ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (32)
  • 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques  (16)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (14)
  • 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
  • Elsevier Science Limited  (63)
  • Blackwell Publishing Ltd
Collection
Keywords
Years
  • 1
    Publication Date: 2021-06-25
    Description: In this paper, the relationship between the dike-forming magmatic intrusions and the faulting process at Mount Etna is investigated in terms of Coulomb stress changes. As case study, a complete time-dependent 3-D finite element model for the 2002-2003 eruption at Mount Etna is presented. In the model, which takes into account the topography, medium heterogeneities and principal fault systems in a viscoelastic/plastic rheology, we sequentially activated three dike-forming processes and looked at the induced temporal evolution of the Coulomb stress changes, during the co-intrusive and post-intrusive periods, on Pernicana and Santa Venerina faults. We investigated where and when fault slips were encouraged or not, and consequently how earthquakes may have been triggered. Results show positive Coulomb stress changes for the Pernicana Fault in accordance to the time, location and depth of the 27th October 2002 Pernicana earthquake (Md = 3.5). The amount of Coulomb stress changes in the area of Santa Venerina Fault, as induced by dike-forming intrusions only, is instead almost negligible and, probably, not sufficient to trigger the 29th October Santa Venerina earthquake (Md = 4.4), occurred two days after the start of the eruption. The necessary Coulomb stress change value to trigger this earthquake is instead reached if we consider it as induced by the 27th October Pernicana biggest earthquake, combined with the dike-induced stresses.
    Description: MED-SUV FP7 Project (Grant number 308665)
    Description: Published
    Description: 185-196
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Coulomb stress changes ; Finite Element Model ; Viscoelasticity ; Earthquakes ; Mount Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Description: The Africa–Eurasia convergence in Sicily and southern Calabria is currently expressed by two different tectonic and geodynamic domains: thewestern region, governed by a roughlyN–S compression generated by a continental collision; the eastern one, controlled by a NW–SE extension related to the south-east-directed expansion of the Calabro–Peloritan Arc. The different deformation pattern of these two domains is accommodated by a right-lateral shear zone (Aeolian–Tindari–Letojanni fault system) which, from the Ionian Sea, north of Mt. Etna, extends across the Peloritani chain to the Aeolian Islands. In this work, we study the evidence of active tectonics characterizing this shear zone, through the analysis of seismic and geodetic data acquired by the INGV networks in the last 15 years. The study is completed by structural and morphological surveys carried out between Capo Tindari and the watershed of the chain. The results allowed defining a clear structural picture depicting the tectonic interferences between the two different geodynamic domains. The results indicate that, besides the regional ~N130°E horizontal extensional stress field, another one, NE–SW-oriented, is active in the investigated area. Both tension axes are mutually independent and have been active up to the present at different times. The coexistence of these different active horizontal extensions is the result of complex interactions between several induced stresses: 1) the regional extension (NW–SE) related to the slab rollback and back-arc extension; 2) the strong uplift of the chain; 3) the accommodation between compressional and extensional tectonic regimes along the Aeolian– Tindari–Letojanni faults, through a SSE–NNW right-lateral transtensional displacement. In these conditions, the greater and recurring uplift activity is not able to induce a radial extensional dynamics, but, under the “directing” action of the shear system, it can only act on the regional extension (NW–SE) and produce the second system of extension (NE–SW).
    Description: Published
    Description: 1-17
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Africa–Eurasia convergence ; Aeolian–Tindari fault system ; Transform activity ; Stress and strain fields ; Multidisciplinary approach ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-15
    Description: A detailed survey of morphological and biological markers of paleo-shorelines has been carried out alongthe coastal sector of Mt. Etna volcano (eastern Sicily, Italy), in order to better define causes and timing ofvertical deformation. We have mapped markers of raised Holocene shorelines, which are represented bybeach rocks, wave-cut platforms, balanid, vermetid and algal rims. The timing of coastal uplift has beendetermined by radiocarbon dating of shells collected from the raised paleo-shorelines and, to correctlyassess the total amount of tectonic uplift of the coast during the Late Holocene, we have compared theelevation-age data of sampled shells to the local curve of Holocene sea-level rise. Taking into accountthe nominal elevation of the associated paleo-shorelines, an uplift rate of 2.5–3.0 mm/year has beenestimated for the last 6–7 ka. This general process of uplifting is only locally interrupted by subsidencerelated to flank sliding of the volcanic edifice, measured at docks and other manmade structures, and byacceleration along the hinge of an active anticline and at the footwall of an active fault. Based on this newdata we suggest more precise time–space constraints for the dynamics of the lower eastern flank of Mt.Etna volcano.
