ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:550.724  (15)
  • 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring
  • Springer Berlin Heidelberg  (17)
  • Elsevier Science Limited  (6)
  • American Association for the Advancement of Science
  • Public Library of Science
Collection
Language
Years
  • 1
    Publication Date: 2017-04-04
    Description: Our study is aimed to develop a 3D physical model of the Campi Flegrei geothermal system, in order to achieve a more accurate and comprehensive representation of the hydrothermal processes occurring in the caldera. The new model, developed by using the TOUGH2 code simulator, accounts for the caldera rocks' physical properties, bathymetry and water table topography. In particular, the computational domain is constrained by density values obtained by tomographic inversion of gravity data collected during several surveys at CF both onshore and offshore the caldera. Empirical relations between density and porosity and between porosity and permeability, derived by published data on samples cored in deep wells or collected in outcrops, allowed us to characterize the main rocks physical parameters controlling the dynamic of the CF geothermal system. We have performed and compared several simulations investigating the effects of the injection at depth, underneath Solfatara crater, of a hot gaseous mixture rich in CO2. We show that, with respect to the available literature on 2D axisymmetric models, the effects of the water table topography together with the bathymetry and the heterogeneous distribution of the rocks' physical properties, lead to important differences in the hydrothermal circulation of fluids at CF. These constraints allow the activation of convective cells with different behaviors, which produce variable patterns of temperature inside the hydrothermal system. As a consequence, the predominant effect is again represented by a central plume below the Solfatara crater, but with a non-axisymmetric structure and a wider extension. Additionally, high temperature zones are present near the coastline and in the middle part of the submerged area of the caldera with a SE–NW alignment. Moreover, our results indicate that, the submerged part of the CF caldera would deserve a more accurate study and survey, being affected by phenomenon of heating and degassing. This information could be very useful in terms of hazard assessment and volcanic risk mitigation in such an active and densely inhabited volcanic and geothermal area.
    Description: Published
    Description: 172-182
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei ; Geothermal system ; 3D model ; Water table topography ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Epidermis micromorphology of in situ Erica arborea L. exposed for generations to long-term effect of volcanic gases in Pisciarelli and Solfatara di Pozzuoli areas have been studied by X-ray analyses, SEM and TEM observations. In particular, the aim of this study is to investigate the effects of volcanic gases on extant and possibly fossil plants. Plants of the same species living in a nearby control site were also studied for comparison. SEM coupled with EDX analysis was used to localize different elements within the leaves (mesophyll, cell wall and cuticle). After conventional and cryo preparation, SEM of mature leaves ascertained that the abaxial side is more serrate in fumigated leaves and hairs, epicuticular wax alterations have also been noted. Leaves experiencing chronic fumigation display stomata more sunken with respect to the epidermal surface. TEM of transverse and longitudinal sections of cuticle showed an outer A2 granular amorphous layer and external to a B1 fibrillous layer. Significant statistical variations of ultrastructural components of the cuticle revealed a response of E. arborea to this extreme environment. At the ultrastructural level, significant variations in thickness of the cell wall plus cuticle, cell wall and A2 layer among fumigated and non-fumigated leaves have been found. In the studied localities a positive correlation between atmospheric CO2 concentration and the thickness of A2 layer also exists. The results are of interest being applicable in the understanding of plant cuticle responses during periods of normal vs. volcanic activity.
    Description: Published
    Description: 197– 206
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Phlegrean Fields ; Erica arborea ; Volcanic gases ; Epidermis ; Cuticle ultrastructure ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this work we show that the main springs of the central Apennine transport a total amount of heat of ∼2.2 109 J s−1. Most of this heat (57%) is the result of geothermal warming while the remaining 43% is due to gravitational potential energy dissipation. This result indicates that a large area of the central Apennines is very hot with heat flux values 4300 mWm−2. These values are higher than those measured in the magmatic and famously geothermal provinces of Tuscany and Latium and about 1/3 of the total heat discharged at Yellowstone. This finding is surprising because the central Apennines have been thought to be a relatively cold area. Translated by CO2 rich fluids, this heat anomaly suggests the existence of a thermal source such as a large magmatic intrusion at depth. Recent tomographic images of the area support the presence of such an intrusion visible as a broad negative velocity anomaly in seismic waves. Our results indicate that the thermal regime of tectonically active areas of the Earth, where meteoric waters infiltrate and deeply circulate, should be revised on the basis of mass and energy balances of the groundwater systems.
