ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (41)
  • 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions  (21)
  • Arctic Ocean  (20)
  • American Geophysical Union  (41)
  • American Institute of Physics
  • Periodicals Archive Online (PAO)
Collection
  • Articles  (41)
Source
  • 1
    Publication Date: 2020-12-14
    Description: Explosive volcanic eruptions are defined as the violent ejection of gas and hot fragments from a vent in the Earth's crust. Knowledge of ejection velocity is crucial for understanding and modeling relevant physical processes of an eruption, and yet direct measurements are still a difficult task with largely variable results. Here we apply pioneering high-speed imaging to measure the ejection velocity of pyroclasts from Strombolian explosive eruptions with an unparalleled temporal resolution. Measured supersonic velocities, up to 405 m/s, are twice higher than previously reported for such eruptions. Individual Strombolian explosions include multiple, sub-second-lasting ejection pulses characterized by an exponential decay of velocity. When fitted with an empirical model from shock-tube experiments literature, this decay allows constraining the length of the pressurized gas pockets responsible for the ejection pulses. These results directly impact eruption modeling and related hazard assessment, as well as the interpretation of geophysical signals from monitoring networks.
    Description: INGV-DPC “V2” and “Paroxysm”, FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks”, and FP7-PEOPLE-IEF-2008 – 235328 Projects
    Description: Published
    Description: L02301
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: strombolian ; ejection velocity ; explosive eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The soil CO2 flux on Mt. Etna as recorded by the ETNAGAS network (an automatic system for measuring soil CO2 flux and meteorological parameters) started to increase strongly about 5 months prior to the onset of the 2004–2005 eruption and decreased a few months before the end of the eruption. Time delays in the occurrences of anomalies in soil CO2 flux at different sites in the geochemical network constrain the relationship between soil CO2 flux distributions and the tectonic framework of Etna volcano. The anomalies observed before the 2004–2005 eruption support the intrusion of new undegassed magma into the upper feeding system of the volcano (〈20 km below sea level). Magma subsequently rose slowly in the volcano conduits, thereby triggering the onset of the 2004–2005 eruption. The time delays in the occurrences of anomalies in combination with spectral analysis indicate the importance of tectonic and volcanotectonic structures in driving the ascent of deep gases within the crust. Moreover, greatest amplitude pulsations of the low-frequency components of the CO2 flux signals were correlated with the paroxystic activities of the 2004–2005 eruption. This study confirms that CO2 flux variation is a useful indicator for volcanic activity in the surveillance of the Mt. Etna and similar basaltic volcanoes.
    Description: Dipartimento Protezione Civile Ministero degli Interni
    Description: Published
    Description: B09206
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 flux ; Continuous monitoring of soil CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-03
    Description: Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of 〈1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.
    Description: This work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.
    Description: Published
    Description: B11203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; lava flow ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The eruption of Stromboli 2002-03, thanks to its complex scenario (flank instability, tsunami, necessity to rapidly upgrade monitoring networks) has provided an important opportunity to verify the response of the national system of civil protection to volcanic emergencies. In particular, it has tested and validated the model of collaboration, in use by Italian law, between the Department of Civil Protection and the National Institute of Geophysics and Volcanology. This synergy has enabled a better understanding and ability to tackle the eruptive crisis from its first stages, as well as implement monitoring systems both dependably and swiftly. In this work, the numerous first monitoring tasks carried out during the critical initial stages of the eruption are described, and the activities and planned action are reported over the course of the eruption that has made Stromboli one of the best monitored volcanoes not only in Italy but throughout the world.
    Description: Published
    Description: 387-398
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: eruptive crisis management ; Stromboli volcano ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Forecasting the time, nature, and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions are fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high‐resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land use and civil defense planning in the long term, to quantify, in real time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Description: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project RBAU01RMZ4 “Lava flow simulations by Cellular Automata,” and by the National Civil Defense Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna.”
    Description: Published
    Description: B04203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: lava flows ; volcanic hazard ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: This paper reports the use of diffusive tubes in determining HF, HCl, and SO2 in the volcanic plume of Mount Etna in an attempt to highlight the potential of this method in studying volcanoes. In a first application a network of 18 diffusive tubes was installed on Etna flanks, aimed at evaluating the atmospheric dispersion of the volcanic plume on a local scale. Results showed a monotonic decrease in volatile air concentrations with distance from the craters (HF from 0.15 to 〈0.003 mmol m3, HCl from 2 to 〈0.01 mmol m3, and SO2 from 11 to 0.04 mmol m3), revealing the prevalently volcanic contribution. Matching of SO2/HCl and HCl/HF volatile ratios with contemporaneous measurements at the summit craters validated the use of diffusive tubes in tracing the chemical features of a volcanic plume from remote locations. A first tentative assessment of dry deposition rates of volcanogenic acidic gases was also made, yielding 2.5 74 t d1 (SO2), 0.6 17 t d1 (HCl), and 0.02 0.6 t d1 (HF) and revealing the potential environmental impact of gas emissions. In a second experiment, carried out during the recent October 2002 to February 2003 eruption of Etna, diffusive tubes provided a continuous record of the chemical composition of the eruptive plume from a safe distance of 1 km from the vents, thus considerably decreasing the risks involved in sampling. This highlighted a clear time decrease in SO2 concentrations and SO2/HCl ratios, which was interpreted as due to progressive exhaustion of volatile degassing and eruption energy.
    Description: Published
    Description: D21308
    Description: partially_open
    Keywords: volcanic plumes ; impact of volcanic emissions ; sulfur and halogens chemistry ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 597469 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: From December 2002 to July 2003, Stromboli volcano was characterized by a new effusive stage of eruption after a period of extraordinary strombolian activity. Signals recorded in two continuous monitoring stations during the eruption, which have already been presented in very recent papers, evidenced anomalies in the CO2 flux just before the onset of the eruption. A more detailed analysis carried out on the data subset acquired during the eruption, integrated by daily field observations of the scientific personnel working at the volcanological observatory in Stromboli, showed that CO2 flux and soil temperature are strictly related to volcanic events. Furthermore, the relative minima and maxima of the two parameters showed a strong correlation with wind speed and direction. This fact was especially true at the summit station, whereas at the coastal sites seasonal and meteorological effects masked the volcanic signal. The analysis of the wind data, particularly the relationships between wind speed and direction, air and soil temperature, and local circulation of atmospheric air masses revealed that during the eruption, in the summit area of Stromboli air movements were not only related to atmospheric circulation but were also significantly affected, and in certain cases caused, by volcanic activity. This conclusion was reached by observing several anomalies, such as the discrepancies in the wind direction between the two stations, higher air temperatures at the summit site, and inversion of direction for wind before and after the reopening of the conduit in a major explosion on 5 April 2003. The relationships found between volcanic activity, soil temperatures, CO2 fluxes, and wind speed and direction indicate that soil temperature measurements, in an open conduit volcano such as in this case, could be used to monitor the level of volcanic activity, along with CO2 flux. Furthermore, the possible volcanic origin of a peculiar type of air circulation identified in the summit area of Stromboli suggests that the separation between volcanic and atmospheric signals might not be obvious, requiring monitoring over a wide area, rather than a single location.
