ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
  • Springer  (10)
  • Wiley-Blackwell  (5)
  • American Institute of Physics  (1)
  • Copernicus Publications  (1)
  • 1
    Publication Date: 2021-06-16
    Description: In this study, Mg/Ca, Sr/Ca and Ba/Ca ratios in a Lateglacial to Holocene stalagmite (CC26) from Corchia Cave (central Italy) are compared with stable isotope data to define palaeohydrological changes. For most of the record, the trace element ratios show small absolute variability but similar patterns, which are also consistent with stable isotope variations. Higher trace element-to-calcium values are interpreted as responses to decreasing moisture, inducing changes in the residence time of percolation, producing prior calcite precipitation and/or variations in the hydrological routing. Statistically meaningful levels of covariability were determined using anomalies of Mg/Ca, d18O and d13C. Combining these three time series into a single ‘palaeomoisture-trend’ parameter, we highlight several events of reduced moisture (ca. 8.9–8.4, 6.2, 4.2, 3.1 and 2.0 ka), a humid period between ca. 7.9 and 8.3 ka and other shorter-term wet events at ca. 5.8, 5.3 and 3.7 ka. Most of these events can be correlated with climate changes inferred from other regional studies. For both extremities of the record (i.e. before ca. 12.4 ka and after ca. 0.5 ka) Mg/Ca and Sr/Ca are anti-correlated and show the greatest amplitude of values, a likely explanation for which involves aragonite and/or gypsum precipitation (the latter derived from pyrite oxidation) above the CC26 drip point.
    Description: Published
    Description: 381–392
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: central Italy; Corchia Cave; Holocene; speleothems; trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: On October 25th 2011 a devastating flood hit the Vara and Magra valleys in Italy and left an unforgettable scratch in the inhabitants’ minds. Cloudy with a Chance of ideas! (Piovono idee!) is an active journey of discovery and training on hydrogeological risk and climate change. Land preservation and safety of people living on it are issues, which we would like to help citizens get perception about, in order to instill awareness on the actions that can be taken towards risk mitigation. Cloudy with a Chance of ideas! stemmed from this belief, and it is the result of a collaborative planning in which primary and secondary school students, living within cities heavily hit by the flood, took actively part. Children were helped by experts and scientists to build an exhibition devoted to hydrogeological risk. Here interactive workspaces, games and educational laboratories, allow visitors explore concepts, phenomena and their consequences on land and inhabitants. Issues are addressed from a daily actions perspective, where everybody might make the difference towards sustainability and trigger good practices on natural hazards risk reduction.
    Description: Published
    Description: 121-124
    Description: 4A. Clima e Oceani
    Description: restricted
    Keywords: hydrogeological risk, climate change, prevention, environmental impact, territory. ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Our improved capability to adapt to future changes in discharge is linked to our capability to predict the magnitude or at least the direction of these changes. For the agricultural U.S. Midwest, too much or too little water has severe socio-economic impacts. Here we focus on the Raccoon River at Van Meter, Iowa, and use a statistical approach to examine projected changes in discharge. We build on statistical models using rainfall and harvested corn and soybean acreage to explain the observed discharge variability. We then use projections of these two predictors to examine the projected discharge response. Results are based on seven global climate models part of the Coupled Model Intercomparison Project Phase 5 and two representative concentration pathways (RCPs 4.5 and 8.5). There is not a strong signal of change in the discharge projections under the RCP 4.5. However the results for the RCP 8.5 point to a stronger changing signal related to larger projected increases in rainfall, resulting in increasing trends in particular in the upper part of the discharge distribution (i.e., 60th percentile and above). Examination of two hypothetical agricultural scenarios indicates that these increasing trends could be alleviated by decreasing the extent of the agricultural production. We also discuss how the methodology presented in this study represents a viable approach to move forward with the concept of return period for engineering design and management in a non-stationary world.
    Description: Published
    Description: 1361–1371
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: river discharge ; rainfall ; statistical model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-10
    Description: Patagonia Argentina is a key area for the study of sea level changes in the southern hemisphere, but the availability of reliable sea level markers in this area is still problematic. In fact the storm deposits (beach ridge) commonly used here to reconstruct past sea level oscillations introduce a wide error. Along the Puerto Deseado coast (Santa Cruz), morphometric analyses of 11 features were carried out using traditional measurement tools and a digital software-based method (tested on one selected feature) with the aim to investigate the possibility of their use as sea level markers. By undertaking accurate topographic profiles we identified the relationship between notches and current sea level. In detail, we identified two clusters of notch retreat point elevations, with a very low internal variability. The lower was located a little below the mean high tide level (mHT) and the upper located at least 0.5m above the maximum high tide level (MHT). Field observations of tidal levels and the position of notches suggest that the lower notches are active and the upper are inactive. This study on the abrasive notches attests their quality as sea level markers and opens up the use of fossil abrasive notches as palaeo sea level markers because the error linked to these features is substantially smaller than that introduced by beach ridges commonly used in the study area
    Description: Published
    Description: 1550 – 1558
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: notch; rocky coast; sea level marker; Patagonia; Argentina ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C). We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES) A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950–2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our results show that radiative cooling is weakly effective in A1B throughout the 21C. Two distinct mechanisms characterize the diverse strengthening of the hydrological cycle in the middle and end- 21C. It is only through a very large perturbation of surface fluxes that A1B achieves a larger increase in global precipitation in the last decades of the 21C. Our energy/water budget analysis shows that this behavior is ultimately due to a bifurcation in the Bowen ratio change between the two scenarios. This work warns that mitigation policies that promote aerosol abatement, may lead to an unexpected stronger intensification of the hydrological cycle and associated changes that may last for decades after global warming is effectively mitigated. On the other hand, it is also suggested that predictable components of the radiative forcing by aerosols may have the potential to effectively contribute to the decadal-scale predictability of changes in the hydrological strength.
