ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (2,037)
  • Signal Transduction  (1,508)
  • Cells, Cultured  (1,353)
  • American Association for the Advancement of Science (AAAS)  (4,417)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-03
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-04-16
    Description: Natural killer (NK) cells express inhibitory receptors for major histocompatibility complex (MHC) class I antigens, preventing attack against healthy cells. Mouse cytomegalovirus (MCMV) encodes an MHC-like protein (m157) that binds to an inhibitory NK cell receptor in certain MCMV-susceptible mice. In MCMV-resistant mice, this viral protein engages a related activating receptor (Ly49H) and confers host protection. These activating and inhibitory receptors are highly homologous, suggesting the possibility that one evolved from the other in response to selective pressure imposed by the pathogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arase, Hisashi -- Mocarski, Edward S -- Campbell, Ann E -- Hill, Ann B -- Lanier, Lewis L -- AI30363/AI/NIAID NIH HHS/ -- CA89294/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1323-6. Epub 2002 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11950999" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Antigens, Ly/chemistry/genetics/*immunology/metabolism ; Cell Line ; Coculture Techniques ; Disease Susceptibility ; Evolution, Molecular ; Herpesviridae Infections/*immunology ; Histocompatibility Antigens Class I/immunology ; Hybridomas ; Immunity, Innate ; Interferon-gamma/biosynthesis ; Killer Cells, Natural/*immunology ; Lectins, C-Type ; Ligands ; Lymphocyte Activation ; Membrane Glycoproteins/chemistry/genetics/*immunology/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Muromegalovirus/genetics/*immunology/metabolism ; NK Cell Lectin-Like Receptor Subfamily A ; Protein Binding ; Receptors, Immunologic/chemistry/genetics/*immunology/metabolism ; Receptors, NK Cell Lectin-Like ; Recombinant Fusion Proteins/metabolism ; Transfection ; Viral Proteins/chemistry/genetics/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogelstein, Bert -- Alberts, Bruce -- Shine, Kenneth -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1237.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Kimmel Cancer Center at Johns Hopkins University, Baltimore, MD 21231, USA. vogelbe@welch.jhu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847324" target="_blank"〉PubMed〈/a〉
    Keywords: Bioethical Issues ; Cell Line ; *Cloning, Organism/legislation & jurisprudence ; Embryo Research ; Embryo, Mammalian/*cytology ; Humans ; *Nuclear Transfer Techniques ; *Stem Cells ; *Terminology as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-03-23
    Description: Activity-dependent modulation of synaptic efficacy in the brain contributes to neural circuit development and experience-dependent plasticity. Although glia are affected by activity and ensheathe synapses, their influence on synaptic strength has largely been ignored. Here, we show that a protein produced by glia, tumor necrosis factor alpha (TNFalpha), enhances synaptic efficacy by increasing surface expression of AMPA receptors. Preventing the actions of endogenous TNFalpha has the opposite effects. Thus, the continual presence of TNFalpha is required for preservation of synaptic strength at excitatory synapses. Through its effects on AMPA receptor trafficking, TNFalpha may play roles in synaptic plasticity and modulating responses to neural injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beattie, Eric C -- Stellwagen, David -- Morishita, Wade -- Bresnahan, Jacqueline C -- Ha, Byeong Keun -- Von Zastrow, Mark -- Beattie, Michael S -- Malenka, Robert C -- DA00439/DA/NIDA NIH HHS/ -- MH063394/MH/NIMH NIH HHS/ -- NS 31193/NS/NINDS NIH HHS/ -- NS38079/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 22;295(5563):2282-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA. beattie.2@osu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11910117" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/pharmacology ; Astrocytes/*metabolism ; Cells, Cultured ; Culture Media, Conditioned/pharmacology ; Gene Expression Regulation/drug effects ; Hippocampus/cytology/metabolism ; Neuronal Plasticity/drug effects ; Neurons/drug effects/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/metabolism ; Receptors, Tumor Necrosis Factor ; Receptors, Tumor Necrosis Factor, Type I ; Synapses/drug effects/*metabolism ; Synaptic Transmission/drug effects ; Tumor Necrosis Factor-alpha/antagonists & inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-04-06