    Description: Published
    Description: 194-203
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna, Holocene, Paleo-shoreline, Coastal uplift, Flank instability ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-27
    Description: We model a fault cross-cutting the brittle upper crust and the ductile lower crust. In the brittle layer the fault is assumed to have stick–slip behaviour, whereas the lower ductile crust is inferred to deform in a steady-state shear. Therefore, the brittle–ductile transition (BDT) separates two layers with different strain rates and structural styles. This contrasting behaviour determines a stress gradient at the BDT that is eventually dissipated during the earthquake. During the interseismic period, along a normal fault it should form a dilated hinge at and above the BDT. Conversely, an over-compressed volume should rather develop above a thrust plane at the BDT. On a normal fault the earthquake is associated with the coseismic closure of the dilated fractures generated in the stretched hangingwall during the interseismic period. In addition to the shear stress overcoming the friction of the fault, the brittle fault moves when the weight of the hangingwall exceeds the strength of the dilated band above the BDT. On a thrust fault, the seismic event is instead associated with the sudden dilation of the previously over-compressed volume in the hangingwall above the BDT, a mechanism requiring much more energy because it acts against gravity. In both cases, the deeper the BDT, the larger the involved volume, and the bigger the related magnitude. We tested two scenarios with two examples from L’Aquila 2009 (Italy) and Chi-Chi 1999 (Taiwan) events. GPS data, energy dissipation and strain rate analysis support these contrasting evolutions. Our model also predicts, consistently with data, that the interseismic strain rate is lower along the fault segment more prone to seismic activation.
    Description: Published
    Description: 160-161
    Description: JCR Journal
    Description: open
    Keywords: faul activation ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-27
    Description: Vertical sounding is a widely used technique to obtain ionosphere measurements, such as an estimation of virtual height versus frequency scanning. It is performed by high frequency radar for geophysical applications called "ionospheric sounder” (or "ionosonde”). Radar detection depends mainly on targets characteristics. While several targets behavior and correspondent echo detection algorithms have been studied, a survey to address a suitable algorithm for ionospheric sounder has to be carried out. This paper is focused on automatic echo detection algorithms implemented in particular for an ionospheric sounder, target specific characteristics were studied as well. Adaptive threshold detection algorithms are proposed, compared to the current implemented algorithm, and tested using actual data obtained from the Advanced Ionospheric Sounder (AIS-INGV) at Rome Ionospheric Observatory. Different cases of study have been selected according typical ionospheric and detection conditions.
    Description: Published
    Description: 1360-1372
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Description: restricted
    Keywords: ionogram ; layer detection ; adaptive threshold ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-14
    Description: We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 × 1 m digital elevation model, and a 15 × 15m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m−3, with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m−3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and N64) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively. © 2014 Elsevier B.V. All rights reserved.