    Description: Published
    Description: 199-212
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: N/A or not JCR
    Description: open
    Keywords: Earth System Model ; climate scenario ; mitigation ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The central United States is a region for which observational studies have indicated an increase in heavy rainfall. This study uses projections of daily rainfall from 20 state-of-the-art global climate models and one scenario (RCP 8.5) to examine projected changes in extreme rainfall. Analyses are performed focusing on trends in the 90th and 99th percentiles of the daily rainfall distributions for two periods (2006-2045 and 2046-2085). The results of this study indicate a large increase in extreme rainfall in particular over the northern part of the study region, with a much less clear signal over the Great Plains and the states along the Gulf of Mexico.
    Description: Published
    Description: 200-205
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: embargoed_20160624
    Keywords: precipitation ; extreme events ; cmip5 ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The connection between Tropical Pacific and North Pacific variability is investigated in a state-of-the art coupled ocean-atmosphere model, comparing two 20th century simulations at T30 and T106 atmospheric horizontal resolutions. Despite a better simulation of the frequency and the spatial distribution of the Tropical Pacific anomalies associated with the El Nino Southern Oscillation (ENSO) in the high-resolution experiment, the response in the North Pacific is scarcely different from the low-resolution experiment where the ENSO variability is weaker and at higher than observed frequency. In the North Pacific, the response of surface atmospheric fields to the variability in the Tropical Pacific appears to be affected by local coupling processes significantly different in the two experiments. The coupling between sea level pressure (SLP) and sea surface temperature (SST) in the North Pacific as well as the influence of the Tropical Pacific SST has been measured here by means of the ‘coupled manifold’ technique. In the low-resolution case the SLP variances linked to the fraction of North Pacific SST not influenced by the Tropical Pacific are weak suggesting that the remote influence is strong, consistently with the observations. On the contrary, in the high-resolution experiment the fractions and the patterns of the SLP variances due to the Tropical Pacific SST and those linked to the North Pacific SST are comparable. In the latter case, model systematic errors in the northwestern Pacific influences the local coupling processes thus triggering the remote response. We conclude that an increased atmospheric horizontal resolution does not reduce the coupled model systematic errors in the representation of the teleconnection between the North and the Tropical Pacific and that the validation of coupled models has to consider both remote and local processes.
    Description: Published
    Description: 1640-1653
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: Tropical Pacific-North Pacific teleconnection ; ENSO ; coupled GCMs ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO2 concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO2 levels on monsoons. Generally, the monsoon precipitation responses to CO2 forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarly proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16xCO2 experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO2 sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (‘‘precipitation-wind paradox’’). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales.
    Description: Published
    Description: 83-101
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: carbon dioxide forcing ; monsoon precipitation ; coupled GCMs ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-25
    Description: A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950–1999 is studied to identify and understand which components of the Asian–Australian monsoon (A–AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A–AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A–AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June–July–August SSTs in the equatorial eastern Pacific in recent decades. Among the A–AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A–AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.
    Description: Published
    Description: 1051-1068
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: CLIVAR C20C ; Asian-Australian monsoon circulation ; AGCM ; Reproducibility ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO2 concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO2 levels on monsoons. Generally, the monsoon precipitation responses to CO2 forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarly proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16xCO2 experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO2 sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions(‘‘precipitation-wind paradox’’). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales.
    Description: In press
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: carbon dioxide forcing ; monsoon precipitation ; coupled model experiments ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: In this chapter, a review is given of progress to date on an intercomparison project designed to compare and evaluate the ability of climate models to generate tropical cyclones, the Tropical Cyclone climate Model Intercomparison Project(TC-MIP). Like other intercomparison projects, this project aims to evaluate climate models using common metrics in order to make suggestions regarding future development of such models.
    Description: Published
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: restricted
    Keywords: Tropical Cyclones ; general circulation models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the 20th Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical North West Pacific (NWP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Despite the overall warming of the tropical upper ocean and the expansion of warm SSTs to the subtropics and mid-latitudes, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both Hemispheres. An extended version of this work is in available on Journal of Climate (Gualdi et al.,2008 - DOI:10.1175/2008JCLI1921.1)
    Description: Published
    Description: 287-321
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: climate ; tropical cyclones ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed.