    Description: Higher order chromatin structure presents a barrier to the recognition and repair of DNA damage. Double-strand breaks (DSBs) induce histone H2AX phosphorylation, which is associated with the recruitment of repair factors to damaged DNA. To help clarify the physiological role of H2AX, we targeted H2AX in mice. Although H2AX is not essential for irradiation-induced cell-cycle checkpoints, H2AX-/- mice were radiation sensitive, growth retarded, and immune deficient, and mutant males were infertile. These pleiotropic phenotypes were associated with chromosomal instability, repair defects, and impaired recruitment of Nbs1, 53bp1, and Brca1, but not Rad51, to irradiation-induced foci. Thus, H2AX is critical for facilitating the assembly of specific DNA-repair complexes on damaged DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Celeste, Arkady -- Petersen, Simone -- Romanienko, Peter J -- Fernandez-Capetillo, Oscar -- Chen, Hua Tang -- Sedelnikova, Olga A -- Reina-San-Martin, Bernardo -- Coppola, Vincenzo -- Meffre, Eric -- Difilippantonio, Michael J -- Redon, Christophe -- Pilch, Duane R -- Olaru, Alexandru -- Eckhaus, Michael -- Camerini-Otero, R Daniel -- Tessarollo, Lino -- Livak, Ferenc -- Manova, Katia -- Bonner, William M -- Nussenzweig, Michel C -- Nussenzweig, Andre -- Z99 CA999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2002 May 3;296(5569):922-7. Epub 2002 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11934988" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology/physiology ; Base Sequence ; Cell Aging ; Cell Cycle ; Cells, Cultured ; *Chromosome Aberrations ; DNA Damage ; *DNA Repair ; Female ; Gene Targeting ; Histones/chemistry/*genetics/*physiology ; Immunoglobulin Class Switching ; Infertility, Male/genetics/physiopathology ; Lymphocyte Count ; Male ; Meiosis ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Phosphorylation ; *Recombination, Genetic ; Spermatocytes/physiology ; T-Lymphocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-05-04
    Description: There is a relation between stress and alcohol drinking. We show that the corticotropin-releasing hormone (CRH) system that mediates endocrine and behavioral responses to stress plays a role in the control of long-term alcohol drinking. In mice lacking a functional CRH1 receptor, stress leads to enhanced and progressively increasing alcohol intake. The effect of repeated stress on alcohol drinking behavior appeared with a delay and persisted throughout life. It was associated with an up-regulation of the N-methyl-d-aspartate receptor subunit NR2B. Alterations in the CRH1 receptor gene and adaptional changes in NR2B subunits may constitute a genetic risk factor for stress-induced alcohol drinking and alcoholism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sillaber, Inge -- Rammes, Gerhard -- Zimmermann, Stephan -- Mahal, Beatrice -- Zieglgansberger, Walter -- Wurst, Wolfgang -- Holsboer, Florian -- Spanagel, Rainer -- New York, N.Y. -- Science. 2002 May 3;296(5569):931-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany. sillaber@mpipsykl.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988580" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; *Alcohol Drinking ; Alcoholism/*etiology/genetics ; Animals ; Brain/metabolism ; Corticotropin-Releasing Hormone/physiology ; Ethanol/blood ; Female ; Hippocampus/physiology ; In Vitro Techniques ; Male ; Mice ; Mice, Knockout ; Models, Animal ; Mutation ; Receptors, AMPA/metabolism ; Receptors, Corticotropin-Releasing Hormone/*genetics/*physiology ; Receptors, Kainic Acid/metabolism ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Signal Transduction ; Stress, Physiological/physiopathology ; Stress, Psychological/*physiopathology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brivanlou, Ali H -- Gage, Fred H -- Jaenisch, Rudolf -- Jessell, Thomas -- Melton, Douglas -- Rossant, Janet -- New York, N.Y. -- Science. 