    Description: Published
    Description: Q12001
    Description: partially_open
    Keywords: carbon dioxide flux ; continuous monitoring ; soil temperature ; wind ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2636190 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Marked increases of CO2, H2 and He dissolved in thermal waters and changes in the dissolved carbon isotopic composition, were observed at Stromboli before the 28 December 2002 eruption and before a violent explosive paroxysm occurred on 5 April 2003. High anomalous CO2 flux values were recorded at the crater rim since a week before the eruption onset. The first anomalies in the thermal waters (dissolved CO2 amount) appeared some months before the eruption, when magma column rose at a very high level in the conduit. High peaks of dissolved H2 and He were recorded a few days before the paroxysm. Carbon isotopic composition indicates a magmatic origin of the dissolved CO2 whose increase, together with those of H2 and He, is attributed to an increasing output of deep gases likely produced by depressurization of a rising batch of a deep gas-rich magma, whose fragments have been emitted during the explosion.
    Description: Italian Civil Protection
    Description: Published
    Description: L07620
    Description: partially_open
    Keywords: Stromboli ; geochemical precursors ; CO2 flux ; pH ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 190819 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Repeated phenomena of flank instability accompanied the 28 December 2002 to 21 July 2003 eruption of Stromboli volcano. The major episodes were two tsunamigenic landslides on 30 December 2002, 2 d after the volcano unrest. After 30 December, sliding processes remodeled the area affected by slope instability.We propose analyses of 565 sliding episodes taking place from December 2002 to February 2003.We try to shed light on their main seismic features and links with the ongoing seismic and volcanic activity using variogram analysis as well. A characterization of the seismic signals in the time and frequency domains is presented for 185 sliding episodes. Their frequency content is between 1 Hz and 7 Hz. On the basis of the dominant peaks and shape of the spectrum, we identify three subclasses of signals, one of which has significant energy below 2 Hz. Low-frequency signatures were also found in the seismic records of the landslides of 30 December, which affected the aerial and submarine northwestern flank of the volcano. Accordingly, we surmise that spectral analysis might provide evidence of sliding phenomena with submarine runouts.We find no evidence of sliding processes induced by earthquakes. Additionally, a negative statistical correlation between sliding episodes and explosion quakes is highlighted by variogram analysis. Variograms indicate a persistent behavior, memory, of the flank instability from 5 to 10 d.We interpret the climax in the occurrence rate of the sliding processes between 24 and 29 January 2003 as the result of favorable conditions to slope instability due to the emplacement of NW-SE aligned, dike-fed vents located near the scarp of the landslide area. Afterward, the stabilizing effect of the lava flows over the northwestern flank of the volcano limited erosive phenomena to the unstable, loose slope not covered by lava.
    Description: This work was supported financially by Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento per la Protezione Civile, project INGV-DPC V4/02.
    Description: Published
    Description: Q04022
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: rockfalls ; seismicity ; volcanoes ; volcano collapses ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Description: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Description: Published
    Description: B10405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: A major explosion occurred at Stromboli on April 5 2003, being the most powerful event over a period of exceptional eruptive activity lasting from December to July. Here, we describe results from a network of diffusive tubes set up on the Stromboli’s summit area, aimed at a characterisation of plume composition (SO2, HCl, HF) prior to and after April 5. Data analysis revealed anomalous sulphur degassing 2–3 days before the event, when SO2/HCl ratios (9) significantly higher than those typical of quiescent degassing (1) were recorded. We interpret this exceptional plume signature as an evidence of S-rich magmas ascending in the shallow plumbing system, and propose high SO2/HCl as a potential precursor of major explosions on the volcano. The post-April 5 phase was characterised by time-decreasing SO2/HCl and SO2/HF plume ratios, ascribed to declining magma feeding as a prelude to restoration of ‘‘normal’’ Strombolian activity.
    Description: Published
    Description: L14607
    Description: partially_open
    Keywords: magmatic degassing ; paroxysm ; Stromboli ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 258508 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Forecasting the time, nature and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions is fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high-resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land-use and civil defence planning in the long-term, to quantify, in real-time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Description: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project n° RBAU01RMZ4 “Lava flow simulations by Cellular Automata”, and by the National Civil Defence Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna”.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: open
    Keywords: lava flows ; Etna ; hazard evaluation ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Bonaccorso et al. [2011a] investigated the source and magma dynamics of the 10 May 2008 lava fountain at the South-East Crater (SEC) of Mount Etna through a multidisciplinary approach that integrated a wide data set ranging from bulk rock compositions of the erupted products to seismic tremor and long-period events, tilt and gravity signals. Using a large dataset, the study provided a robust framework in which the mechanism of the 10 May 2008 lava fountain is explained as a violent release of bubble-rich magma layer previously trapped at the top of a shallow reservoir located between −0.5 and 1.5 km above sea level (asl). This result is in agreement with recent relevant literature [Allard et al., 2005; Vergniolle and Ripepe, 2008; Aiuppa et al., 2010; Andronico and Corsaro, 2011; Bonaccorso et al., 2011b; Calvari et al., 2011; Vergniolle and Gaudemer, 2012]. In the introduction of their comment Carbone and Patanè [submitted] affirm that in their opinion the interpretation that “the lava fountain was generated by the fragmentation of a foam layer trapped at the top of shallow reservoir” is not soundly based. This comment’s conclusion is puzzling because one of the comment’s authors (D. Patanè) is also a co-author on the paper by Aiuppa et al. [2010] where the same conclusion, now criticized, was well supported (see figure 5 and conclusions of that paper). In particular, in the conclusions Aiuppa et al. [2010] reported that “The paroxysmal SEC episodes mark the violent release of a bubble-rich magma layer, with bubbles having relatively shallow reservoir ...", that is, the same conclusion now criticized in the comment. After this, the comment raises issues concerning the analysis and interpretation of gravity and tilt data in the multidisciplinary approach presented by Bonaccorso et al. [2011a]. The comment by Carbone and Patanè is divided into 4 paragraphs, labelled “1. Introduction”, “2. Gravity changes”, “3. Tilt changes” and “4. Concluding remarks” with only paragraphs 2 and 3 containing specific comments. In this reply, we address these two paragraphs, and we shall show how the assumptions underlying the comment are merely speculative and why the results presented by Bonaccorso et al.[2011a] remain valid.
