ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (16)
  • Springer Berlin Heidelberg  (12)
  • The Geological Society of America  (3)
  • American Institute of Physics
  • Institute of Physics
  • 1
    Publication Date: 2023-01-16
    Description: Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.
    Description: Published
    Description: 84
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: explosive eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-16
    Description: Volcanic ash produced during explosive eruptions can have very severe impacts on modern technological societies. Here, we use reconstructed patterns of fine ash dispersal recorded in terrestrial and marine geological archives to assess volcanic ash hazards. The ash-dispersal maps from nine Holocene explosive eruptions of Italian volcanoes have been used to construct frequency maps of distal ash deposition over a wide area, which encompasses central and southern Italy, the Adriatic and Tyrrhenian seas and the Balkans. The maps are presented as two cumulative-thickness isopach maps, one for nine eruptions from different volcanoes and one for six eruptions from Somma-Vesuvius. These maps represent the first use of distal ash layers to construct volcanic hazard maps, and the proposed methodology is easily applicable to other volcanic areas worldwide.
    Description: This research was partially funded by INGV-DPC of Italy (SPEED project), IUGG grants to RS and PRIN09 project (coordinator RS).
    Description: Published
    Description: 866
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic ash ; Tephrostratigraphy ; Volcanic hazard ; Central Mediterranean ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-25
    Description: Monogenetic volcanic fields, such as the Auckland Volcanic Field (AVF), New Zealand, are common on the Earth’s surface and are typically dominated by basaltic lava flows up to 10 s of km long. In monogenetic volcanic fields located in close proximity to human population and infrastructure, lava flows are a significant threat. In this study, lava flow emplacement conditions for some basaltic eruptions of the AVF were reconstructed using the thermo-rheological MAGFLOW model. Eight existing lava flows in the AVF were simulated using MAGFLOW and eruptive volumes measured from Light Detection and Ranging (LiDAR)-derived digital terrain models (DTMs). Fitting the simulations to the dimensions of actual lava flows provides insight into their emplacement mechanisms and conditions, such as effusion rate, and probable eruption durations. By looking at emplacement in different settings, the likely magma ascent rate for studied AVF eruptions is calculated to have been on the order of 0.1 m/s. In the AVF, the typical estimated duration of past lava flows was from a minimum of 2 days for small volume flows, such as Little Rangitoto (0.0015 km3), up to 83 days for large volume flows, such as Three Kings (0.078 km3). The three best-fitting simulations were used to establish eruption scenarios for future volcanic hazard mapping for the AVF. Inferences of eruption duration that will be useful for developing realistic emergency management plans and recovery scenarios for this densely populated volcanic field are also provided.
    Description: Published
    Description: 879
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow ; Effusion rate ; Magma flux ; Ascent velocity ; MAGFLOW ; Numerical simulation ; Feeder dyke ; Scoria cone ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-29
    Description: The Campi Flegrei caldera in southern Italy is one of the greatest geohazard areas on Earth. Evidence of an active magmatic and geothermal system is provided by ongoing ground uplift, with volcano-tectonic and longperiod (LP) seismicity, the persistent degassing of ~1500 tonnes of CO2 per day, the presence of hot fumaroles at temperatures of 90–150 °C, brine-rich aquifers (with total dissolved solids up to 33 g l−1) and high thermal gradients in the crust (with temperatures reaching 420 °C at 3,050 m b.s.l.). Since the 1940s, more than 100 exploratory boreholes have been drilled in the area to depths of 80–3,100 m by the Azienda Geologica Italiana Petroli (AGIP) and the Società Anonima Forze Endogene Napoletane (SAFEN). To date, however, no systematic reanalysis of the drilling data has been carried out, and the buried volcanic structure has not been updated using the most recent scientific results and previous findings. By integrating unpublished data from the AGIP and SAFEN reports with published information from geological, volcanological, petrological, petrophysical and geophysical studies, this paper presents an improved picture of the Campi Flegrei caldera that will be useful for volcanic hazard assessment and mitigation in the Naples area and for future research planning The results suggest that intra-caldera activity has been influenced by how the magmatic system at depths greater than about 4 km has determined the transfer of magma, volatiles, and heat to the overlying geothermal system and, ultimately, to the surface. In particular, intriguing is that the most volcanically active central-eastern sector of the caldera, which is subject to intense bradyseismic ground movement and gas emission, coincides with a structurally delimited subsurface rock volume characterized by an uprising of the 100 °C isotherm, a deep water supply to the shallower aquifer, the early disappearance of secondary calcite, LP seismicity and high seismic S-wave attenuation. In this area, we also document evidence of repeated injection at depths of c. 1.5–3.0 km of isolated and small-volume batches of magma, where occurred their crystallization and degassing. Shallow intrusions and degassing of magma are thus identified as two of the key processes that drive unrest in Campi Flegrei.