2003 May 9;300(5621):913-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021, USA. brvnlou@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738841" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Specimen Banks ; Cell Culture Techniques/methods ; Cell Differentiation ; Cell Division ; *Cell Line ; Culture Media ; Culture Media, Conditioned ; Databases, Factual ; *Embryo Research ; Embryo, Mammalian/*cytology ; Humans ; Quality Control ; Registries ; Research/standards ; Signal Transduction ; Stem Cell Transplantation ; *Stem Cells/cytology/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-08-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ingolia, Nicholas T -- Murray, Andrew W -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):948-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology and Bauer Center for Genomics Research, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169717" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biological Evolution ; *Cell Cycle Proteins ; Cells, Cultured ; Dual Specificity Phosphatase 1 ; *Feedback, Physiological ; Immediate-Early Proteins/*metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/*metabolism ; Models, Biological ; *Phosphoprotein Phosphatases ; Platelet-Derived Growth Factor/metabolism/pharmacology ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-11
    Description: Breast cancer manifests itself in the mammary epithelium, yet there is a growing recognition that mammary stromal cells also play an important role in tumorigenesis. During its developmental cycle, the mammary gland displays many of the properties associated with breast cancer, and many of the stromal factors necessary for mammary development also promote or protect against breast cancer. Here we review our present knowledge of the specific factors and cell types that contribute to epithelial-stromal crosstalk during mammary development. To find cures for diseases like breast cancer that rely on epithelial-stromal crosstalk, we must understand how these different cell types communicate with each other.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788989/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788989/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wiseman, Bryony S -- Werb, Zena -- CA57621/CA/NCI NIH HHS/ -- R01 CA057621/CA/NCI NIH HHS/ -- R01 CA057621-07/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 May 10;296(5570):1046-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004111" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/physiology ; Animals ; Apoptosis ; Breast/cytology/embryology/*growth & development/physiology ; Breast Neoplasms/pathology/*physiopathology ; Cell Communication ; Epithelial Cells/physiology ; Extracellular Matrix/physiology ; Female ; Humans ; Mammary Glands, Animal/cytology/embryology/*growth & development/physiology ; Mammary Neoplasms, Animal/pathology/*physiopathology ; Morphogenesis ; Neoplasm Metastasis ; Pregnancy ; Signal Transduction ; Stromal Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-12-10
    Description: The formation and patterning of mesoderm during mammalian gastrulation require the activity of Nodal, a secreted mesoderm-inducing factor of the transforming growth factor-beta (TGF-beta) family. Here we show that the transcriptional corepressor DRAP1 has a very specific role in regulation of Nodal activity during mouse embryogenesis. We find that loss of Drap1 leads to severe gastrulation defects that are consistent with increased expression of Nodal and can be partially suppressed by Nodal heterozygosity. Biochemical studies indicate that DRAP1 interacts with and inhibits DNA binding by the winged-helix transcription factor FoxH1 (FAST), a critical component of a positive feedback loop for Nodal activity. We propose that DRAP1 limits the spread of a morphogenetic signal by down-modulating the response to the Nodal autoregulatory loop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iratni, Rabah -- Yan, Yu-Ting -- Chen, Canhe -- Ding, Jixiang -- Zhang, Yi -- Price, Sandy M -- Reinberg, Danny -- Shen, Michael M -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1996-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471260" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cell Line ; Crosses, Genetic ; DNA/metabolism ; DNA-Binding Proteins/metabolism ; *Embryonic and Fetal Development ; Female ; Forkhead Transcription Factors ; Gastrula/*physiology ; Gene Expression Regulation, Developmental ; Gene Targeting ; Heterozygote ; In Situ Hybridization ; Left-Right Determination Factors ; Male ; Mesoderm/cytology/physiology ; Mice ; Morphogenesis ; Mutation ; Nodal Protein ; Phenotype ; Protein Binding ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; *Signal Transduction ; Transcription Factors/metabolism ; Transforming Growth Factor beta/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...