    Description: Published
    Description: Q11009
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: Etna volcano ; lava fountain ; explosion mechanism ; volcano multi-disciplinary monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: The crystal fabric of a lava has been analyzed for the first time by neutron texture diffraction. In this study we quantitatively investigate the crystallographic preferred orientation of feldspars in the Castello d’Ischia (Ischia Island, Italy) trachytic exogenous dome. The crystallographic preferred orientation was measured with the monochromatic neutron texture diffractometer SV7 at the Forschungszentrum Jülich in Germany and a Rietveld refinement was applied to the sum diffraction pattern. The complementary thin section analysis showed that the three-dimensional crystal shape and the corresponding shape preferred orientation are in agreement with the quantitative orientation distributions of the neutron texture data. The (0k0) crystallographic planes of the feldspars are roughly parallel to the local flow bands, whereas the other corresponding pole figures show that a pivotal rotation of the anorthoclase and sanidine crystals was active during the emplacement of this lava dome. In combination with scanning electron microscopy investigations, electron probe microanalysis, XRF, and X-ray diffraction, the Rietveld refinement of the neutron diffraction data indicates a slow cooling dynamic on the order of several months during their crystallization under subaerial conditions. Results attained here demonstrate that neutron texture diffraction is a powerful tool that can be applied to lava flows.
    Description: Published
    Description: 179-196
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: neutron diffraction ; crystal fabric ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: The paper "Multidisciplinary investigation on a lava fountain preceding a flank eruption: The 10 May 2008 Etna case", by Bonaccorso et al. (2011), presents a multi-parameter dataset encompassing the eruptive episode featured in the title. Through the dataset at their disposal, the authors tried to set constraints on the coupled phenomena which governed the paroxysmal event and subsequent flank eruption. Even though the joint analysis of different data offers considerable potential to extract additional information on the dynamics behind the observed phenomena, the most obvious implication is the risk of not treating all the available information with due care, which may lead to misinterpretation of the data. In the following, we discuss issues concerning the analysis and interpretation of gravity and tilt data in Bonaccorso et al. (2011) and show why, in our opinion, the conclusion that "all the data concur in indicating that the 10 May lava fountain was generated by the fragmentation of a foam layer trapped at the top of a shallow reservoir" is not soundly based.
    Description: Published
    Description: Q11008
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: embargoed_20130601
    Keywords: Volcanic eruptions ; Etna volcano ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: The statistical analysis of volcanic activity at Mt Etna was conducted with the twofold aim of (1) constructing a probability map for vent opening of future flank eruptions and (2) forecasting the expected number of eruptive events at the summit craters. The spatiotemporal map of new vent opening at Etna volcano is based on the analysis of spatial locations and frequency of flank eruptions starting from 1610. Thanks to the completeness and accuracy of historical data over the last four centuries, we examined in detail the spatial and temporal distribution of flank eruptions showing that effusive events follow a nonhomogenous Poisson process with space-time varying intensities. After demonstrating the spatial nonhomogeneity and the temporal nonstationarity of flank eruptions at Etna, we calculated the recurrence rates (events expected per unit area per unit time) and produced different spatiotemporal probability maps of new vent opening in the next 1, 10 and 50 years. These probabilistic maps have an immediate use in evaluating the future timing and areas of Etna prone to volcanic hazards. Finally, the results of the analysis of the persistent summit activity during the last 110 years indicate that the hazard rate for eruptive events is not constant with time, differs for each summit crater of Mt Etna, highlighting a general increase in the eruptive frequency starting from the middle of last century and particularly from 1971, when the SE crater was formed.
    Description: This work was developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 1925-1935
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; probabilistic modeling ; eruption ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: In January 2011 eruptive activity resumed at Etna producing a new phase with frequent lava fountain episodes until April 2012. In November 2011, the first two borehole strainmeters were installed, which detected negative strain changes (~ 0.15 - 0.8 strain) during the paroxysmal events. A Finite Element Model was set up to estimate accurately the tilt and volumetric strain, taking into account the real profile of the volcano and the elastic medium heterogeneity. The numerical computations indicated an elongated depressurizing source located at 0 km b.s.l., which underwent a volume change of ~2 x 106 m3 which is the most of the magma volume erupted while a smaller remaining part is accommodated by the magma compressibility. This shallow source cannot accumulate large magma volumes and, thus, favours short term periodic eruptive events with a fairly constant balance between the refilling and the erupted magma.
    Description: Published
    Description: 3579-3584
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: embargoed_20150613
    Keywords: Etna volcano ; lava fountain eruptions ; shallow plumbing system ; borehole strainmeters ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.
    Description: INGV-DPC “V2” and “Paroxysm,” FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks,” and FP7-PEOPLE-IEF-2008–235328 “NEMOH” ITN projects
    Description: Published
    Description: 3096–3102
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: jet noise ; volcano acoustics ; Stromboli ; Yasur ; Fuego ; strombolian eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: We present the results of laboratory experiments on the aggregation and disaggregation of colliding volcanic ash particles. Ash particles of different composition and size 〈90 µm were held in turbulent suspension and filmed in high speed while colliding, aggregating, and disaggregating, forming a growing layer of electrostatically bound particles along a vertical plate. At room conditions and regardless of composition, 60–80% of the colliding particles smaller than 32 µm remained aggregated. In contrast, aggregation of particles larger than 63 µm was negligible, and, when a layer formed, periods when disaggregation (mainly by collisions or drag) exceeded aggregation occurred twice as frequently than for smaller particles. An empirical relationship linking the aggregation index, i.e., the effective fraction of aggregated particles surviving disaggregation, to the mean particle collision kinetic energy is provided. Our results have potential implications on the dynamics of volcanic plumes and ash mobility in the environment.
    Description: INGV-DPC project V1 “Probabilistic evaluation of volcanic hazard”; EU Seventh Programme FP7 “MED-SUV” grant agreement 308665
    Description: Published
    Description: 1068–1075
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic ash ; disaggregation ; experimental modeling ; volcanic plumes ; aggregation processes ; colliding particles ; sticking rate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C04008, doi:10.1029/2001JC001248.
    Description: Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology and the patterns for each year in the past 2 decades. The frequency of storms is also shown to be correlated (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.
    Description: This study has been supported by the NASA Cryospheric Science Program and the International Arctic Reseach Center. We benefited from discussion with Dr. A. Proshutinsky. D. Walsh wishes to thank the Frontier Research System for Global Change for their support. The IOEB program was supported by ONR High-Latitude Dynamics Program and Japan Marine Science and Technology Center (JAMSTEC).
