ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (23)
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (19)
  • American Geophysical Union  (38)
  • American Institute of Physics
  • American Physical Society
Collection
Years
  • 1
    Publication Date: 2021-05-25
    Description: The largest events of the 1997 Umbria-Marche sesimic sequence were the two September 26 earthquakes of Mw=5.7 (00:33 GMT) and Mw=6.0 (09:40 GMT), which caused severe damage and ground cracks in a wide area around the epicenters. We created an ERS-SAR differenrtial interferogram, where nine fringes are visible in and around the Colfiorito basin, corresponding to 25 cm of coseismic surface dispalacements. GPS data show a maximum horizontal displacement...
    Description: Published
    Description: 883-886
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Colfiorito, SAR, GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-05
    Description: Destructive earthquakes are rare in France yet pose a sizable seismic hazard, especially when critical infrastructures are concerned. Only a few destructive events have occurred within the instrumental period, the most important being the 11 June 1909, Lambesc (Provence) earthquake. With a magnitude estimated at 6.2 [Rothé, 1942], the event was recorded by 30 observatories and produced intensity IX effects in the epicentral area, ~30 km north of Marseille. We collected 30 seismograms, leveling data and earthquake intensities to assess the magnitude and possibly the focal mechanism of this event. Following this multidisciplinary approach, we propose a source model where all relevant parameters are constrained by at least two of the input datasets. Our reappraisal of the seismological data yielded Mw 5.8-6.1 (6.0 preferred) and Ms 6.0, consistent with the magnitude from intensity data (Me 5.8) and with constraints derived from modeling of coseismic elevation changes. Hence, we found the Lambesc earthquake to have been somewhat smaller than previously reported. Our datasets also constrain the geometry and kinematics of faulting, suggesting that the earthquake was generated by reverse-right lateral slip on a WNW-striking, steeply north-dipping fault beneath the western part of the Trévaresse fold. This result suggests that the fold, located in front of the Lubéron thrust, plays a significant role in the region’s recent tectonic evolution. The sense of slip obtained for the 1909 rupture also agrees with the regional stress field obtained from earthquake focal mechanisms and microtectonic data as well as recent GPS data.
    Description: Published
    Description: 2454
    Description: partially_open
    Keywords: Lambesc earthquake ; France ; historical seismograms ; displacement modeling ; macroseismic data ; geodetic data ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2978 bytes
    Format: 4419432 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-25
    Description: We present crustal deformation results from a geodetic experiment (Retreating-Trench, Extension, and Accretion Tectonics (RETREAT)) focused on the northern Apennines orogen in Italy. The experiment centers on 33 benchmarks measured with GPS annually or more frequently between 2003 and 2007, supplemented by data from an additional older set of 6 campaign observations from stations in northern Croatia, and 187 continuous GPS stations within and around northern Italy. In an attempt to achieve the best possible estimates for rates and their uncertainties, we estimate and filter common mode signals and noise components using the continuous stations and apply these corrections to the entire data set, including the more temporally limited campaign time series. The filtered coordinate time series data are used to estimate site velocity. We also estimate spatially variable seasonal site motions for stations with sufficient data. The RMS scatter of residual time series are generally near 1 mm and 4 mm, horizontal and vertical, respectively, for continuous and most of the new campaign stations, but scatter is slightly higher for some of the older campaign data. Velocity uncertainties are below 1 mm/yr for all but one of the stations. Maximum rates of site motion within the orogen exceed 3 mm/yr (directed NE) relative to stable Eurasia. This motion is accommodated by extension within the southwestern and central portions of the orogen, and shortening across the foreland thrust belt to the northeast of the range. The data set is consistent with contemporaneous extension and shortening at nearly equal rates. The northern Apennines block moves northeast faster than the Northern Adria microplate. Convergence between the Northern Apennines block and the Northern Adria microplate is accommodated across a narrow zone that coincides with the northeastern Apennines range front. Extension occurs directly above an intact vertically dipping slab inferred by previous authors from seismic tomography. The observed crustal deformation is consistent with a buried dislocation model for crustal faulting, but associations between crustal motion and seismically imaged mantle structure may also provide new insights on mantle dynamics.
    Description: Published
    Description: B04408
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: GPS, northern Apennines, retreat, Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-04
    Description: We present a neotectonic model of ongoing lithosphere deformation and a corresponding estimate of long-term shallow seismicity across the Africa-Eurasia plate boundary, including the eastern Atlantic, Mediterranean region, and continental Europe. GPS and stress data are absent or inadequate for the part of the study area covered by water. Thus, we opt for a dynamic model based on the stress-equilibrium equation; this approach allows us to estimate the long-term behavior of the lithosphere (given certain assumptions about its structure and physics) for both land and sea areas. We first update the existing plate model by adding five quasi-rigid plates (the Ionian Sea, Adria, Northern Greece, Central Greece, and Marmara) to constrain the deformation pattern of the study area. We use the most recent datasets to estimate the lithospheric structure. The models are evaluated in comparison with updated datasets of geodetic velocities and the most compressive horizontal principal stress azimuths. We find that the side and basal strengths drive the present-day motion of the Adria and Aegean Sea plates, whereas lithostatic pressure plays a key role in driving Anatolia. These findings provide new insights into the neotectonics of the greater Mediterranean region. Finally, the preferred model is used to estimate long-term shallow seismicity, which we retrospectively test against historical seismicity. As an alternative to reliance on incomplete geologic data or historical seismic catalogs, these neotectonic models help to forecast long-term seismicity, although requiring additional tuning before seismicity rates are used for seismic hazard purposes.
