ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
  • Arctic
  • Stromboli
  • American Geophysical Union  (128)
  • Springer  (92)
  • American Chemical Society
  • International Union of Crystallography (IUCr)
Collection
Keywords
  • 1
    Publication Date: 2020-12-14
    Description: Explosive volcanic eruptions are defined as the violent ejection of gas and hot fragments from a vent in the Earth's crust. Knowledge of ejection velocity is crucial for understanding and modeling relevant physical processes of an eruption, and yet direct measurements are still a difficult task with largely variable results. Here we apply pioneering high-speed imaging to measure the ejection velocity of pyroclasts from Strombolian explosive eruptions with an unparalleled temporal resolution. Measured supersonic velocities, up to 405 m/s, are twice higher than previously reported for such eruptions. Individual Strombolian explosions include multiple, sub-second-lasting ejection pulses characterized by an exponential decay of velocity. When fitted with an empirical model from shock-tube experiments literature, this decay allows constraining the length of the pressurized gas pockets responsible for the ejection pulses. These results directly impact eruption modeling and related hazard assessment, as well as the interpretation of geophysical signals from monitoring networks.
    Description: INGV-DPC “V2” and “Paroxysm”, FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks”, and FP7-PEOPLE-IEF-2008 – 235328 Projects
    Description: Published
    Description: L02301
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: strombolian ; ejection velocity ; explosive eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-10
    Description: Continuous gravity data collected near the summit eruptive vent at Kīlauea Volcano, Hawaiʻi, during 2011–2015 show a strong correlation with summit-area surface deformation and the level of the lava lake within the vent over periods of days to weeks, suggesting that changes in gravity reflect variations in volcanic activity. Joint analysis of gravity and lava level time series data indicates that over the entire time period studied, the average density of the lava within the upper tens to hundreds of meters of the summit eruptive vent remained low—approximately 1000–1500 kg/m^3. The ratio of gravity change (adjusted for Earth tides and instrumental drift) to lava level change measured over 15 day windows rose gradually over the course of 2011–2015, probably reflecting either (1) a small increase in the density of lava within the eruptive vent or (2) an increase in the volume of lava within the vent due to gradual vent enlargement. Superimposed on the overall time series were transient spikes of mass change associated with inflation and deflation of Kīlauea’s summit and coincident changes in lava level. The unexpectedly strong mass variations during these episodes suggest magma flux to and from the shallow magmatic system without commensurate deformation, perhaps indicating magma accumulation within, and withdrawal from, void space—a process that might not otherwise be apparent from lava level and deformation data alone. Continuous gravity data thus provide unique insights into magmatic processes, arguing for continued application of the method at other frequently active volcanoes.
    Description: Published
    Description: 5477–5492
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Kīlauea Volcano; gravity changes; lava lake; volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-01
    Description: A new period of eruptive activity started at Turrialba volcano, Costa Rica, in 2010 after almost 150 years of quiescence. This activity has been characterized by sporadic explosions whose frequency clearly increased since October 2014. This study aimed to identify the mechanisms that triggered the resumption of this eruptive activity and characterize the evolution of the phenomena over the past 2 years. We integrate 3He/4He data available on fumarole gases collected in the summit area of Turrialba between 1999 and 2011 with new measurements made on samples collected between September 2014 and February 2016. The results of a petrological investigation of the products that erupted between October 2014 and May 2015 are also presented. We infer that the resumption of eruptive activity in 2010 was triggered by a replenishment of the plumbing system of Turrialba by a new batch of magma. This is supported by the increase in 3He/4He values observed since 2005 at the crater fumaroles and by comparable high values in September 2014, just before the onset of the new eruptive phase. The presence of a number of fresh and juvenile glassy shards in the erupted products increased between October 2014 and May 2015, suggesting the involvement of new magma with a composition similar to that erupted in 1864–1866. We conclude that the increase in 3He/4He at the summit fumaroles since October 2015 represents strong evidence of a new phase of magma replenishment, which implies that the level of activity remains high at the volcano.