    Description: Published
    Description: 401-421
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic system ; Campi Flegrei ; AGIP ; Volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-06
    Description: Various xenoliths have been found in lavas of the 1763 (“La Montagnola”), 2001, and 2002–03 eruptions atMt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from2.6 to 3.0 g/cm3. P wave velocities (VP), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent VP with recent literature data on 3D VP seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3–13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the “solidification front”, a marginal zone that encompasses a deep region (〉5 km b.s.l.) of Mt. Etna’s plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 “La Montagnola”, 2001 and 2002–03 eruptions.
    Description: Published
    Description: 722
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Cognate xenoliths . Gabbro . Geobarometry . Rock density . P-wave velocity . Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Invasion of inhabited areas and destruction of human property by lava flows represents the greatest volcanic hazard at Mount Etna (Italy) in the short term, based on the character of the historically documented eruptions of the volcano. Virtually all eruptions of Etna produce lava flows, which are more likely to cause damage when emitted from flank vents. Since 1600, more than sixty eruptions have occurred on the flanks of Etna. About half of these caused damage to, or destruction of, human property, dwellings and infrastructures, and at least two destroyed entire population centers. We present a quantitative analysis and evaluation of a new database containing numerical volcanological parameters of each post-1600 eruption, which allows us to quantify the hazard from future eruptions and to create a preliminary hazard zonation map divided into six zones. A total area of nearly 1400 km2 is considered vulnerable, which is home to 〉900,000 people. The greatest hazard is from voluminous and/or low-altitude flank eruptions, which during the historical period have occurred at irregular intervals of 120-400 years, the most recent in 1669. In the future, eruptions at higher elevations will occur much more frequently, at intervals of a few months to several decades, and many will cause damage in relatively limited areas. A recent increase in the intensity and frequency of eruptions indicate that the Etna volcanic system is presently more dynamic than during the past 330 years, and low-altitude flank eruptions have to be considered a realistic possibility for the near future.
    Description: Published
    Description: 189-208
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: reserved
    Keywords: Mount Etna ; lava flows ; volcanic hazard ; GIS software ; hazard zonation ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In September 2002, a series of tectonic earthquakes occurred north of Sicily, Italy, followed by three events of volcanic unrest within 150 km. On 28 October 2002, Mount Etna erupted; on 3 November 2002, submarine degassing occurred near Panarea Island; and on 28 December 2002, Stromboli Island erupted. All of these events were considered unusual: the Mount Etna northeast-rift eruption was the largest in 55 yr; the Panarea degassing was one of the strongest ever detected there; and the Stromboli eruption, which produced a landslide and tsunami, was the largest effusive eruption in 17 yr. Here we investigate the synchronous occurrence of these clustered events, and develop a possible explanatory model. We compute short-term earthquake-induced dynamic strain changes and compare them to long-term tectonic effects. Results suggest that the earthquake-induced strain changes exceeded annual tectonic strains by at least an order of magnitude. This agitation occurred in seconds, and may have induced fluid and gas pressure migration within the already active hydrothermal and magmatic systems.
    Description: This study was partly funded by the Deutsche Forschungsgemeinschaft (WA 1642/1-4), and Protezione Civile, project INGV-DPC-V2.
    Description: Published
    Description: 251-254
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: simultaneous magma eruptions ; earthquake trigger ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We produce a spatial probability map of vent opening (susceptibility map) at Etna, using a statistical analysis of structural features of flank eruptions of the last 2 ky. We exploit a detailed knowledge of the volcano structures, including the modalities of shallow magma transfer deriving from dike and dike-fed fissure eruptions analysis on historical eruptions. Assuming the location of future vents will have the same causal factors as the past eruptions, we converted the geological and structural data in distinct and weighted probability density functions, which were included in a non-homogeneous Poisson process to obtain the susceptibility map. The highest probability of new eruptive vents opening falls within a N-S aligned area passing through the Summit Craters down to about 2,000 ma.s.l. on the southern flank. Other zones of high probability follow the North-East, East-North-East, West, and South Rifts, the latter reaching low altitudes (∼400 m). Less susceptible areas are found around the faults cutting the upper portions of Etna, including the western portion of the Pernicana fault and the northern extent of the Ragalna fault. This structuralbased susceptibility map is a crucial step in forecasting lava flow hazards at Etna, providing a support tool for decision makers.
    Description: This study was performed with the financial support from the V3-LAVA project (DPC-INGV 2007–2009 contract).