    Description: Published
    Description: 5311–5342
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: open
    Keywords: Tectonics ; Earthquake rates ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-24
    Description: On 24 August 2013 a sudden gas eruption from the ground occurred in the Tiber river delta, nearby Rome's international airport of Fiumicino. We assessed that this gas, analogous to other minor vents in the area, is dominantly composed of deep, partially mantle-derived CO2, as in the geothermal gas of the surrounding Roman Comagmatic Province. Increased amounts of thermogenic CH4 are likely sourced from Meso-Cenozoic petroleum systems, overlying the deep magmatic fluids. We hypothesize that the intersection of NE-SW and N-S fault systems, which at regional scale controls the location of the Roman volcanic edifices, favors gas uprising through the impermeable Pliocene and deltaic Holocene covers. Pressurized gas may temporarily be stored below these covers or within shallower sandy, permeable layers. The eruption, regardless the triggering cause—natural or man-made, reveals the potential hazard of gas-charged sediments in the delta, even at distances far from the volcanic edifices.
    Description: Published
    Description: 5632–5636
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; deep CO2 ; Tiber river delta ; thermogenic CH4 ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-07
    Description: Integrating geodetic, seismic, and petrological data for a recent eruptive episode at Mount Etna has enabled us to define the history of magma storage and transfer within the multilevel structure of the volcano, providing spatial and temporal constraints for magma movements before the eruption. Geodetic data related to the July–August 2014 activity provide evidence of a magma reservoir at ~4 km below sea level. This reservoir pressurized from late March 2014 and fed magmas that were then erupted from vents on the lower eastern flank of North-East Crater (NEC) and at New South-East Crater (NSEC) summit crater during the July eruptive activity. Magma drainage caused its depressurization since mid-July. Textural and microanalytical data obtained from plagioclase crystals indicate similar disequilibrium textures and compositions at the cores in lavas erupted at the base of NEC and NSEC, suggesting comparable deep histories of evolution and ascent. Conversely, the compositional differences observed at the crystal rims have been associated to distinct degassing styles during storage in a shallow magma reservoir. Seismic data have constrained depth for a shallow part of the plumbing system at 1–2 km above sea level. Timescales of magma storage and transfer have also been calculated through diffusion modeling of zoning in olivine crystals of the two systems. Our data reveal a common deep history of magmas from the two systems, which is consistent with a recharging phase by more mafic magma between late March and early June 2014. Later, the magma continued its crystallization under distinct chemical and physical conditions at shallower levels.
    Description: The petrological part of this study was supported by the FIR 2014 research grant to Marco Viccaro from the University of Catania (Italy), grant number 2F119B, title of the project “Dynamics of evolution, ascent and emplacement of basic magmas: case-studies from eruptive manifestations of Eastern Sicily”.
    Description: Published
    Description: 5659–5678
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Petrology ; eruption ; GPS ; volcano seismology ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional E-W dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines.
    Description: INGV, Università degli Studi di Pavia
    Description: Published
    Description: 21
    Description: open
    Keywords: Active strike-slip fault ; sandbox model ; southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5190977 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We report on new paleomagnetic and anisotropy of magnetic susceptibility (AMS) data from Plio-Pleistocene sedimentary units from Corinth and Megara basins (Peloponnesus, Greece). Paleomagnetic results show that Megara basin has undergone vertical axis CW rotation since the Pliocene, while Corinth has rotated CCW during the same period of time. These results indicate that the overall deformation in central Greece has been achieved by complex interactions of mostly rigid, rotating, fault bounded crustal blocks. The comparison of paleomagnetic results and existing GPS data shows that the boundaries of the rigid blocks in central Greece have changed over time, with faulting migrating into the hanging walls, sometimes changing in orientation. The Megara basin belonged to the Beotia-Locris block in the past but has now been incorporated into the Peloponnesus block, possibly because the faulting in the Gulf of Corinth has propagated both north and east. Paleomagnetic and GPS data from Megara and Corinth basins have significant implications for the deformation style of the continental lithosphere. In areas of distributed deformation the continental lithosphere behaves instantaneously like a small number of rigid blocks with well-defined boundaries. This means that these boundaries could be detected with only few years of observations with GPS. However, on a larger time interval the block boundaries change with time as the active fault moves. Paleomagnetic studies distinguishing differential rotational domains provide a useful tool to map how block boundaries change with time.
    Description: Published
    Description: 1-15
    Description: reserved
    Keywords: Paleomagnetism ; Greece, block rotations ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1167012 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In this paper we present the first geochemical data set regarding long-term monitoring of dissolved gases in thermal waters from a seismic area. Three sites in Umbria (Central Apennines, Italy) were studied both for the chemical and for the helium isotopic composition of the dissolved gases. Data were collected during and after the seismic crisis that struck the region in 1997â 1998. The chemical composition of the dissolved gases revealed that a CO2-rich gas phase was always mixed with an atmospheric-derived component dominated by N2. A normal faulting marked the beginning of the seismic activity enhancing the release of CO2 on a regional scale. Variations in both the chemical and isotopic compositions of the dissolved gases were also observed as preseismic, synseismic, and postseismic phenomena related to the seismic shock of March 1998. Those geochemical modifications were interpreted as being the consequence of a drop in the CO2 degassing rate, in good agreement with the compressive focal mechanism of that seismic event. Furthermore, this interpretation was also consistent with the geologic and tectonic setting of the study area and induced us to postulate that changes in the local rock permeability, due to crustal deformations (i.e., coseismic deformation and postseismic release), were responsible for the geochemical modifications observed. On the basis of the foregoing, we have concluded that the geochemistry of dissolved gases in groundwaters represents a useful tool for the investigation of the relationships between circulating fluids and seismic activity.