    Keywords: Arctic Ocean ; Mixing ; Storm ; Upper ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D03, doi:10.1029/2011JC006975.
    Description: Data collected by an autonomous ice-based observatory that drifted into the Eurasian Basin between April and November 2010 indicate that the upper ocean was appreciably fresher than in 2007 and 2008. Sea ice and snowmelt over the course of the 2010 drift amounted to an input of less than 0.5 m of liquid freshwater to the ocean (comparable to the freshening by melting estimated for those previous years), while the observed change in upper-ocean salinity over the melt period implies a freshwater gain of about 0.7 m. Results of a wind-driven ocean model corroborate the observations of freshening and suggest that unusually fresh surface waters observed in parts of the Eurasian Basin in 2010 may have been due to the spreading of anomalously fresh water previously residing in the Beaufort Gyre. This flux is likely associated with a 2009 shift in the large-scale atmospheric circulation to a significant reduction in strength of the anticyclonic Beaufort Gyre and the Transpolar Drift Stream.
    Description: This work was funded by the National Science Foundation Office of Polar Programs Arctic Sciences Section under awards ARC‐0519899, ARC‐0856479, and ARC‐ 0806306.
    Keywords: Arctic Ocean ; Circulation ; Fresh water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03002, doi:10.1029/2003JC001962.
    Description: Pathways of Pacific Water flowing from the North Pacific Ocean through Bering Strait and across the Chukchi Sea are investigated using a two-dimensional barotropic model. In the no-wind case, the flow is driven only by a prescribed steady northward flow of 0.8 Sv through Bering Strait. The resulting steady state circulation consists of a broad northeasterly flow, basically following the topography, with a few areas of intensified currents. About half of the inflow travels northwest through Hope Valley, while the other half turns somewhat toward the northeast along the Alaskan coast. The flow through Hope Valley is intensified as it passes through Herald Canyon, but much of this flow escapes the canyon to move eastward, joining the flow in the broad valley between Herald and Hanna Shoals, another area of slightly intensified currents. There is a confluence of nearly all of the flow along the Alaskan coast west of Pt. Barrow to create a very strong and narrow coastal jet that follows the shelf topography eastward onto the Beaufort shelf. Thus in this no-wind case, nearly all of the Pacific Water entering the Chukchi Sea eventually ends up flowing eastward along the narrow Beaufort shelf, with no discernable flow across the shelf edge toward the interior Canada Basin. Travel times for water parcels to move from Bering Strait to Pt. Barrow vary tremendously according to the path taken; e.g., less than 6 months along the Alaskan coast, but about 30 months along the westernmost path through Herald Canyon. This flow field is relatively insensitive to idealized wind-forcing when the winds are from the south, west or north, in which cases the shelf transports tend to be intensified. However, strong northeasterly to easterly winds are able to completely reverse the flows along the Beaufort shelf and the Alaskan coast, and force most of the throughflow in a more northerly direction across the Chukchi Sea shelf edge, potentially supplying the surface waters of the interior Canada Basin with Pacific Water. The entire shelf circulation reacts promptly to changing wind conditions, with a response time of ~2–3 days. The intense coastal jet between Icy Cape and Pt. Barrow implies that dense water formed here from winter coastal polynyas may be quickly swept away along the coast. In contrast, there is a relatively quiet nearshore region to the west, between Cape Lisburne and Icy Cape, where dense water may accumulate much longer and continue to become denser before it is carried across the shelf.
    Description: Financial support was provided to PW by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), and the J. Seward Johnson Fund. Funding for DCC came through a grant from the Coastal Ocean Institute at WHOI.
    Keywords: Arctic Ocean ; Pacific Water ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S01, doi:10.1029/2006JC004017.
    Description: This research is supported by the National Science Foundation Office of Polar Programs under cooperative agreements (OPP-0002239 and OPP-0327664) with the International Arctic Research Center, University of Alaska Fairbanks.
    Keywords: Modeling ; Arctic Ocean ; Dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D04, doi:10.1029/2010JC006688.
    Description: A sea ice model was developed by converting the Community Ice Code (CICE) into an unstructured-grid, finite-volume version (named UG-CICE). The governing equations were discretized with flux forms over control volumes in the computational domain configured with nonoverlapped triangular meshes in the horizontal and solved using a second-order accurate finite-volume solver. Implementing UG-CICE into the Arctic Ocean finite-volume community ocean model provides a new unstructured-grid, MPI-parallelized model system to resolve the ice-ocean interaction dynamics that frequently occur over complex irregular coastal geometries and steep bottom slopes. UG-CICE was first validated for three benchmark test problems to ensure its capability of repeating the ice dynamics features found in CICE and then for sea ice simulation in the Arctic Ocean under climatologic forcing conditions. The model-data comparison results demonstrate that UG-CICE is robust enough to simulate the seasonal variability of the sea ice concentration, ice coverage, and ice drifting in the Arctic Ocean and adjacent coastal regions.
    Description: This work was supported by the NSF Arctic Program for projects with grant numbers of ARC0712903, ARC0732084, and ARC0804029. The Arctic Ocean Model Intercomparison Project (AOMIP) has provided an important guidance for model improvements and ocean studies under coordinated experiments activities. We would like to thank AOMIP PI Proshutinsky for his valuable suggestions and comments on the ice dynamics. His contribution is supported by ARC0800400 and ARC0712848. The development of FVCOM was supported by the Massachusetts Marine Fisheries Institute NOAA grants DOC/NOAA/ NA04NMF4720332 and DOC/NOAA/NA05NMF4721131; the NSF Ocean Science Program for projects of OCE‐0234545, OCE‐0227679, OCE‐ 0606928, OCE‐0712903, OCE‐0726851, and OCE‐0814505; MIT Sea Grant funds (2006‐RC‐103 and 2010‐R/RC‐116); and NOAA NERACOOS Program for the UMASS team. G. Gao was also supported by the Chinese NSF Arctic Ocean grant under contract 40476007. C. Chen’s contribution was also supported by Shanghai Ocean University International Cooperation Program (A‐2302‐10‐0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU).
    Keywords: Arctic Ocean ; Finite-volume ; Sea ice modeling ; Unstructured-grid
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7983-8003. doi:10.1029/2018JC014298.