    Description: Published
    Description: 2083–2094
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Flank eruption ; Dike ; Volcano structure ; Susceptibility map ; Spatial clustering ; Back analysis ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The 1669 AD flank eruption was the most destructive event on Etna volcano in historical times (~700 BC) and provided, because of the presence of numerous quarries and subsurface data, the opportunity for a unique case study in which we directly measured the thickness of the lava field. Moreover, analysis of historical documents allowed reconstruction of the temporal evolution of the lava field and estimation of the average effusion rate. One hundred and thirty eight thickness measurements, acquired from field surveys and subsurface data, allowed us to divide the lava field into twelve zones of homogenous mean thickness and to calculate a total lava volume of (607 ± 105) × 106 m3, corresponding to an average effusion rate of 58 ± 10 m3/s. This new volume differs by −24% up to +64%, from previously published values. The temporal evolution of the cumulative volume and average effusion rate were reconstructed for the first fourteen days, from field data and analysis of historical records. A short initial phase was characterized by a rapid increase in effusion rate, which reached a peak of ~640 m3/s after three days. This was followed by a longer phase in which the flow rate decreased. The first fourteen days were crucial for the development of the lava field, and in this time it covered 72% of its final area and produced most of the damage. Thereafter, the growth of a complex lava tube network promoted lava field lengthening to the city of Catania, 17 km away from the vent. Effusion rate trends like those of the 1669 eruption can be adopted for future investigations aimed at assessing the effects of similar events on Etna’s most highly urbanized area and at other effusive basaltic volcanoes.
    Description: Published
    Description: 694
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna, 1669, Lava flow field, Lava volume, effusion rate trend ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Volcanic activity on the island of Ischia in the past 10 k.y. has included both effusive and explosive eruptions, mainly in the eastern sector of the island. Vent location, eruption dynamics, transport mechanisms, and depositional processes have been reconstructed for each recognized lithostratigraphic unit. Periods of quiescence have alternated with periods of very intense volcanism, mainly concentrated at ca. 5.5 ka and over the past 2.9 k.y. Volcanism has not been continuous, but it has been strongly infl uenced by the mechanism of a resurgence phenomenon that has affected the island since ca. 33 ka. Therefore, it has been hypothesized that magma intrusion and uplift events have occurred intermittently. In the past 5.5 k.y., volcanic activity has been invariably accompanied by the emplacement of slope instability–related deposits, illustrating that the slope instability was also induced by reactivation of vertical movements, likely related to resurgence.
    Description: Published
    Description: 193-239
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: reserved
    Keywords: volcanological ; Ischia resurgent ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The morphological evolution of the Sciara del Fuoco, Stromboli, is described from a time series dataset formed by Digital Elevation Models and orthophotos derived by digitising historical contour maps compiled in 1868 and 1937 and by processing data from aerial surveys carried out between 1954 and 2009. All maps were coregistered in the same reference system and used to build a quantitative reconstruction of the morphological changes of the Sciara del Fuoco slope. The changes mainly relate to the emplacement of many lava flows and their successive erosion. A comparative quantitative analysis yields estimates of areas and volumes of the lava fields formed on the sub-aerial part of the Sciara del Fuoco during a number of effusive events between 1937 and 2001, some of them never assessed before. The results of the analysis constrain the interpretation of the evolution and the magnitude of the recent effusive activity at the Stromboli volcano. Despite some uncertainties due to widely spaced observation periods, the results integrate all available topographic knowledge and contribute to an understanding of the main characteristics of the recent effusive eruptive styles at Stromboli volcano.
    Description: Published
    Description: 231-248
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; Lava flow eruptions ; Digital Elevation Models ; Sciara del Fuoco ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: At Mount Etna, the present-day active volcano is an open conduit structure characterized by continuous eruptive activity. Such conditions have been thought unique in the evolution of the Etnean volcano as well as in the Mediterranean region. However, a review study of available geophysical data and models, combined with geological records, petrographic and geochemical considerations, has led us to consider that a large area of about 28 km2 located in Val Calanna, on the eastern side of Valle del Bove, can be interpreted as the site of an old open conduit volcano. A dyke swarm outcrops in the area, whose deep alteration and fumarolization can be attributed to the sustained passage of volcanic gases over long periods. Radiometric dating yields an age of about 129 ka. This finding sheds new light on the evolution of Mount Etna volcano, indicating that the tectonic conditions leading to an open conduit volcano must also have been active in the past.
    Description: Published
    Description: 50
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Magnetic anomalies ; Dyke ; Mount Etna ; Mt. Calanna volcanics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: The effect of pressure on melt viscosity was investigated for five compositions along the join An(CaAl2Si2O8)–Di(CaMgSi2O6) and four alkali silicates containing lithium, sodium, and potassium in constant ratio of ∼ 1:1:1, but alkali-silica ratios are varying. The experiments were performed in an internally heated gas pressure vessel at pressures from 50 to 400 MPa in the viscosity range from 108 to 1011.5 Pa⋅s using parallel plate viscometry. The polymerized An composition shows a negative pressure dependence of viscosity while the other, more depolymerized compositions of the join An–Di have neutral to positive pressure coefficients. The alkali silicates display neutral to slightly positive pressure coefficients for melt viscosity. These findings in the high viscosity range of 108–1011 Pa⋅s, where pressure appears to be more efficient than in low viscous melts at high temperature, are consistent with previous results on the viscosity of polymerized to depolymerized melts in the system NaAlSi3O8–CaMgSi2O6 by Behrens and Schulze [ H. Behrens and F. Schulze, Am. Mineral. 88, 1351 (2003) ]. Thus we confirm that the sign of the pressure coefficient for viscosity is mainly related to the degree of melt polymerization in silicate and aluminosilicate melts.