    Description: Published
    Description: partially_open
    Keywords: dissolved gases ; geochemistry ; seismic areas ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 337669 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-04
    Description: A circular dome from Lipari Island consists of latitic enclaves hosted in a rhyolitic magma. A strain analysis of the enclaves has been carried out and the pure shear (a) and simple shear (g) deformation, the vorticity number Wk and flow kinematics are determined. The axial ratio Rf of the enclaves and the angle f between the long axis of the enclaves and the transport direction are measured in 131 sites concentrated in the axial zone (z1), upper-distal zone (z2) and basal zone (z3) of the flow. The f values depict a pattern suggesting endogenous growth. In z1, a/g 〉 1. In z2, 1 〈 a 〈 1.35 and 1.8 〈 g 〈 0.5. In z3, 1 〈 a 〈 1.5 and 0.3 〈 g 〈 2.8. In z1, Wk 〈 0.5. In z2 and z3, Wk 〉 0.8. Lateral stretching due to the upward motion of magma from the conduit prevails in z1. Here the increase of pure shear strain from the bottom to the top reflects strain accumulation due to endogenous growth. z2 and z3 suffer simple shear deformation. In z3, the sense of shear is consistent with the transport direction. An opposite sense of shear characterizes z2. This is due to velocity gradients located in the lower and upper portions of the flow. The kinematics is viscous spreading in z1 and viscous gliding (hyperbolic flow) in z2â z3.Possible rupturing of the exterior may be important in z1, where lateral stretching occurs, and in z3, where g is at a maximum. The effusion rate is 1.93 m3/s. Strain rates calculated using structural data span a range from 1.9 to 5.8.10 6 s 1.
    Description: Published
    Description: 1-10
    Description: partially_open
    Keywords: lava domes ; kinematics ; emplacement mechanism ; strain analysis ; enclaves ; viscous flows ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 419 bytes
    Format: 529103 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: We integrate geologic, structural, leveling and Differential SAR Interferometry data to show that Vesuvius began to spread onto its sedimentary substratum about 3,600 years ago. Moreover, we model the detected deformation with a solution of the lubrication approximation of the Navier-Stokes equations to show that spreading may continue for about 7,200 years more. Correlation of volcanic spreading with phases of the eruptive activity suggests that Plinian eruptions, which are thought to pose the major hazard, are less likely to occur in the near future.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Vesuvius ; volcanic activity ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 458 bytes
    Format: 292488 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Understanding Etnean flank instability is hampered by uncertainties over its western boundary. Accordingly, we combine soil radon emission, InSAR and EDM data to study the Ragalna fault system (RFS) on the SW flank of the volcano. Valuable synergy developed between our differing techniques, producing consistent results and serving as a model for other studies of partly obscured active faults. The RFS, limited in its surface expression, is revealed as a complex interlinked structure ~14 km long that extends from the edifice base towards the area of summit rifting, possibly linking north-eastwards to the Pernicana fault system (PFS) to define the unstable sector. Short-term deformation rates on the RFS from InSAR data reach ~7 mm a-1 in the satellite line of sight on the upslope segment and ~5 mm a-1 on the prominent central segment. While combining this with EDM data confirms the central segment of the RFS as a dextral transtensive structure, with strike-slip and dip-slip components of ~3.4 and ~3.7 mm a-1 respectively. We measured thoron (220Rn, half-life 56 secs) as well as radon and, probably because of its limited diffusion range, this appears a more sensitive but previously unexploited isotope for pinpointing active near-surface faults. Contrasting activity of the PFS and RFS reinforces proposals that the instability they bound is divided into at least three sub-sectors by intervening faults, while, in section, fault-associated basal detachments also form a nested pattern. Complex temporal and spatial movement interactions are expected between these structural components of the unstable sector.
    Description: Published
    Description: B04410
    Description: JCR Journal
    Description: partially_open
    Keywords: Multidisciplinary study; Ragalna fault system; radon and thoron; InSAR; EDM; volcano collapse models ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2236005 bytes
    Format: 978243 bytes
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Description: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Description: Published
    Description: B10405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: We analyse seismograms of the slump episodes at Stromboli on December 30, 2002. Using a simple single force model, we estimate the volume involved in the individual subevents and attempt a chronological reconstruction of the whole process. Our results indicate the occurrence of two main events that could be interpreted as a submarine slump, which caused the observed tsunami, and a subaerial slump, which did not produce destructive sea waves. A total volume of about 20 106 m3 results for the submarine event, which developed over about 2 minutes with several distinct detachments, the first and largest displacing a volume of 10.8 106 m3. The second, subaerial, slump involved at least 2.5 106 m3, in about 90 s. A large long period pulse is also recognizable in the seismograms of the Stromboli station. We tentatively interpret this feature as tilt caused by the water load associated with the inundation in the Ficogrande area, on the northeastern side of the island.
