signifi cance of the observational results and suggests that the model responds with the correct patterns to SST forcing. In the subtropics, the magnitude of the ensemble mean response is comparable with the observational response. In the extratropics, the magnitude of the model response is about half that of the observations. Although atmospheric internal variability may have affected the observed atmospheric patterns and there are considerations regarding the lack of two-way air-sea interaction with an atmospheric model, it is suggested that the models extratropical response may be too weak. The 10 individual simulations of HadAM3 and 28 50-year periods of the ocean-atmosphere model, HadCM3, display similar results to each other with generally weaker ocean-forced links than observed. Seasonal predictability may, therefore, be too low in HadCM3 and low-frequency coupled modes under-represented. A moderate increase in the extratropics in the sensitivity of surface heat fl uxes to surface temperatures is one possibility for improving these model deficiencies.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: North Atlantic ; predictability ; interaction ; validation ; NAO ; anticyclonicity ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2103430 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-04
    Description: The relationship between Mediterranean precipitation and North Atlantic and European sea level pressure fields has been studied using statistical techniques to investigate the variability within the data. A principal component analysis shows the major winter precipitation variability is described by a see-saw fluctuation between the Western and Eastern Mediterranean. The pressure-precipitation relationships indicate that a highly variable, pressure region situated to the south of Britain dominates this major precipitation pattern. The large-scale pressure fields which facilitate the precipitation patterns have been isolated using a canonical correlation analysis. Although the well-known major pressure centres of action in the North Atlantic are important, pressure changes in the east are found to also control the transport of moisture across the Mediterranean to a large degree, as the presence of a large high over Kazakhstan causes meridonial flow and impedes the passage of moisture across the Mediterranean. The pressure-precipitation relationships are found to be very consistent over multi-decadal,seasonal, monthly and daily time-scales with trajectory analysis confirming many of the features of the average seasonal pressure charts. This steadiness and regularity indicates that the Mediterranean precipitation teleconnection is a robust phenomenon that is affected by large-scale pressure changes to both the east and west.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Mediterranean ; precipitation ; principal component ; canonical correlation ; trajectory ; 03. Hydrosphere::03.01. General::03.01.99. General or miscellaneous ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1659879 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-04
    Description: Two marine magnetic surveys were carried out during 1997 and 1999 in the Ionian Sea off the eastern coast of Sicily to investigate the magnetic structures of the eastern base of Mt. Etna and the Hyblean Plateau. The investigated area is approximately 85 km long and 15 km wide, running from North to South, in the Western Ionian Sea. Models along two profiles parallel to the coast and over the entire area provide a possible distribution of volcanic bodies and volcaniclastic deposits off the eastern coast of Sicily and their relations with the sedimentary substratum. 3D modeling suggests the presence of magnetized bodies, inserted in the sedimentary substratum, plausibly related to Hyblean Plateau volcanism in the south sector and to Mt. Etna activity in the north. We speculate that the Malta Escarpment could have produced preferential ways for magma ascents off the Hyblean Plateau. The spatial continuity of the volcanism affecting the entire investigated area could testify spatial transition between Hyblean and Etnean volcanism supporting the hypothesis that the magma process migrated with time from south-east to north-west.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: magnetic survey ; magnetic modeling ; Mt. Etna ; Hyblean Plateau ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 467957 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-04
    Description: We report preliminary observations on possible correlations between anomalies of subsoil radon concentration and geodynamical events on Mt. Etna. In recent years several studies have been carried out on radon as a precursor of geophysical events, most of them performed either on tectonic or volcanic areas. The peculiarity of our investigation lies on the choice of the etnean region, in which tectonic and volcanic features are both present. In order to characterize Mt. Etna features by investigating radon gas in soil, two stations were located along the NE-SW direction on Mt. Etna. Each of the two stations is fitted with a radon detector, a 3D seismic station and a meteorological station. Differences in the radon concentration trend in the data from north and south flanks could be linked to different faulting mechanisms and then to different mechanisms of radon uprising. The increase in soil radon concentration could be related to both seismic and volcanic events.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: radon ; geodynamical precursor ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1195361 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Journal cover
    Unknown
    American Geophysical Union (AGU) | European Geosciences Union (EGU) | Copernicus
    Online: 1.1994 –
    Print: 1.1994 – 17.2010 (Location: A17, Kompaktmagazin, 54/1)
    Publisher: American Geophysical Union (AGU) , European Geosciences Union (EGU) , Copernicus
    Corporation: European Geosciences Union, EGU
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Keywords: Geophysik, Meteorologie, Ozeanographie
    Acronym: NPG
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Journal cover
    Unknown
    Copernicus
    Online: 1.2014 –
    Publisher: Copernicus
    Corporation: European Geosciences Union, EGU
    Electronic ISSN: 2198-5634
    Topics: Geosciences , Physics
    Keywords: Geophysik, Meteorologie, Ozeanographie
    Acronym: NPGD
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Journal cover
    Unknown
    Copernicus
    Online: 1.2016 –
    Publisher: Copernicus
    Corporation: European Academy of Wind Energy, EAWE
    Print ISSN: 2366-7443
    Electronic ISSN: 2366-7451
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Keywords: Windenergie ; Erneuerbare Energien
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Journal cover
    Unknown
    Copernicus
    Online: 1.2016 –
    Publisher: Copernicus
    Corporation: European Academy of Wind Energy, EAWE
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Keywords: Windenergie ; Erneuerbare Energien
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...