    Description: DFG Grant n.°BE1720/9
    Description: Published
    Description: 044504-14
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: open
    Keywords: viscosity ; polymerisation ; anorthite ; diopside ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Abstract. On 29 September 1538 a week-long eruption began in Campi Flegrei forming a new volcano, Monte Nuovo. From contemporary accounts of the eruption, it has been possible to reconstruct the main phases of activity. These phases may be correlated with different depositional units identified in the field. The eruption opened with a hydromagmatic phase, during which a large amount of external water (meteoric or sea water) was able to interact with the magma. The exhaustion of the water supply and decrease in volatile content initiated a change in the dynamic conditions of eruption, which became more purely magmatic in character and less explosive.
    Description: Published
    Description: 608--615
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Monte Nuovo ; The 1538 eruption ; (Campi Flegrei, Italy) ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Pyroclastic density currents (PDCs) are gravitydriven hot mixtures of gas and volcanic particles which can propagate at high speed and cover distances up to several tens of kilometers around a given volcano. Therefore, they pose a severe hazard to the surroundings of explosive volcanoes able to produce such phenomena. Despite this threat, probabilistic volcanic hazard assessment (PVHA) of PDCs is still in an early stage of development. PVHA is rooted in the quantification of the large uncertainties (aleatory and epistemic) which characterize volcanic hazard analyses. This quantification typically requires a big dataset of hazard footprints obtained from numerical simulations of the physical process. For PDCs, numerical models range from very sophisticated (not useful for PVHA because of their very long runtimes) to very simple models (criticized because of their highly simplified physics). We present here a systematic and robust validation testing of a simple PDC model, the energy cone (EC), to unravel whether it can be applied to PVHA of PDCs. Using past PDC deposits at Somma-Vesuvius and Campi Flegrei (Italy), we assess the ability of EC to capture the values and variability in some relevant variables for hazard assessment, i.e., area of PDC invasion and maximum runout. In terms of area of invasion, the highest Jaccard coefficients range from 0.33 to 0.86 which indicates an equal or better performance compared to other volcanic mass-flow models. The p values for the observed maximum runouts vary from 0.003 to 0.44. Finally, the frequencies of PDC arrival computed from the EC are similar to those determined from the spatial distribution of past PDC deposits, with high PDC-arrival frequencies over an ∼8-km radius from the crater area at Somma-Vesuvius and around the Astroni crater at Campi Flegrei. The insights derived from our validation tests seem to indicate that the EC is a suitable candidate to compute PVHA of PDCs.
    Description: Published
    Description: 79
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Pyroclastic density currents ; Probabilistic hazard assessment ; Energy cone ; Somma-Vesuvius ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-03
    Description: This paper presents the results of a systematic historical study of the seismic, bradyseismic and eruptive activity of the Campi Flegrei caldera. The aim is to make a revised historical data available for accurate volcanological interpretation, supplying additional data and highlighting spurious previous data. The analysis begins with the supposed 1198 eruption, which did not actually take place. No information is available for the thirteenth and fourteenth centuries. As far as the fifteenth and sixteenth centuries are concerned, only direct sources were examined for this paper, and they include many different types of evidence. The chronological breadth of the analysis has also provided information about the seismic crises and bradyseisms prior to the eruption of 1538. The exceptional nature of this 1538 eruption attracted the attention of intellectuals, diplomats and natural philosophers, who left valuable accounts, which we have analysed, and which include many that are still available in their original manuscript form. The previous studies concerning the 1538 eruption were based on 23 (variously used) sources. We have examined 35 additional sources bringing the overall corpus of sources analysed to 58. The results provide a more precise scenario of events preceding the 1538 eruption, including bradyseismic activity starting from the end of the fifteenth century. The chronology of the phenomena described comprises the core result of this study, and has been constructed so as to clarify the time, location and impact of each event. For the 1538 eruption, a countdown is included which may also have a predictive value. For the last 36 hours before eruption began, the countdown is hour-by-hour. The effects of the eruption and earthquakes on people, structures and society are also described for Pozzuoli, Agnano and Naples. The areas where heavy materials and ash fell are likewise indicated, as well are the earth tremors felt by the population from the eruptive crisis up to 1582.
    Description: Published
    Description: 655-677
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera. ; historical data ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...