    Description: Published
    Description: (L02605)
    Description: reserved
    Keywords: Stromboli Volcano ; seismological description ; Fractures and faults ; Structural Geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1913603 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-03
    Description: We investigate crustal deformation along the Eurasia-Nubia plate boundary in Calabria and Sicily revealed by the GPS velocity field obtained by the combination of continuous site velocities with previous results from episodic campaigns. We recognize two distinct crustal domains characterized by different motions and styles of deformation. Convergence in Sicily is taken up by crustal shortening along the former Tyrrhenian back arc passive margin, in agreement with seismological data and geological evidence of recent cessation of deformation along the Plio-Pleistocene subduction front. The analysis of the GPS data and the consistency between earthquake slip vectors and convergence direction suggest that Eu-Nu convergence in Sicily does not require intermediate crustal blocks. Significant Eurasia ( 3 mm/yr to NNE) and Nubia-fixed ( 5 mm/yr to ESE) residual velocities in Calabria suggest instead the presence of an intermediate crustal block which can be interpreted as a forearc sliver or as an independent Ionian block. According to the first hypothesis, subduction is still active in the Ionian wedge, although we find no evidence for active back arc spreading in the Tyrrhenian Sea. The N115 E oriented Sicily-Calabria GPS relative motion is consistent with the extension observed during the 1908 Mw 7.1 Messina earthquake. We suggest that up to 3 mm/yr ( 80%) of this estimated relative motion between Sicily and the Calabrian Arc may be taken up in the Messina Straits.
    Description: Published
    Description: 1-16
    Description: reserved
    Keywords: GPS ; Calabria, Sicily, Active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1237090 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: We present the first GPS estimate of crustal extension in the central Apennines (Italy) through the analysis of the deformation of a sub-network of the National GPS Geodetic network IGM95 in the interval 1994–1999. The selected sub-network spans the entire active deformation belt perpendicularly to its axis and allows the evaluation of (1) the total extension rate absorbed in this sector of the Apennines and (2) the seismogenic potential of the normal faults active in the Late Pleistocene-Holocene interval within the network. Results of this reoccupation are consistent with an extensional strain rate of 0.18×10−6 yr−1 concentrated in an area of about 35 km width, giving an average extension rate of 6±2 mm/yr across the central Apennines. The pattern of active deformation suggests active elastic strain accumulation on the westernmost of the two fault systems active in the Late Pleistocene-Holocene interval and may also suggest the presence of another active fault system not recognized so far.
    Description: Published
    Description: 2121-2124
    Description: reserved
    Keywords: GPS ; Apennines, Active extension ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 211231 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: We study the coseismic and postseismic displacements related with the 1997 Umbria-Marche earthquake sequence by means of leveling lines along a deformed aqueduct located in the epicentral area. Comparing the 1960 and 10/1997 measurements we obtain 0.49 0.10 m of coseismic displacement distributed along 3 km across the normal fault zone. Modeling of the coseismic surface dislocation is obtained from a combination of low angle (38°) faults at depth and high angle (80°) upper fault branches. The best fit model indicates that the upper branches stop at 0.4 km below the ground surface and have 60% of slip with respect to the lower faults. The postseismic displacement measured during 1998 is 0.18 m and represents 36% of the apparent coseismic deformation. Moderate earthquakes in the Apennines and related surface deformation may thus result from curved faults that reflect the brittle-elastic properties of the uppermost crustal structures.
    Description: Data collection was made while both authors were at Istituto di Ricerca per la Tettonica Recente – CNR (GNDT Project), Roma, Italy. M. Copparoni (ASM, Foligno) and M. Raponi and S. Pacico (Studio Topografico s.n.c., Foligno) provided data about aqueduct and leveling lines. Analysis of data and modeling were done while RB was visiting EOST-IPG, Strasbourg, France. Preparation of the paper benefited from discussion with R. Armijo, S. Barba, P. Gomez and G. Valensise. A. Amato and an anonymous reviewer are thanked for their constructive remarks.
    Description: Published
    Description: 2695–2698
    Description: JCR Journal
    Description: open
    Keywords: Coseismic displacement ; postseismic displacement ; earthquake fault ; Colfiorito, Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: To investigate the kinematics of the Adriatic region we integrate continuous and episodic GPS measurements and ${M_w} 〉 4.5$ earthquake slip vectors selected from the Regional Centroid Moment Tensor (RCMT) catalogue. Coherent motion of GPS sites in the Po Valley, in Apulia and in the Hyblean Plateau allows us to estimate geodetically constrained angular velocities for these regions. The predictions of the GPS-inferred angular velocities are compared with the earthquake slip vectors, showing that the seismically-expressed deformation at the microplate boundaries is consistent with the observed geodetic motion. The remarkable consistency between geodetic, seismological and geological evidence of active tectonics, suggests that active deformation in the Central Adriatic is controlled by the relative motion between the Adria and Apulia microplates. The microplates angular rotation rates are then compared with the rotation rates calculated with a simple block model supporting the hypotheses (1) that Apulia forms a single microplate with the Ionian Sea and possibly with the Hyblean region and (2) that Adria and Apulia rotate in such a way as to accommodate the Eurasia-Nubia relative motion. We suggest that the present-day microplate configuration follows a recent fragmentation of the Adriatic promontory that during the Neogene rigidly transferred the Africa motion to the orogenic belts that now surround the Adriatic region.