    Description: Published
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Turrialba volcano ; eruptive activity ; 3He/4He ; fumarole gases ; glassy shards ; juvenile component ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-17
    Description: This special issue is dedicated to Yuri Taran's outstanding contributions to gas geochemistry that began in the early 1980s with his work on deuterium and 18O compositions of geothermal waters in the Mutnovsky (Kamchatka) region and continues to this day with work on the Kamchatka volcanic volatile budget, carbon isotopes of hydrocarbons, and new insights into the geochemistry of El Chichón volcano, Chiapas. Yuri has contributed greatly to the field of volcanic gas geochemistry and was the first to recognize the distinct deuterium and oxygen isotopic composition of fumarole condensates from volcanoes in Kamchatka (Taran et al. 1987a). The shift in δD and δ18O to significantly heavier values compared to local meteoric water led Yuri to introduce the term “andesitic water” (Taran et al. 1989a, b) which has since been recognized at subduction zone volcanoes globally. This distinct isotopic composition is evidence that volcanoes release water that ultimately originates as subducted seawater and is recycled through the mantle wedge back to the earth's surface. Yuri's early work on the gas emissions from Kamchatka and Kurile Islands volcanoes also included the development and testing of gas geothermometers (Taran 1986) and investigating hydrothermal alteration using isotopic data (Taran et al. 1987b). His curiosity remained focused on the isotope systematics of volcanic gases discharging from Kamchatka and the Kuriles through the late 1980s and 1990s with publications on the gas compositions of Klyuchevskoi (Taran et al. 1991), Mutnovsky (Taran et al. 1992), Avachinsky and Koryaksky (Taran et al. 1997). Yuri was involved in the discovery of a pure and unique rhenium mineral on Kudryavy volcano (Korzhinsky et al. 1994) and provided one of the most detailed chemical studies of high temperature (up to 950°C) fumaroles to date of any volcano (Taran et al. 1995). His 1995 paper on Kudryavy remains highly cited and provides the highest quality volcanic gas data which also include trace elements from a subduction zone. Such data are crucial when we attempt to interpret lower temperature volcanic gas compositions or calculate rare metal fluxes from volcanoes worldwide. His most recent publication on Kamchatka-Kurile volcanic emissions provides a detailed analysis of the total gas flux from these volcanoes (Taran 2009).
    Description: Published
    Description: 369-371
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Fluids Geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-09
    Description: The 11–13 January 2011 eruptive episode at Etna volcano occurred after several months of increasing ash emissions from the summit craters, and was heralded by increasing SO2 output, which peaked at ∼5000 megagrams/day several hours before the start of the eruptive activity. The eruptive episode began with a phase of Strombolian activity from a pit crater on the eastern flank of the SE‐Crater. Explosions became more intense with time and eventually became transitional between Strombolian and fountaining, before moving into a lava fountaining phase. Fountaining was accompanied by lava output from the lower rim of the pit crater. Emplacement of the resulting lava flow field, as well as associated lava fountain‐ and Strombolian‐phases, was tracked using a remote sensing network comprising both thermal and visible cameras. Thermal surveys completed once the eruptive episode had ended also allowed us to reconstruct the emplacement of the lava flow field. Using a high temporal resolution geostationary satellite data we were also able to construct a detailed record of the heat flux during the fountain‐fed flow phase and its subsequent cooling. The dense rock volume of erupted lava obtained from the satellite data was 1.2 × 106 m3; this was emplaced over a period of about 6 h to give a mean output rate of ∼55 m3 s−1. By comparison, geologic data allowed us to estimate dense rock volumes of ∼0.85 × 106 m3 for the pyroclastics erupted during the lava fountain phase, and 0.84–1.7 × 106 m3 for lavas erupted during the effusive phase, resulting in a total erupted dense rock volume of 1.7–2.5 × 106 m3 and a mean output rate of 78–117 m3 s−1. The sequence of events and quantitative results presented here shed light on the shallow feeding system of the volcano.
    Description: Published
    Description: B11207
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: Etna ; lava fountains ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-09
    Description: We present a new method that uses cooling curves, apparent in high temporal resolution thermal data acquired by geostationary sensors, to estimate erupted volumes and mean output rates during short lava fountaining events. The 15 minute temporal resolution of the data allows phases of waxing and peak activity to be identified during short (150-to- 810 minute-long) events. Cooling curves, which decay over 8-to-21 hour-periods following the fountaining event, can also be identified. Application to 19 fountaining events recorded at Etna by MSG’s SEVIRI sensor between 10 January 2011 and 9 January 2012, yields a total erupted dense rock lava volume of 28 106 m3, with a maximum intensity of 227 m3 s 1 being obtained for the 12 August 2011 event. The timeaveraged output over the year was 0.9 m3 s 1, this being the same as the rate that has characterized Etna’s effusive activity for the last 40 years.
    Description: We are grateful to EUMETSAT for SEVIRI data.