    Description: Published
    Description: 65–74
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: heat flux ; CO2 Earth degassing ; central Apennine ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In recent years, an increasing number of surveys have definitively confirmed the seasonal presence of fin whales (Balaenoptera physalus) in highly productive regions of the Mediterranean Sea. Despite this, very little is yet known about the routes that the species seasonally follows within the Mediterranean basin and, particularly, in the Ionian area. The present study assesses for the first time fin whale acoustic presence offshore Eastern Sicily (Ionian Sea), throughout the processing of about 10 months of continuous acoustic monitoring. The recording of fin whale vocalizations was made possible by the cabled deep-sea multidisciplinary observatory, “NEMO-SN1”, deployed 25 km off the Catania harbor at a depth of about 2,100 meters. NEMO-SN1 is an operational node of the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure. The observatory was equipped with a low-frequency hydrophone (bandwidth: 0.05 Hz–1 kHz, sampling rate: 2 kHz) which continuously acquired data from July 2012 to May 2013. About 7,200 hours of acoustic data were analyzed by means of spectrogram display. Calls with the typical structure and patterns associated to the Mediterranean fin whale population were identified and monitored in the area for the first time. Furthermore, a background noise analysis within the fin whale communication frequency band (17.9–22.5 Hz) was conducted to investigate possible detection-masking effects. The study confirms the hypothesis that fin whales are present in the Ionian Sea throughout all seasons, with peaks in call detection rate during spring and summer months. The analysis also demonstrates that calls were more frequently detected in low background noise conditions. Further analysis will be performed to understand whether observed levels of noise limit the acoustic detection of the fin whales vocalizations, or whether the animals vocalize less in the presence of high background noise.
    Description: Published
    Description: e0141838
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Whales ; Bioacoustics ; Background noise (acoustics) ; Acoustic signals ; Sperm whales ; Vocalization ; Acoustics ; Data acquisition ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-14
    Description: The present paper gives an overview of the GeomInt project “Geomechanical integrity of host and barrier rocks—experiment, modelling and analysis of discontinuities” which has been conducted from 2017–2020 within the framework of the “Geo:N Geosciences for Sustainability” program. The research concept of the collaborative project is briefly introduced followed by a summary of the most important outcomes. The research concept puts geological discontinuities into the centre of investigations—as these belong to the most interesting and critical elements for any subsurface utilisation. Thus, while research questions are specific, they bear relevance to a wide range of applications. The specific research is thus integrated into a generic concept in order to make the results more generally applicable and transferable. The generic part includes a variety of conceptual approaches and their numerical realisations for describing the evolution of discontinuities in the most important types of barrier rocks. An explicit validation concept for the generic framework was developed and realised by specific “model-experiment-exercises” (MEX) which combined experiments and models in a systematic way from the very beginning. 16 MEX have been developed which cover a wide range of fundamental fracturing mechanisms, i.e. swelling/shrinkage, fluid percolation, and stress redistribution processes. The progress in model development is also demonstrated by field-scale applications, e.g. in the analysis and design of experiments in underground research laboratories in Opalinus Clay (URL Mont Terri, Switzerland) and salt rock (research mine Springen, Germany).