    Description: Published
    Description: B12413
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Adria ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: We present an improved rendition of the geodetic velocity and strain fields in Sicily and southern Calabria obtained through the analysis of 18 years of GPS observations from continuous and survey station networks. The dense spatial coverage of geodetic data provides precise quantitative estimates of previously established first-order active kinematic features, including: i) a narrow east-west-elongated belt of contraction (~1-1.5 mm/yr) extending offshore northern Sicily from Ustica to Stromboli across the Aeolian Islands; ii) a narrow east-west-trending contractional belt located along the northern rim of the Hyblean Plateau in southern Sicily, with shortening at up to 4.4 mm/yr; iii) right motion (~3.6 mm/yr) on the Aeolian-Tindari-Letojanni fault (ATLF) system, a main shear zone extending from the Aeolian Islands to the Ionian coast of Sicily, with significant transpression and transtension partitioned between discrete sectors of the fault; iv) transtension (~1 mm/yr) across the Sicily Channel between Sicily and North Africa. We use geodetic observations coupled to geological constraints to better elucidate the interplay of crustal blocks revealed in the investigated area. In particular, we focus on the ATLF, which forms the primary boundary between the Sicilian and Calabrian blocks. The ATLF juxtaposes north-south contraction between Sicily and the Tyrrhenian block with northwest-southeast extension in north-eastern Sicily and Calabria. Contraction between Sicily and Tyrrhenian blocks probably arises from the main Europe-Nubia convergence, although Sicily has a component of lateral motion away from Nubia. We found that convergence is not restricted to the northern offshore, as commonly believed, but is widely accommodated between the frontal belt and the northern rim of the Hyblean foreland in southern Sicily. Geodetic data also indicate that active right shear on the ATLF occurs to the southeast of the mapped fault array in northern Sicily, suggesting the fault cuts through till the Ionian coast of the island. The small geodetic divergence between the Hyblean and Apulian blocks rimming on both sides the Calabria block and subjacent Ionian slab, coupled with marine geophysical evidences in the Ionian Sea lends credit to the proposed deep root of the ATLF and to a fragmentation of the Ionian domain.
    Description: Published
    Description: B07401
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Calabro Peloritan Arc ; Geodesy ; plate tectonic ; Strain-rate ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: The Southern Apennines range of Italy presents significant challenges for active fault detection due to the complex structural setting inherited from previous contractional tectonics, coupled to very recent (Middle Pleistocene) onset and slow slip rates of active normal faults. As shown by the Irpinia Fault, source of a M6.9 earthquake in 1980, major faults might have small cumulative deformation and subtle geomorphic expression. A multidisciplinary study including morphological-tectonic, paleoseismological, and geophysical investigations has been carried out across the extensional Monte Aquila Fault, a poorly known structure that, similarly to the Irpinia Fault, runs across a ridge and is weakly expressed at the surface by small scarps/warps. The joint application of shallow reflection profiling, seismic and electrical resistivity tomography, and physical logging of cored sediments has proved crucial for proper fault detection because performance of each technique was markedly different and very dependent on local geologic conditions. Geophysical data clearly (1) image a fault zone beneath suspected warps, (2) constrain the cumulative vertical slip to only 25–30 m, (3) delineate colluvial packages suggesting coseismic surface faulting episodes. Paleoseismological investigations document at least three deformation events during the very Late Pleistocene (〈20 ka) and Holocene. The clue to surface-rupturing episodes, together with the fault dimension inferred by geological mapping and microseismicity distribution, suggest a seismogenic potential of M6.3. Our study provides the second documentation of a major active fault in southern Italy that, as the Irpinia Fault, does not bound a large intermontane basin, but it is nested within the mountain range, weakly modifying the landscape. This demonstrates that standard geomorphological approaches are insufficient to define a proper framework of active faults in this region. More in general, our applications have wide methodological implications for shallow imaging in complex terrains because they clearly illustrate the benefits of combining electrical resistivity and seismic techniques. The proposed multidisciplinary methodology can be effective in regions characterized by young and/or slow slipping active faults.
    Description: Published
    Description: B11307
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: active fault ; integrated geophysical investigations ; morpho-tectonic analysis ; paleoseismology ; Val d'Agri ; Southern Italy ; 1857 Earthquake ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Here we describe the horizontal velocities of continuous GPS stations in the Calabrian Arc (CA) and surrounding regions. The appropriate reference frame to evaluate the crustal motion of the CA is considered by assessing the internal deformation and the relative motion of the crustal blocks in the foreland of the Apennines␣Ionian␣Maghrebides subduction system. We propose that the motion of CA rela- tive to the subducting Ionian lower plate is most properly assessed by minimizing the GPS velocities in Apulia. In this reference frame the significant ␣2 mm/yr southeast- ward motion of the stations on the Ionian flank of the CA shows that the arc is still moving towards the trench in agreement with the observations of active shortening in the Ioanian wedge. This southeastward migration is associated to 1.4 ± 0.3 mm/yr E␣W extension of the forearc in northern Calabria, comparable with the seismic strain averaged in the last 500 years. The limited subaerial exposure decreases the resolution on locking of the subduction interface but the distribution and direction of crustal extension along the CA impose important constraints on geodynamic interpreta- tions of the area.