    Description: A melt pond (MP) distribution equation has been developed and incorporated into the Marginal Ice‐Zone Modeling and Assimilation System to simulate Arctic MPs and sea ice over 1979–2016. The equation differs from previous MP models and yet benefits from previous studies for MP parameterizations as well as a range of observations for model calibration. Model results show higher magnitude of MP volume per unit ice area and area fraction in most of the Canada Basin and the East Siberian Sea and lower magnitude in the central Arctic. This is consistent with Moderate Resolution Imaging Spectroradiometer observations, evaluated with Measurements of Earth Data for Environmental Analysis (MEDEA) data, and closely related to top ice melt per unit ice area. The model simulates a decrease in the total Arctic sea ice volume and area, owing to a strong increase in bottom and lateral ice melt. The sea ice decline leads to a strong decrease in the total MP volume and area. However, the Arctic‐averaged MP volume per unit ice area and area fraction show weak, statistically insignificant downward trends, which is linked to the fact that MP water drainage per unit ice area is increasing. It is also linked to the fact that MP volume and area decrease relatively faster than ice area. This suggests that overall the actual MP conditions on ice have changed little in the past decades as the ice cover is retreating in response to Arctic warming, thus consistent with the Moderate Resolution Imaging Spectroradiometer observations that show no clear trend in MP area fraction over 2000–2011.
    Description: We gratefully acknowledge the support of the NASA Cryosphere Program (grants NNX15AG68G, NNX17AD27G, and NNX14AH61G), the Office of Naval Research (N00014‐12‐1‐0112), the NSF Office of Polar Programs (PLR‐1416920, PLR‐1603259, PLR‐1602521, and ARC‐1203425), and the Department of Homeland Security (DHS, 2014‐ST‐061‐ML‐0002). The DHS grant is coordinated through the Arctic Domain Awareness Center (ADAC), a DHS Center of Excellence, which conducts maritime research and development for the Arctic region. The views and conclusions in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the DHS. MODIS‐derived MP area data are available at https://icdc.cen.uni‐hamburg.de/1/daten/cryosphere/arctic‐meltponds.html. MP area fraction statistics derived from MEDEA images are available from http://psc.apl.uw.edu/melt‐pond‐data/. Sea ice thickness and snow observations are available at http://psc.apl.washington.edu/sea_ice_cdr. CFS forcing data used to drive MIZMAS are available at https://www.ncdc.noaa.gov/data‐access/model‐data/model‐datasets/climate‐forecast‐system‐version2‐cfsv2.
    Description: 2019-04-18
    Keywords: Arctic Ocean ; sea ice ; melt ponds ; numerical modeling ; climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-02-28
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(8), (2022): e2022GB007320, https://doi.org/10.1029/2022GB007320.
    Description: Biogeochemical cycles in the Arctic Ocean are sensitive to the transport of materials from continental shelves into central basins by sea ice. However, it is difficult to assess the net effect of this supply mechanism due to the spatial heterogeneity of sea ice content. Manganese (Mn) is a micronutrient and tracer which integrates source fluctuations in space and time while retaining seasonal variability. The Arctic Ocean surface Mn maximum is attributed to freshwater, but studies struggle to distinguish sea ice and river contributions. Informed by observations from 2009 IPY and 2015 Canadian GEOTRACES cruises, we developed a three-dimensional dissolved Mn model within a 1/12° coupled ocean-ice model centered on the Canada Basin and the Canadian Arctic Archipelago (CAA). Simulations from 2002 to 2019 indicate that annually, 87%–93% of Mn contributed to the Canada Basin upper ocean is released by sea ice, while rivers, although locally significant, contribute only 2.2%–8.5%. Downstream, sea ice provides 34% of Mn transported from Parry Channel into Baffin Bay. While rivers are often considered the main source of Mn, our findings suggest that in the Canada Basin they are less important than sea ice. However, within the shelf-dominated CAA, both rivers and sediment resuspension are important. Climate-induced disruption of the transpolar drift may reduce the Canada Basin Mn maximum and supply downstream. Other micronutrients found in sediments, such as Fe, may be similarly affected. These results highlight the vulnerability of the biogeochemical supply mechanisms in the Arctic Ocean and the subpolar seas to climatic changes.
    Description: This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Climate Change and Atmospheric Research Grant: GEOTRACES (RGPCC 433848-12) and VITALS (RGPCC 433898), an NSERC Discovery Grant (RGPIN-2016-03865) to SEA, and by the University of British Columbia through a four year fellowship to BR. Computing resources were provided by Compute Canada (RRG 2648 RAC 2019, RRG 2969 RAC 2020, and RRG 1541 RAC 2021).
    Keywords: GEOTRACES ; Arctic Ocean ; Trace elements ; Canadian Arctic Archipelago ; Ocean modeling ; Micronutrients
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bullock, E., Kipp, L., Moore, W., Brown, K., Mann, P., Vonk, J., Zimov, N., & Charette, M. Radium inputs into the Arctic Ocean from rivers a basin‐wide estimate. Journal of Geophysical Research: Oceans, 127(9), (2022): e2022JC018964, https://doi.org/10.1029/2022jc018964.
    Description: Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for 226Ra and to refine the estimates for 228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual 226Ra and 228Ra fluxes to the Arctic Ocean are [7.0–9.4] × 1014 dpm y−1 and [15–18] × 1014 dpm y−1, respectively. Of these totals, 44% and 60% of the river 226Ra and 228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual 226Ra and 228Ra fluxes of [7.4–17] × 1015 and [15–27] × 1015 dpm y−1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone.
    Description: This study was a broad, collaborative effort that would not have been possible without contributions from numerous funding sources, including the National Science Foundation (NSF-0751525, NSF-1736277, NSF-1458305, NSF-1938873, NSF-2048067, NSF-2134865), the NERC-BMBF project CACOON [NE/R012806/1] (UKRI NERC) and BMBF-03F0806A, and an EU Starting Grant (THAWSOME-676982).
    Keywords: Radium isotopes ; Arctic Ocean ; River fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeGrandpre, M. D., Lai, C., Timmermans, M., Krishfield, R. A., Proshutinsky, A., & Torres, D. Inorganic carbon and pCO(2) variability during ice formation in the Beaufort Gyre of the Canada Basin. Journal of Geophysical Research-Oceans, 124(6), (2019): 4017-4028, doi:10.1029/2019JC015109.
    Description: Solute exclusion during sea ice formation is a potentially important contributor to the Arctic Ocean inorganic carbon cycle that could increase as ice cover diminishes. When ice forms, solutes are excluded from the ice matrix, creating a brine that includes dissolved inorganic carbon (DIC) and total alkalinity (AT). The brine sinks, potentially exporting DIC and AT to deeper water. This phenomenon has rarely been observed, however. In this manuscript, we examine a ~1 year pCO2 mooring time series where a ~35‐μatm increase in pCO2 was observed in the mixed layer during the ice formation period, corresponding to a simultaneous increase in salinity from 27.2 to 28.5. Using salinity and ice based mass balances, we show that most of the observed increases can be attributed to solute exclusion during ice formation. The resulting pCO2 is sensitive to the ratio of AT and DIC retained in the ice and the mixed layer depth, which controls dilution of the ice‐derived AT and DIC. In the Canada Basin, of the ~92 μmol/kg increase in DIC, 17 μmol/kg was taken up by biological production and the remainder was trapped between the halocline and the summer stratified surface layer. Although not observed before the mooring was recovered, this inorganic carbon was likely later entrained with surface water, increasing the pCO2 at the surface. It is probable that inorganic carbon exclusion during ice formation will have an increasingly important influence on DIC and pCO2 in the surface of the Arctic Ocean as seasonal ice production and wind‐driven mixing increase with diminishing ice cover.