    Description: BMBF
    Description: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ (4215)
    Keywords: ddc:550.724 ; GeomInt ; Fracture flow ; Fracture mechanics ; Barrier integrity ; Discontinuities ; Open source ; OpenGeoSys
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-16
    Description: Küstennahe Niedermoore wurden durch den Menschen verändert, bspw. durch das Anlegen von Entwässerungsgräben, dem Bau von Küstenschutzdeichen oder aktuell einer Renaturierung. Außerdem ist es wichtig die komplexe Interaktion mit der See zu verstehen, um Aussagen über die zukünftige Entwicklung treffen zu können. In der vorliegenden Studie wurde die ober- und unterirdische Strömung in einem Feuchtgebiet an der mecklenburgischen Ostseeküste nahe Warnemünde (Deutschland) untersucht, um dessen wechselseitigen Austausch mit der Ostsee zu quantifizieren und zu analysieren, wie sich ein Sturmhochwasserereignis auf den Salzeintrag ins Gebiet auswirkt. Hierfür wurde ein dreidimensionales instationäres Grundwassermodell erstellt, mit einem eindimensionalen Modell des Grabensystems gekoppelt und mit Messungen im Gebiet kalibriert und verglichen. Die Ergebnisse zeigen, dass neben der oberirdischen Entwässerung auch der Grundwasserabstrom in Richtung Ostsee eine wesentliche Komponente der Wasserbilanz darstellt. Das Verhalten entlang der Küste wird deutlich durch die Dynamik der Ostseewasserstände geprägt, wobei ein Grundwasserabstrom mit einem Zustrom von Ostseewasser bei hohen Küstenwasserständen innerhalb täglicher bis wöchentlicher Zeitskalen wechselt.
    Description: Universität Potsdam (1031)
    Keywords: ddc:550.724 ; Numerische Modellierung ; Ostseeküste ; Grundwasser-Oberflächenwasser-Interaktion ; Sturmhochwasser ; Versalzung ; Numerical modeling ; Baltic Sea coast ; Groundwater-surface water interaction ; Storm flood ; Salinization
    Language: German
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-19
    Description: We applied a hybrid-dimensional flow model to pressure transients recorded during pumping experiments conducted at the Reiche Zeche underground research laboratory to study the opening behavior of fractures due to fluid injection. Two distinct types of pressure responses to flow-rate steps were identified that represent radial-symmetric and plane-axisymmetric flow regimes from a conventional pressure-diffusion perspective. We numerically modeled both using a radial-symmetric flow formulation for a fracture that comprises a non-linear constitutive relation for the contact mechanics governing reversible fracture surface interaction. The two types of pressure response can be modeled equally well. A sensitivity study revealed a positive correlation between fracture length and normal fracture stiffness that yield a match between field observations and numerical results. Decomposition of the acting normal stresses into stresses associated with the deformation state of the global fracture geometry and with the local contacts indicates that geometrically induced stresses contribute the more the lower the total effective normal stress and the shorter the fracture. Separating the contributions of the local contact mechanics and the overall fracture geometry to fracture normal stiffness indicates that the geometrical stiffness constitutes a lower bound for total stiffness; its relevance increases with decreasing fracture length. Our study demonstrates that non-linear hydro-mechanical coupling can lead to vastly different hydraulic responses and thus provides an alternative to conventional pressure-diffusion analysis that requires changes in flow regime to cover the full range of observations.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Bundesministerium für Bildung und Forschung (DE)
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Universität Stuttgart (1023)
    Keywords: ddc:550.724 ; Hydro-mechanics of fractures ; Hybrid-dimensional modeling ; Fracture contact mechanics ; Fracture stiffness ; Hydraulic testing of fractures ; Reiche Zeche underground research laboratory
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-12
    Description: Purpose: Microplastics have become a ubiquitous pollutant in marine, terrestrial and freshwater systems that seriously affects aquatic and terrestrial ecosystems. Common methods for analysing microplastic abundance in soil or sediments are based on destructive sampling or involve destructive sample processing. Thus, substantial information about local distribution of microplastics is inevitably lost. Methods: Tomographic methods have been explored in our study as they can help to overcome this limitation because they allow the analysis of the sample structure while maintaining its integrity. However, this capability has not yet been exploited for detection of environmental microplastics. We present a bimodal 3D imaging approach capable to detect microplastics in soil or sediment cores non-destructively. Results: In a first pilot study, we demonstrate the unique potential of neutrons to sense and localize microplastic particles in sandy sediment. The complementary application of X-rays allows mineral grains to be discriminated from microplastic particles. Additionally, it yields detailed information on the 3D surroundings of each microplastic particle, which supports its size and shape determination. Conclusion: The procedure we developed is able to identify microplastic particles with diameters of approximately 1 mm in a sandy soil. It also allows characterisation of the shape of the microplastic particles as well as the microstructure of the soil and sediment sample as depositional background information. Transferring this approach to environmental samples presents the opportunity to gain insights of the exact distribution of microplastics as well as their past deposition, deterioration and translocation processes.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Deutsche Forschungsgemeinschaft (DE)
    Keywords: ddc:550.724 ; Neutron imaging ; Sediment core ; Non-destructive analysis ; Microplastic detection ; Shape and size
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-01
    Description: In this study, we suggest a temperature-based assessment and mitigation approach for deep-seated landslides that allows to forecast the behavior of the slide and assess its stability. The suggested approach is validated through combined field monitoring and experimental testing of the El Forn landslide (Andorra), whose shear band material is Silurian shales. Thermal and rate controlled triaxial tests have shown that this material is thermal- and rate-sensitive, and in combination with the field data, they validate the theoretical assumption that by measuring the basal temperature of an active landslide, we can quantify and reduce the uncertainty of the model’s parameters, and adequately monitor and forecast the response of the selected deep-seated landslide. The data and results of this letter show that the presented model can give threshold values that can be used as an early-warning assessment and mitigation tool.