    Description: Published
    Description: L17304
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Calabrian Arc ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: Published
    Description: B03216
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; magnetotelluric ; flank instability ; volcano ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: The inversion of multitemporal DInSAR and GPS measurements unravels the coseismic and postseismic (afterslip) slip distributions associated with the 2009 MW 6.3 L’Aquila earthquake and provides insights into the rheological properties and long-term behavior of the responsible structure, the Paganica fault. Well-resolved patches of high postseismic slip (10–20 cm) appear to surround the main coseismic patch (maximum slip ≈1 m) through the entire seismogenic layer above the hypocenter without any obvious depth-dependent control. Time series of postseismic displacement are well reproduced by an exponential function with best-fit decay constants in the range of 20–40 days. A sudden discontinuity in the evolution of released postseismic moment at ≈130 days after the main shock does not correlate with independent seismological and geodetic data and is attributed to residual noise in the InSAR time series. The data are unable to resolve migration of afterslip along the fault probably because of the time interval (six days) between the main shock and the first radar acquisition. Surface fractures observed along the Paganica fault follow the steepest gradients of postseismic line-of-sight satellite displacements and are consistent with a sudden and delayed failure of the shallow layer in response to upward tapering of slip. The occurrence of afterslip at various levels through the entire seismogenic layer argues against exclusive depth-dependent variations of frictional properties on the fault, supporting the hypothesis of significant horizontal frictional heterogeneities and/or geometrical complexities. We support the hypothesis that such heterogeneities and complexities may be at the origin of the long-term variable behavior suggested by the paleoseismological studies. Rupture of fault patches with dimensions similar to that activated in 2009 appears to have a ≈500 year recurrence time interval documented by paleoseismic and historical studies. In addition to that, paleoseismological evidence of large (〉0.5 m) coseismic offsets seems to require seismic events, recurring every 1000–2000 years, characterized by (1) multisegment linkage, (2) surface ruptures larger than in 2009, and (3) complete failure of the 2009 coseismic and postseismic patches.
    Description: Published
    Description: B02402
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Afterslip ; L'Aquila ; Apennines ; postseismic ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: We analyze the kinematic and crustal deformations of Mt. Etna from 2003 to 2008 as imaged by the Mt. Etna continuous GPS (CGPS) network (Etna@net). Through a careful analysis of GPS time series, six coherent phases of crustal deformations have been identified, three inflation phases and three deflation phases, superimposed on a major inflation of the volcanic edifice since 2001. The inversions of GPS velocities have enabled: 1) a better understanding of the evolution of the volcanic sources acting beneath the volcano; 2) analysis of the strain rate patterns; and 3) a delineation of potential coupling between volcanic sources and the observed ground deformations. The modelling of the pressure sources has shown a separation between inflation and deflation sources. The deflation sources show an upward migration, from 5.5 toward 2.0 km (b.s.l.), while the inflation sources are located within 5.5 and 4.0 km (b.s.l.). Our results indicate that the kinematic and ground deformations of the mid-upper eastern flank are driven by the interplay between the effect of the magmatic sources and a south-eastward motion. Furthermore, clockwise rotations have been detected that prevailed over the eastern motion of the flank during the inflation phase preceding the 2004-2005 and 2006 eruptions. Finally, the accordance between the higher geodetic shear strain rates and the area with the highest seismic energy release shows that measured geodetic shear strain rates can provide useful information on the potential occurrence of seismic activity.
    Description: Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia,Catania, Italy. Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA.
    Description: Published
    Description: B07208
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ground deformations ; Volcano monitoring ; Strain rate analysis ; Volcanic source modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Flank instability at basaltic volcanoes is often related to repeated dike intrusions along rift zones and accompanied by surface fracturing and seismicity. These processes have been mostly studied during specific events, and the lack of longer-term observations hinders their better understanding. Here we analyze ~20 years of deformation of the Pernicana Fault System (PFS), the key structure controlling the instability of the eastern flank of Mt. Etna. We exploit East-West and vertical components of mean deformation velocity, as well as corresponding time series, computed from ERS/ENVISAT (1992–2010) and COSMO-SkyMed (2009–2011) satellite radar sensors via Synthetic Aperture Radar Interferometry techniques. We then integrate and compare this information with field, seismic, and leveling data, collected between 1980 and 2012. We observe transient displacements accompanied by seismicity, overprinted on a long-term background eastward motion (~2 cm/yr). In the last decades, these transient events were preceded by a constant amount of accumulated strain near the PFS. The time of strain accumulation varies between a few years and a few decades, also depending on magma emplacement within the nearby North East Rift, which may increase the strain along the PFS. These results suggest that the amount of deformation near the PFS may be used as a gauge to forecast the occurrence of instability transients on the eastern flank of Etna. In this context, the PFS may provide an ideal, small-scale structure to test the relations between strain accumulation, stress loading, and seismic energy release.
    Description: This work has been partially supported by the Italian Space Agency (ASI) within the SAR4Volcanoes project, agreement I/ 034/11/0.
    Description: Published
    Description: 4398-4409
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: Volcano flank instability ; Pernicana fault ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Here I compare estimates of tectonic strain rates from dense Global Positioning System measurements with the seismicity released in the last ~500 years in the Apennines (Italy). The rates of seismic moment accumulation from geodesy and of historical seismic release by earthquakes agree within the uncertainties, ruling out significant aseismic deformation. Within the considered 400 km long section of the Apennines, this balance yields an average recurrence interval of 30–75 years for MW≥6.5 events without requiring a future earthquake larger than those observed historically (MW~7). A minimum estimate of unreleased strain allows MW≥6.5 and MW≥6.9 events to be released in ~35% and ~10% of the central-southern Apennines, respectively. The definition of the seismic potential for smaller events is more uncertain, and their occurrence remains a significant threat throughout the Apennines.