    Description: Research Associate Cory Beatty (University of Montana) prepared the CO2 instruments and helped with the mooring deployments and data processing. Pierce Fix (undergraduate intern, University of Montana) helped with the mass balance modeling. The moorings were designed and deployed by personnel at Woods Hole Oceanographic Institution. Michiyo Yamamoto‐Kawai (University of Tokyo) and Marty Davelaar (Institute of Ocean Sciences; IOS) provided the alkalinity and dissolved inorganic carbon data. We thank the captain, officers, crew, and chief scientists (Bill Williams and Sarah Zimmerman, IOS) of the CCGS Louis S. St. Laurent. The data used in this study are available through the U.S. National Science Foundation (NSF) Arctic Data Center (https://arcticdata.io). This research was made possible by grants from the NSF Arctic Observing Network program (ARC‐1107346, PLR‐1302884, PLR‐1504410, and PLR‐1723308).
    Keywords: Sea ice ; Dissolved inorganic carbon ; Carbon cycle ; Solute exclusion ; Partial pressure of CO2 ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M-L., Williams, W. J., Zimmermann, S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., Itoh, M., Kang, S-H., Cho, K-H., Tateyama, K., & Zhao, J. Analysis of the Beaufort Gyre freshwater content in 2003-2018. Journal of Geophysical Research-Oceans, 124(12), (2019): 9658-9689, doi:10.1029/2019JC015281.
    Description: Hydrographic data collected from research cruises, bottom‐anchored moorings, drifting Ice‐Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997–2018) accompanied by sea ice melt, a wind‐forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice‐Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year‐to‐year variability, or the more subtle interannual variations.
    Description: National Science Foundation. Grant Numbers: PLR‐1302884,OPP‐1719280, and OPP‐1845877, PLR‐1303644 and OPP‐1756100, OPP‐1756100, PLR‐1303644, OPP‐1845877, OPP‐1719280, PLR‐1302884 Key Program of National Natural Science Foundation of China. Grant Number: 41330960 Global Change Research Program of China. Grant Number: 2015CB953900 Ministry of Education, Korea Japan Aerospace Exploration Agency (JAXA) /Earth Observation Research Center (EORC) Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) Stanback Postdoctoral Fellowship Russian Foundation for Basic Research. Grant Number: 17‐05‐00382 Presidium of Russian Academy of Sciences HYCOM NOPP. Grant Number: N00014‐15‐1‐2594 DOE. Grant Number: DE‐SC0014378 National Aeronautics and Space Administration Tokyo University of Marine Science and Technology Department of Fisheries and Oceans Canada Woods Hole Oceanographic Institution
    Keywords: Beaufort Gyre ; Arctic Ocean ; Freshwater balance ; Circulation ; Modeling ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4618-4630, doi: 10.1029/2019JC014940.
    Description: The Arctic Ocean mixed layer interacts with the ice cover above and warmer, nutrient‐rich waters below. Ice‐Tethered Profiler observations in the Canada Basin of the Arctic Ocean over 2006–2017 are used to investigate changes in mixed layer properties. In contrast to decades of shoaling since at least the 1980s, the mixed layer deepened by 9 m from 2006–2012 to 2013–2017. Deepening resulted from an increase in mixed layer salinity that also weakened stratification at the base of the mixed layer. Vertical mixing alone can explain less than half of the observed change in mixed layer salinity, and so the observed increase in salinity is inferred to result from changes in freshwater accumulation via changes to ice‐ocean circulation or ice melt/growth and river runoff. Even though salinity increased, the shallowest density surfaces deepened by 5 m on average suggesting that Ekman pumping over this time period remained downward. A deeper mixed layer with weaker stratification has implications for the accessibility of heat and nutrients stored in the upper halocline. The extent to which the mixed layer will continue to deepen appears to depend primarily on the complex set of processes influencing freshwater accumulation.
    Description: We gratefully acknowledge J. Toole for helpful conversations. S. Cole was supported by the National Science Foundation under grant PLR‐1602926 and J. Stadler by the Woods Hole Oceanographic Institution Summer Student Fellowship program. Profile data are available via the Ice‐Tethered Profiler program website: http://whoi.edu/itp. SSM/I ice concentration data were downloaded from the National Snow and Ice Data Center.
    Description: 2019-12-22
    Keywords: Arctic Ocean ; Mixed layer ; Freshwater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeGrandpre, M., Evans, W., Timmermans, M., Krishfield, R., Williams, B., & Steele, M. Changes in the arctic ocean carbon cycle with diminishing ice cover. Geophysical Research Letters, 47(12), (2020): e2020GL088051, doi:10.1029/2020GL088051.
    Description: Less than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surface pCO2 at levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surface pCO2 measurements collected over a 6‐year period along a fixed cruise track in the Canada Basin. The measurements show that mean pCO2 levels are significantly higher during low ice years. The pCO2 increase is likely driven by ocean surface heating and uptake of atmospheric CO2 with large interannual variability in the contributions of these processes. These findings suggest that increased ice‐free periods will further increase sea surface pCO2, reducing the Canada Basin's current role as a net sink of atmospheric CO2.
    Description: This research was made possible by grants from the NSF Arctic Observing Network program (ARC‐1107346, PLR‐1302884, PLR‐1504410, and OPP‐1723308). In addition, M. S. was supported by ONR (Grant 00014‐17‐1‐2545), NASA (Grant NNX16AK43G), and NSF (Grants PLR‐1503298 and OPP‐1751363).
    Keywords: Arctic Ocean ; Ice concentration ; Seawater CO2 ; Interannual variability ; Canada Basin ; Shipboard CO2 measurements
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(5), (2019): 3279-3297, doi: 10.1029/2019JC014988.
    Description: Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≤19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and 〉30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.