    Description: Published
    Description: 1461-1475
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: atmospheric general circulation models ; climate forcing ; climate sensitivity ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-12-14
    Description: In this study we present an intercomparison of measurements of very low water vapor column content obtained with a Ground-Based Millimeter-wave Spectrometer (GBMS), Vaisala RS92k radiosondes, a Raman Lidar, and an IR Fourier Transform Spectrometer. These sets of measurements were carried out during the primary field campaign of the ECOWAR (Earth COoling by WAter vapor Radiation) project which took place on the Western Italian Alps from 3 to 16 March, 2007.
    Description: Published
    Description: 135-138
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: N/A or not JCR
    Description: open
    Keywords: Precipitable Water Vapor ; ECOWAR ; IR and Millimeter-Wave Spectroscopy ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: A set of experiments forced with observed SST has been performed with the Echam4 atmospheric GCM at three different horizontal resolutions (T30, T42 and T106). These experiments have been used to study the sensitivity of the simulated Asian summer monsoon (ASM) to the horizontal resolution. The ASM is reasonably well simulated by the Echam4 model at all resolutions. In particular, the low-level westerly flow, that is the dominant manifestation of the Asian summer monsoon, is well captured by the model, and the precipitation is reasonably simulated in intensity and space appearance. The main improvements due to an higher resolution model are associated to regional aspects of the precipitation, for example the Western Ghats precipitation is better reproduced. The interannual variability of precipitation and wind fields in the Asian monsoon region appears to be less affected by an increase in the horizontal resolution than the mean climatology is. A possible reason is that the former is mainly SST-forced. Besides, the availability of experiments at different horizontal resolution realized with the Echam4 model coupled to a global oceanic model allows the possibility to compare these simulations with the experiments previously described. This analysis showed that the coupled model is able to reproduce a realistic monsoon, as the basic dynamics of the phenomenon is captured. The increase of the horizontal resolution of the atmospheric component influences the simulated monsoon with the same characteristics of the forced experiments. Some basic features of the Asian summer monsoon, as the interannual variability and the connection with ENSO, are further investigated.
    Description: Published
    Description: 273-290
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: monsoon ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: The effect of climate change on the Brewer– Dobson circulation and, in particular, the large-scale seasonal-mean transport between the troposphere and stratosphere is compared in a number of middle atmosphere general circulation models. All the models reproduce the observed upwelling across the tropical tropopause balanced by downwelling in the extra tropics, though the seasonal cycle in upwelling in some models is more semi-annual than annual. All the models also consistently predict an increase in the mass exchange rate in response to growing greenhouse gas concentrations, irrespective of whether or not the model includes interactive ozone chemistry. The mean trend is 11 kt s–1 year–1 or about 2% per decade but varies considerably between models. In all but one of the models the increase in mass exchange occurs throughout the year though, generally, the trend is larger during the boreal winter. On average, more than 60% of the mean mass fluxes can be explained by the EP-flux divergence using the downward control principle. Trends in the annual mean mass fluxes derived from the EP-flux divergence also explain about 60% of the trend in the troposphere-to-stratosphere mass exchange rate when averaged over all the models. Apart from two models the interannual variability in the downward control derived and actual mass fluxes were generally well correlated, for the annual mean.
    Description: Published
    Description: 727-741
    Description: JCR Journal
    Description: reserved
    Keywords: anthropogenic change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: This work presents a methodology to study the interannual variability associated with summertime months in which extremely hot temperatures are frequent. Daily time series of maximum and minimum temperature fields (T max and T min, respectively) are used to define indexes of extreme months based on the number of days crossing thresholds. An empirical orthogonal function (EOF) analysis is applied to the monthly indexes. EOF loadings give information about the geographical areas where the number of days per month with extreme temperatures has the largest variability. Correlations between the EOF principal components and the time series of other fields allow plotting maps highlighting the anomalies in the large scale circulation and in the SSTs that are associated with the occurrence of extreme events. The methodology is used to construct the “climatology” of the extremely hot summertime months over Europe. In terms of both interannual and intraseasonal variability, there are three regions in which the frequency of the extremely hot days per month homogeneously varies: north-west Europe, Euro-Mediterranean and Eurasia region. Although extremes over those regions occur during the whole summer (June to August), the anomalous climatic conditions associated with frequent heatwaves present some intraseasonal variability. Extreme climate events over the north-west Europe and Eurasia are typically related to the occurrence of blocking situations. The intraseasonal variability of those patterns is related to the amplitude of the blocking, the relative location of the action centre and the wavetrain of anomalies downstream or upstream of the blocking. During June and July, blocking situations which give extremely hot climate conditions over north-west Europe are also associated with cold conditions over the eastern Mediterranean sector. The Euro-Mediterranean region is a transition area in which extratropical and tropical systems compete, influencing the occurrence of climate events: blockings tend to be related to extremely hot months during June while baroclinic anomalies dominate the variability of the climate events in July and August. We highlight that our method could be easily applied to other regions of the world, to other fields as well as to model outputs to assess, e.g. the potential change of extreme climate events in a warmer climate.
    Description: Published
    Description: 77-98
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: Extreme events ; Heatwaves ; Temperature anomalies ; climate variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...