    Description: Published
    Description: 1155–1162
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal deformation ; Earthquakes ; GPS ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: High-resolution, single-channel seismic and multibeam bathymetry data collected at the Amendolara Ridge, a key submarine area marking the junction between the Apennine collision belt and the Calabrian subduction forearc, reveal active deformation in a supposedly stable crustal sector. New data, integrated with existing multichannel seismic profiles calibrated with oil-exploratory wells, show that middle to late Pleistocene sediments are deformed in growth folds above blind oblique-reverse faults that bound a regional pop-up. Data analysis indicates that ~10 to 20 km long banks that top the ~80 km long, NW-SE trending ridge are structural culminations above en echelon fault segments. Numeric modeling of bathymetry and stratigraphic markers suggests that three 45° dipping upper crustal (2–10 km) fault segments underlie the ridge, with slip rates up to ~0.5 mm/yr. Segments may be capable with M ~ 6.1–6.3 earthquakes, although an unknown fraction of aseismic slip undoubtedly contributes to deformation. The fault array that bounds the southern flank of the ridge (Amendolara Fault System) parallels a belt of Mw 〈 4.7 strike-slip and thrust earthquakes, which suggest current left-oblique reverse motion on the array. The eastern segment of the array shows apparent morphologic evidence of deformation and might be responsible for Mw ≤ 5.2 historic events. Late Pliocene-Quaternary growth of the oblique contractional belt is related to the combined effects of stalling of Adriatic slab retreat underneath the Apennines and subduction retreat of the Ionian slab underneath Calabria. Deformation localization was controlled by an inherited mechanical interface between the thick Apulian (Adriatic) platform crust and the attenuated Ionian Basin crust.
    Description: Published
    Description: 2169–2194
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Active compression ; Growth strata modeling ; High-resolution seismic ; Multibeam bathymetry ; Jonian Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: The interpretation of dynamic processes that occur in volcanic calderas is not simple. The ground deformations and the local seismicity, which in other volcanic contexts are usually regarded as precursors to eruption, in caldera environment in many cases are not followed by any eruption. We formulate a general hypothesis that can explain these behaviors. Our hypothesis is that the intrusion of a sill can be responsible for the dynamics observed during unrest at calderas. In order to investigate the reliability of this hypothesis, we developed a dynamic model of sill intrusion in a shallow volcanic environment. In our model, the sill, fed by a deeper magma reservoir, intrudes below a horizontal elastic plate, representing the overlying rocks, and expands with axisymmetric geometry. The model is based on the numerical solution of the equation for the elastic plate, coupled with a Navier-Stokes equation for simulating the dynamics of the sill intrusion. We performed a number of simulations, with the objective of showing the main features of the model. In the experiments, when the feeding process stops, the vertical movement reverses its trend and the area of maximum uplift undergoes subsidence. Under certain conditions the subsidence can occur even during the intrusion of the sill. The stress field produced by the intrusion is mainly concentrated in a circular zone that follows the sill intrusion front. The features predicted by the model are consistent with many observations carried out on different calderas as reported in the scientific literature.
    Description: Published
    Description: 3986–4000
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: sill intrusion ; caldera ; volcano geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: We use 2.5 to 14 years long position time series from 〉800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ 0.7, we adopt a power law + white noise stochastic model in estimating the final vertical rates and find 95% of the velocities within ±2 mm/yr, with uncertainties from filtered time series ~40% smaller than from the unfiltered ones. We highlight the presence of statistically significant velocity gradients where the stations density is higher. We find undulations of the vertical velocity field at different spatial scales both in tectonically active regions, like eastern Alps, Apennines, and eastern Mediterranean, and in regions characterized by a low or negligible tectonic activity, like central Iberia and western Alps. A correlation between smooth vertical velocities and topographic features is apparent in many sectors of the study area. Glacial isostatic adjustment and weathering processes do not completely explain the measured rates, and a combination of active tectonics and deep-seated geodynamic processes must be invoked. Excluding areas where localized processes are likely, or where subduction processes may be active, mantle dynamics is the most likely process, but regional mantle modeling is required for a better understanding.
    Description: Published
    Description: 6003–6024
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 1R. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: GPS ; Geodynamics ; Mediterranean ; Vertical deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: Integration of structural, stratigraphic, and paleomagnetic data from the N–S trending structures of the Ainsa Oblique Zone reveals the kinematics of the major thrust salient in the central Pyrenees. These structures experienced clockwise vertical axis rotations that vary from 70° in the east (Mediano anticline) to 55° in the west (Boltaña anticline). Clockwise vertical axis rotations of 60° to 45° occurred from early Lutetian to late Bartonian when the folds and thrusts of the Ainsa Oblique Zone developed. This vertical axis rotation stage resulted from a difference of about 50 km in the amount of displacement on the Gavarnie thrust and an accompanying change in structural style at crustal scale from the central to the western Pyrenees, related to the NE–SW trending pinch out of Triassic evaporites at its basal detachment. A second rotation event of at least 10° took place since Priabonian, as a result of a greater displacement of the Serres Marginals thrust sheet with respect to the Gavarnie thrust sheet above the Upper Eocene-Oligocene salts. The deduced kinematics demonstrates that the orogenic curvature of the central Pyrenees is a progressive curvature resulting from divergent thrust transport direction. Layer parallel shortening mesostructures and kilometer-scale folds also developed by a progressive curvature related to divergent shortening directions during vertical axis rotation. Rotation space problems were solved by along-strike extension which triggered the formation of transverse extensional faults and diapirs at the outer arcs of structural bends.