    Description: Published
    Description: L06305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: satellite ; lava fountains ; Etna ; erupted volume ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-23
    Description: Abstract: The simultaneous solution of the Planck equation (involving the widely used “dual-band” technique) using two shortwave infrared (SWIR) bands allows for an estimate of the fractional area of the hottest part of an active lava flow (fh), and the background temperature of the cooler crust (Tc). The use of a high spectral and spatial resolution imaging spectrometer with a wide dynamic range of 15 bits (DAIS 7915) in the wavelength range from 0.501 to 12.67 µm resulted in the identification of crustal temperature and fractional areas for an intra-crater hot spot at Mount Etna, Italy. This study indicates the existence of a relationship between these Tc and fh extracted from DAIS and Landsat TM data. When the dual band equation system is performed on a lava flow, a logarithmic distribution is obtained from a plot of the fractional area of the hottest temperature versus the temperature of the cooler crust. An entirely different distribution is obtained over active degassing vents, where increases in Tc occur without any increase in fh. This result indicates that we can use scatter plots of Tc vs. fh to discriminate between different types of volcanic activity, in this case between degassing vents and lava flows, using satellite thermal data.
    Description: Published
    Description: 641–651
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Mount Etna ; remote-sensing ; lava-flow ; degassing vent ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1347669 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-15
    Description: We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure-fed eruption in the upper Valle del Bove. We demonstrate that our vent-resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna’s shallowplumbingsystemstructure.We findthatthe fissureeruptioncontributed~50,000tofSO2 or~30%of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive ventgraduallyvanishedon10August,markingaswitchofdegassingtowardtheNSEC.Onsetofdegassingat the NSEC was a precursory to explosive paroxysmal activity on 11–15 August.
    Description: Published
    Description: 7511-7519
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Records of SO2 flux emissions from Etna’sindividualventsallowcapturing shifts in volcanic activity ; Vent-resolved SO2 flux time series provide constraints on geometry of the shallow plumbing system ; Vent-resolved SO2 flux time series demonstrate SO2 flux increase precursory to paroxysmal (lava fountaining) activity ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-27
    Description: We report the first combined measurements of the composition and flux of gas emitted from Nyiragongo volcano by ground-based remote-sensing techniques. Ultraviolet spectroscopic measurements made in May/June 2005 and January 2006 indicate average SO2 emission rates of 38 kg s−1 and 23 kg s−1, respectively. Open-path Fourier transform infrared spectroscopic measurements obtained in May/June 2005, January 2006, and June 2007 indicate average molar proportions of 70, 24, 4.6, 0.87, 0.26, 0.11, and 0.0016% for H2O, CO2, SO2, CO, HCl, HF, and OCS, respectively. The composition of the plume was remarkably similar in 2005, 2006, and 2007, with little temporal variation in proportions of CO2, SO2, and CO, in particular, on the scale of seconds or days or even between the three field campaigns that span a period of 24 months. This stability persisted despite a wide range of degassing behaviors on the surface of the summit crater's lava lake (including discrete strombolian bursts and lava fountains) and variations in the SO2 emission rate. We explain these observations by a regime of steady state degassing in which bubbles nucleate and ascend in chemical equilibrium with the convecting magma. Short-term (seconds to minutes) temporal fluctuations in the SO2–HCl–HF composition were observed, and these are attributed to shallow degassing processes.
    Description: Published
    Description: Q02017
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Nyiragongo ; volcanic gas emissions ; FTIR ; DOAS ; remote sensing ; spectroscopy ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-06-25
    Description: Airborne and ground-based differential optical absorption spectroscopy observations have been carried out at the volcano Nyiragongo (Democratic Republic of Congo) tomeasure SO2 and bromine monoxide (BrO) in the plume inMarch 2004 and June 2007, respectively. Additionally filter pack andmulticomponent gas analyzer system (Multi-GAS)measurements were carried out in June 2007. Ourmeasurements provide valuable information on the chemical composition of the volcanic plume emitted fromthe lava lake of Nyiragongo. The main interest of this study has been to investigate for the first time the bromine emission flux of Nyiragongo (a rift volcano) and the BrO formation in its volcanic plume. Measurement data and results from a numerical model of the evolution of BrO in Nyiragongo volcanic plume are compared with earlier studies of the volcanic plume of Etna (Italy). Even though the bromine flux from Nyiragongo (2.6 t/d) is slightly greater than that from Etna (1.9 t/d), the BrO/SO2 ratio (maximum 7 × 10 5) is smaller than in the plume of Etna (maximum 2.1 × 10 4). A one-dimensional photochemical model to investigate halogen chemistry in the volcanic plumes of Etna and Nyiragongo was initialized using data from Multi-GAS and filter pack measurements. Model runs showed that the differences in the composition of volcanic volatiles led to a smaller fraction of total bromine being present as BrO in the Nyiragongo plume and to a smaller BrO/SO2 ratio.
    Description: Published
    Description: 277-291
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Intraplate volcano Nyiragongo is bromine rich although chlorine poor ; BrO/Br in volcanic plumes depends on initial plume composition ; Determination of Nyiragongo chlorine, bromine, sulfur emission strength ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...