    Description: We thank the captain and crew of the USCGC Healy (HLY1502) and the chief scientists D. Kadko and W. Landing for coordinating a safe and successful expedition. We thank the members of the pump team, P. Lam, E. Black, S. Pike, X. Yang, and M. Heller for their assistance with sample collection and for their unfailingly positive attitudes during this 65‐day expedition. We also appreciate sampling assistance from P. Aguilar and M. Stephens, and MATLAB assistance from B. Corlett, A. Pacini, P. Lin, and M. Li. The radium data from the HLY1502 expedition are available through the Biological & Chemical Oceanography Data Management Office (https://www.bco‐dmo.org/dataset/718440) and the radium measurements from the SHEBA, AWS‐2000, and SBI expeditions can be found in the supporting information. This work was funded by NSF awards OCE‐1458305 to M.A.C., OCE‐1458424 to W.S.M., and PLR‐1504333 to R.S.P. This research was conducted with Government support under and awarded by a DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship awarded to L.E.K., 32 CFR 168a.
    Description: 2019-10-26
    Keywords: Radium ; Arctic Ocean ; GEOTRACES ; Chukchi shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(7), (2021): e2021JC017407, https://doi.org/10.1029/2021JC017407.
    Description: The Arctic Ocean receives a large supply of dissolved organic matter (DOM) from its catchment and shelf sediments, which can be traced across much of the basin's upper waters. This signature can potentially be used as a tracer. On the shelf, the combination of river discharge and sea-ice formation, modifies water densities and mixing considerably. These waters are a source of the halocline layer that covers much of the Arctic Ocean, but also contain elevated levels of DOM. Here we demonstrate how this can be used as a supplementary tracer and contribute to evaluating ocean circulation in the Arctic. A fraction of the organic compounds that DOM consists of fluoresce and can be measured using in-situ fluorometers. When deployed on autonomous platforms these provide high temporal and spatial resolution measurements over long periods. The results of an analysis of data derived from several Ice Tethered Profilers (ITPs) offer a unique spatial coverage of the distribution of DOM in the surface 800 m below Arctic sea-ice. Water mass analysis using temperature, salinity and DOM fluorescence, can clearly distinguish between the contribution of Siberian terrestrial DOM and marine DOM from the Chukchi shelf to the waters of the halocline. The findings offer a new approach to trace the distribution of Pacific waters and its export from the Arctic Ocean. Our results indicate the potential to extend the approach to separate freshwater contributions from, sea-ice melt, riverine discharge and the Pacific Ocean.
    Description: Danish Strategic Research Council for the NAACOS project (grant no. 10-093903), the Danish Center for Marine Research (grant no. 2012-01). C. A. S. has received funding from the Independent Research Fund Denmark Grant No. 9040-00266B. Funding for R.M.W.A. came from the US NSF, Arctic Natural Science program grant 1504469. RG-A has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 839311. ITP93 and part of the work by MH and BR were a contribution to the Helmholtz society strategic investment Frontiers in Arctic Marine monitoring (FRAM). The work of BR is a contribution to the cooperative projects Regional Atlantic Circulation and global Change (RACE) grant #03F0824E funded by the German Ministry of Science and Education (BBMF) and Advective Pathways of nutrients and key Ecological substances in the Arctic (APEAR) grants NE/R012865/1, NE/R012865/2 and #03V01461, part of the Changing Arctic Ocean program, jointly funded by the UKRI Natural Environment Research Council (NERC) and the BMBF. Support for Krishfield was made possible by grants from the NSF Arctic Observing Network program (PLR-1303644 and OPP-1756100).
    Description: 2021-12-27
    Keywords: Arctic Ocean ; CDOM ; DOM ; FDOM ; Fluorescence ; Halocline
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4006, doi:10.1029/2008GB003396.
    Description: The spatial distribution and fate of riverine dissolved organic carbon (DOC) in the Arctic may be significant for the regional carbon cycle but are difficult to fully characterize using the sparse observations alone. Numerical models of the circulation and biogeochemical cycles of the region can help to interpret and extrapolate the data and may ultimately be applied in global change sensitivity studies. Here we develop and explore a regional, three-dimensional model of the Arctic Ocean in which, for the first time, we explicitly represent the sources of riverine DOC with seasonal discharge based on climatological field estimates. Through a suite of numerical experiments, we explore the distribution of DOC-like tracers with realistic riverine sources and a simple linear decay to represent remineralization through microbial degradation. The model reproduces the slope of the DOC-salinity relationship observed in the eastern and western Arctic basins when the DOC tracer lifetime is about 10 years, consistent with published inferences from field data. The new empirical parameterization of riverine DOC and the regional circulation and biogeochemical model provide new tools for application in both regional and global change studies.
    Description: I.M.M. and M.J.F. are grateful to National Science Foundation for financial support.
    Keywords: Arctic Ocean ; Ocean circulation ; Biogeochemical processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L24602, doi:10.1029/2011GL049714.
    Description: We reconstructed subsurface (∼200–400 m) ocean temperature and sea-ice cover in the Canada Basin, western Arctic Ocean from foraminiferal δ18O, ostracode Mg/Ca ratios, and dinocyst assemblages from two sediment core records covering the last 8000 years. Results show mean temperature varied from −1 to 0.5°C and −0.5 to 1.5°C at 203 and 369 m water depths, respectively. Centennial-scale warm periods in subsurface temperature records correspond to reductions in summer sea-ice cover inferred from dinocyst assemblages around 6.5 ka, 3.5 ka, 1.8 ka and during the 15th century Common Era. These changes may reflect centennial changes in the temperature and/or strength of inflowing Atlantic Layer water originating in the eastern Arctic Ocean. By comparison, the 0.5 to 0.7°C warm temperature anomaly identified in oceanographic records from the Atlantic Layer of the Canada Basin exceeded reconstructed Atlantic Layer temperatures for the last 1200 years by about 0.5°C.
    Description: J.R.F., T.M.C., and R.C.T. thank support by USGS Global Change Program, G.S.D. thanks support from the USGS Global Change Program and the NSF Office of Polar Programs, A.d.V. thanks support by Fond québécois de la recherché sur la nature et les technologies (FQRNT) and the Ministere du Développement économique, innovation et exportation (MDEIE) of Quebec.
    Description: 2012-06-17
    Keywords: Arctic Ocean ; Atlantic Layer ; Temperature ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015920, doi:10.1029/2019JC015920.
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Description: Funding for Arctic GEOTRACES was provided by the U.S. National Science Foundation, Swedish Research Council Formas, French Agence Nationale de la Recherche and LabexMER, Netherlands Organization for Scientific Research, and Independent Research Fund Denmark. Data from GEOTRACES cruises GN01 (HLY1502) and GN04 (PS94) have been archived at the Biological and Chemical Oceanography Data Management Office (Biological and Chemical Oceanography Data Management Office (BCO‐DMO); https://www.bco-dmo.org/deployment/638807) and PANGAEA (https://www.pangaea.de/?q=PS94&f.campaign%5B%5D=PS94) websites, respectively. The inorganic carbon data are available at the NOAA Ocean Carbon Data System (OCADS; doi:10.3334/CDIAC/OTG.CLIVAR_ARC01_33HQ20150809).