    Description: Published
    Description: 1142–1175
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: vertical-axis rotation ; thrust-sheet ; Eocene ; orogen ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: Morphotectonic analysis and fault numeric modeling of uplifted marine terraces along the Ionian Sea coast of the Southern Apennines allowed us to place quantitative constraints on middle Pleistocene-Holocene deformation. Ten terrace orders uplifted to as much as +660 m were mapped along ~80 km of the Taranto Gulf coastline. The shorelines document both a regional and a local, fault-induced contribution to uplift. The intermingling between the two deformation sources is attested by three 10 km scale undulations superimposed on a 100 km scale northeastward tilt. The undulations spatially coincide with the trace of NW-SE striking transpressional faults that affected the coastal range during the early Pleistocene. To test whether fault activity continued to the present, we modeled the differential uplift of marine terraces as progressive elastic displacement above blind oblique-thrust ramps seated beneath the coast. Through an iterative and mathematically based procedure, we defined the best geometric and kinematic fault parameters as well as the number and position of fault segments. Fault numerical models predict two fault-propagation folds cored by blind thrusts with slip rates ranging from 0.5 to 0.7 mm/yr and capable of generating an earthquake with a maximum moment magnitude of 5.9–6.3. Notably, we find that the locus of predominant activity has repeatedly shifted between the two fault systems during time and that slip rates on each fault have temporally changed. It is not clear if the active deformation is seismogenic or dominated by aseismic creep; however, the modeled faults are embedded in an offshore transpressional belt that may have sourced historical earthquakes.
    Description: Published
    Description: 737-762
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: uplifted marine terraces ; fault modeling ; fault-propagation folds ; middle-late Pleistocene ; active transpression ; Southern Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: We report a 25 year-long data set (1990–2014) of combined continuous tilt and GPS vertical displacement series recorded at Etna volcano. To our knowledge, this is the first time that such a data set on an active volcano has been presented. We show the coherence of the two series, which help draw new insights on how the volcano, characterized by frequent flank eruptions, works in the long-term (tens of years). This data set provides evidence that after the 1992–1993 flank eruption (the biggest in the last three centuries) and the following major recharging phase (1994–2001), all the ensuing eruptions fall within a single long-term reequilibrium phase (2001–2014).
    Description: Published
    Description: 10222–10229
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: tilt ; gps ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: We investigate the role of the Africa-Eurasia convergence in the recent tectonic evolution of the central Mediterranean. To this end we focused on two sectors of the Adriatic-Hyblean foreland of the Apennine-Maghrebian chain as they allow tectonic evidence for relative plate motions to be analyzed aside from the masking effect of other more local tectonic phenomena (e.g., subduction, chain building, etc.). We present a thorough review of data and interpretations on two major shear zones cutting these foreland sectors: the E-W Molise-Gondola in central Adriatic and the N-S Vizzini-Scicli in southern Sicily. The selected foreland areas exhibit remarkable similarities, including an unexpectedly high level of seismicity and the presence of the investigated shear zones since the Mesozoic. We analyze the tectonic framework, active tectonics, and seismicity of each of the foreland areas, highlighting the evolution of the tectonic understanding. In both areas, we find that current strains at midcrustal levels seem to respond to the same far-field force oriented NNW-SSE to NW-SE, similar to the orientation of the Africa-Eurasia convergence. We conclude that this convergence plays a primary role in the seismotectonics of the central Mediterranean and is partly accommodated by the reactivation of large Mesozoic shear zones.
    Description: The work has been funded by project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali,” by the Italian Ministry of Education and Research (MIUR), and by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: B12404
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Molise-Gondola shear zone ; Vizzini-Scicli shear zone ; Gargano Promontory ; Hyblean Plateau ; slip reversal ; 1627 earthquake ; 1693 earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-04-29
    Description: Petrophysical properties of rocks and their applicability at larger scale are a challenging topic in Earth sciences. Petrophysical properties of rocks are severely affected by boundary conditions, rock fabric/microstructure, and tectonics that require a multiscale approach to be properly defined. Here we (1) report laboratory measurements of density, porosity, permeability, and P wave velocities at increasing confining pressure conducted on Miocene foredeep sandstones (Frosinone Formation); (2) compare the laboratory results with larger-scale geophysical investigations; and (3) discuss the effect of thrusting on the properties of sandstones. At ambient pressure, laboratory porosity varied from 2.2% to 13.8% and P wave velocities (Vp) from 1.5 km/s to 2.7 km/s. The P wave velocity increased with confining pressure, reaching between 3.3 km/s and 4.7 km/s at 100 MPa. In situ Vp profiles, measured using sonic logs, matched the ultrasonic laboratory measurement well. The permeability varied between 1.4 × 10 15m2 and 3.9 × 10 15m2 and was positively correlated with porosity. The porosity and permeability of samples taken at various distances to the Olevano–Antrodoco fault plane progressively decreased with distance while P wave velocity increased. At about 1 km from the fault plane, the relative variations reached 43%, 65%, and 20% for porosity, permeability, and P wave velocity, respectively. This suggests that tectonic loading changed the petrophysical properties inherited from sedimentation and diagenesis. Using field constraints and assuming overburden-related inelastic compaction in the proximity of the fault plane, we conclude that the fault reached the mechanical condition for rupture in compression at differential stress of 64.8 MPa at a depth of 1500 m.
    Description: Published
    Description: 9077-9094
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: open
    Keywords: Petrophysical properties of sandstone ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Description: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Description: Published
    Description: L16304
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...