    Description: Published
    Description: 58–69
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli, Gravity, Inversion, Geophysics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-01
    Description: Strombolian activity is common in low-viscosity volcanism. It is characterised by quasi-periodic, short-lived explosions, which, whilst typically weak, may vary greatly in magnitude. The current paradigm for a strombolian volcanic eruption postulates a large gas bubble (slug) bursting explosively after ascending a conduit filled with low-viscosity magma. However, recent studies of pyroclast textures suggest the formation of a region of cooler, degassed, more-viscous magma at the top of the conduit is a common feature of strombolian eruptions. Following the hypothesis that such a rheological impedance could act as a ‘viscous plug’, which modifies and complicates gas escape processes, we conduct the first experimental investigation of this scenario. We find that: 1) the presence of a viscous plug enhances slug burst vigour; 2) experiments that include a viscous plug reproduce, and offer an explanation for, key phenomena observed in natural strombolian eruptions; 3) the presence and extent of the plug must be considered for the interpretation of infrasonic measurements of strombolian eruptions. Our scaled analogue experiments show that, as the gas slug expands on ascent, it forces the underlying low-viscosity liquid into the plug, creating a low-viscosity channel within a high-viscosity annulus. The slug's diameter and ascent rate change as it enters the channel, generating instabilities and increasing slug overpressure. When the slug reaches the surface, a more energetic burst process is observed than would be the case for a slug rising through the low-viscosity liquid alone. Fluid-dynamic instabilities cause low and high viscosity magma analogues to intermingle, and cause the burst to become pulsatory. The observed phenomena are reproduced by numerical fluid dynamic simulations at the volcanic scale, and provide a plausible explanation for pulsations, and the ejection of mingled pyroclasts, observed at Stromboli and elsewhere.
    Description: European Union’s Seventh Framework Programme (FP7/2007–2013) project NEMOH, REA grant agreement No. 289976
    Description: Published
    Description: 210-218
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: analogue modeling ; strombolian explosions ; plugged vents ; volcano acoustic ; volcano infrasonic ; slug bursting ; Taylor bubble ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-12
    Description: Here we report the first measurements of gas masses released during a rare period of strombolian activity at the Bocca Nuova crater, Mt. Etna, Sicily. UV camera data acquired for 195 events over an ≈27 minute period (27th July 2012) indicate erupted SO2 masses ranging from ≈0.1 to ≈14 kg per event, with corresponding total gas masses of ≈0.1 to 74 kg. Thus, the activity was characterised by more frequent and smaller events than typically associated with strombolian activity on volcanoes such as Stromboli. Events releasing larger measured gas masses were followed by relatively long repose periods before the following burst, a feature not previously reported on from gas measurement data. If we assume that gas transport within the magma can be represented by a train of rising gas pockets or slugs, then the high frequency of events indicates that these slugs must have been in close proximity. In this case the longer repose durations associated with the larger slugs would be consistent with interactions between adjacent slugs leading to coalescence, a process expedited close to the surface by rapid slug expansion. We apply basic modelling considerations to the measured gas masses in order to investigate potential slug characteristics governing the observed activity.We also cross correlated the acquired gas fluxes with contemporaneously obtained seismic data but found no relationship between the series in line with the mild form of manifest explosivity.
    Description: Published
    Description: 103–111
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Mild strombolian activity ; Ultra-violet imaging ; Volcanic gas measurements ; Slug dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-07
    Description: This paper shows how the solar eclipse occurred on 20 March 2015 influenced the sporadic E (Es) layer as recorded by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. In these locations, the solar eclipse was only partial, with the maximum area of the solar disk obscured by the Moon equal to ~54% at Rome and ~45% at Gibilmanna. Nevertheless, it is shown that the strong thermal gradients that usually accompany a solar eclipse, have significantly influenced the Es phenomenology. Specifically, the solar eclipse did not affect the Es layer in terms of its maximum intensity, which is comparable with that of the previous and next day, but rather in terms of its persistence. In fact, both at Rome and Gibilmanna, contrary to what typically happens in March, the Es layer around the solar eclipse time is always present. On the other hand, this persistence is also confirmed by the application of the height–time–intensity (HTI) technique. A detailed analysis of isoheight ionogram plots suggests that traveling ionospheric disturbances (TIDs) likely caused by gravity wave (GW) propagation have played a significant role in causing the persistence of the Es layer.
    Description: Published
    Description: 2064–2072
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 2A. Fisica dell'alta atmosfera
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: Mid-latitude ionosphere ; E sporadic layer ; Solar eclipse ; Gravity wave ; Height–time–intensity technique ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-06-30
    Description: Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4 kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer).
    Description: Published
    Description: 261–271
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 fluxing ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...