    Description: 2020-10-08
    Keywords: Arctic Ocean ; Transpolar Drift ; trace elements ; carbon ; nutrients ; GEOTRACES]
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 1679-1698, doi:10.1029/2018JC014759.
    Description: The characteristics and seasonality of the Svalbard branch of the Atlantic Water (AW) boundary current in the Eurasian Basin are investigated using data from a six‐mooring array deployed near 30°E between September 2012 and September 2013. The instrument coverage extended to 1,200‐m depth and approximately 50 km offshore of the shelf break, which laterally bracketed the flow. Averaged over the year, the transport of the current over this depth range was 3.96 ± 0.32 Sv (1 Sv = 106 m3/s). The transport within the AW layer was 2.08 ± 0.24 Sv. The current was typically subsurface intensified, and its dominant variability was associated with pulsing rather than meandering. From late summer to early winter the AW was warmest and saltiest, and its eastward transport was strongest (2.44 ± 0.12 Sv), while from midspring to midsummer the AW was coldest and freshest and its transport was weakest (1.10 ± 0.06 Sv). Deep mixed layers developed through the winter, extending to 400‐ to 500‐m depth in early spring until the pack ice encroached the area from the north shutting off the air‐sea buoyancy forcing. This vertical mixing modified a significant portion of the AW layer, suggesting that, as the ice cover continues to decrease in the southern Eurasian Basin, the AW will be more extensively transformed via local ventilation.
    Description: We are grateful to the crew of the R/V Lance for the collection of the data. The U.S. component of A‐TWAIN was funded by the National Science Foundation under grant ARC‐1264098 as well as a grant from the Steven Grossman Family Foundation. The Norwegian component of A‐TWAIN was funded by the “Arctic Ocean” flagship program at the Fram Centre. The data used in this study are available at http://atwain.whoi.edu and data.npolar.no (Sundfjord et al., 2017). The data from Fram Strait are available at https://doi.pangaea.de/10.1594/PANGAEA.853902
    Description: 2019-08-15
    Keywords: Atlantic Water ; Svalbard branch ; A‐TWAIN ; seasonality ; Arctic Ocean ; Fram Strait branch
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L07606, doi:10.1029/2012GL051574.
    Description: The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (〈−1.2°C), salty (〉32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 〉 550 μatm) and undersaturated in aragonite (Ωaragonite 〈 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.
    Description: Funding for this work was provided by the National Science Foundation (ARC1041102 – JTM, OPP0856244-RSP, and ARC1040694- LWJ), the National Oceanic and Atmospheric Administration (CIFAR11021- RHB) and the West Coast & Polar Regions Undersea Research Center (POFP00983 – CLM and JM).
    Description: 2012-10-11
    Keywords: Arctic Ocean ; CO2 fluxes ; Ocean acidification ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: image/tiff
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(8), (2019): 7562-7587, doi: 10.1029/2019JB017587.
    Description: From 1963 to 1973 the U.S. Geological Survey measured heat flow at 356 sites in the Amerasian Basin (Western Arctic Ocean) from a drifting ice island (T‐3). The resulting measurements, which are unevenly distributed on Alpha‐Mendeleev Ridge and in Canada and Nautilus Basins, greatly expand available heat flow data for the Arctic Ocean. Average T‐3 heat flow is ~54.7 ± 11.3 mW/m2, and Nautilus Basin is the only well‐surveyed area (~13% of data) with significantly higher average heat flow (63.8 mW/m2). Heat flow and bathymetry are not correlated at a large scale, and turbiditic surficial sediments (Canada and Nautilus Basins) have higher heat flow than the sediments that blanket the Alpha‐Mendeleev Ridge. Thermal gradients are mostly near‐linear, implying that conductive heat transport dominates and that near‐seafloor sediments are in thermal equilibrium with overlying bottom waters. Combining the heat flow data with modern seismic imagery suggests that some of the observed heat flow variability may be explained by local changes in lithology or the presence of basement faults that channel circulating seawater. A numerical model that incorporates thermal conductivity variations along a profile from Canada Basin (thick sediment on mostly oceanic crust) to Alpha Ridge (thin sediment over thick magmatic units associated with the High Arctic Large Igneous Province) predicts heat flow slightly lower than that observed on Alpha Ridge. This, along with other observations, implies that circulating fluids modulate conductive heat flow and contribute to high variability in the T‐3 data set.
    Description: B.V. Marshall of the U.S. Geological Survey (USGS) was critical to the T‐3 heat flow studies and would have been included as a coauthor on this work if he were not deceased. The original T‐3 heat flow data acquisition program was supported by the USGS and by the Naval Arctic Research Laboratory of the Office of Naval Research. Over the decade of USGS research on T‐3 Ice Island, numerous researchers and technical staff, including B.V. Marshall, P. Twichell, D. Scoboria, J. Tailleur, B. Tailleur, and others, spent months on the island and endured difficult and sometimes dangerous conditions to acquire this data set alongside colleagues from other institutions. Outstanding support from the USGS Menlo Park office, transportation and logistics assistance from other U.S. federal government agencies, Arctic expertise supplied by native Alaskan communities, and collaboration with Lamont researchers made this research program possible. B. Lachenbruch and L. Lawver revived interest in this data set in 2016, and they, along with D. Darby and J. K. Hall, provided ancillary information on T‐3 studies. B. Clarke and M. Arsenault assisted with initial data digitization. We thank M. Jakobsson, R. Saltus, and G. Oakey for providing critical shapefiles and other data and R. Jackson and S. Mukasa for clarification on unpublished information. Reviews by J. Hopper, P. Hart, and W. Jokat improved the manuscript, and V. Atnipp Cross and A. Babb were instrumental in completion of data releases. The USGS's Coastal/Marine Hazards and Resources Program supported C.R. and D.H. between 2016 and 2019, and C.R. used office space provided by the Earth Resources Laboratory at the Massachusetts Institute of Technology during completion of this work. Data in Figure 11 were provided by the U.S. Extended Continental Shelf (ECS) Project. The opinions, findings, and conclusions stated herein are those of the authors and the U.S. Geological Survey, but do not necessarily reflect those of the U.S. ECS Project. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government. Digital data, metadata, and supporting plots for T‐3 heat flow, navigation, and radiogenic heat content, along with Lamont gravity and magnetics data, are available from Ruppel et al. (2019), and the original T‐3 expedition report with explanatory metadata can be downloaded from Lachenbruch et al. (2019).
    Keywords: Arctic Ocean ; heat flow ; thermal history ; ice island
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...