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: RWTH Aachen University (3131)
    Keywords: ddc:550.724 ; Basal temperature ; Landslide monitoring ; Experimental tests ; Constitutive equations ; Numerical modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-08-02
    Description: Landslide run-out modeling involves various uncertainties originating from model input data. It is therefore desirable to assess the model’s sensitivity to these uncertain inputs. A global sensitivity analysis that is capable of exploring the entire input space and accounts for all interactions often remains limited due to computational challenges resulting from a large number of necessary model runs. We address this research gap by integrating Gaussian process emulation into landslide run-out modeling and apply it to the open-source simulation tool r.avaflow. The feasibility and efficiency of our approach is illustrated based on the 2017 Bondo landslide event. The sensitivity of aggregated model outputs, such as the angle of reach, impact area, and spatially resolved maximum flow height and velocity, to the dry-Coulomb friction coefficient, turbulent friction coefficient, and the release volume is studied. The results of first-order effects are consistent with previous results of common one-at-a-time sensitivity analyses. In addition to that, our approach allows us to rigorously investigate interactions. Strong interactions are detected on the margins of the flow path where the expectation and variation of maximum flow height and velocity are small. The interactions generally become weak with an increasing variation of maximum flow height and velocity. Besides, there are stronger interactions between the two friction coefficients than between the release volume and each friction coefficient. In the future, it is promising to extend the approach for other computationally expensive tasks like uncertainty quantification, model calibration, and smart early warning.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Keywords: ddc:550.724 ; Landslide run-out modeling ; Global sensitivity analysis ; Gaussian process emulation ; Emulator uncertainty
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-06-23
    Description: Magmas vesiculate during ascent, producing complex interconnected pore networks, which can act as outgassing pathways and then deflate or compact to volcanic plugs. Similarly, in-conduit fragmentation events during dome-forming eruptions create open systems transiently, before welding causes pore sealing. The percolation threshold is the first-order transition between closed- and open-system degassing dynamics. Here, we use time-resolved, synchrotron-source X-ray tomography to image synthetic magmas that go through cycles of opening and closing, to constrain the percolation threshold ΦC at a range of melt crystallinity, viscosity and overpressure pertinent to shallow magma ascent. During vesiculation, we observed different percolative regimes for the same initial bulk crystallinity depending on melt viscosity and gas overpressure. At high viscosity (〉 106 Pa s) and high overpressure (~ 1–4 MPa), we found that a brittle-viscous regime dominates in which brittle rupture allows system-spanning coalescence at a low percolation threshold (ΦC~0.17) via the formation of fracture-like bubble chains. Percolation was followed by outgassing and bubble collapse causing densification and isolation of the bubble network, resulting in a hysteresis in the evolution of connectivity with porosity. At low melt viscosity and overpressure, we observed a viscous regime with much higher percolation threshold (ΦC 〉 0.37) due to spherical bubble growth and lower degree of crystal connection. Finally, our results also show that sintering of crystal-free and crystal-bearing magma analogues is characterised by low percolation thresholds (ΦC = 0.04 – 0.10). We conclude that the presence of crystals lowers the percolation threshold during vesiculation and may promote outgassing in shallow, crystal-rich magma at initial stages of Vulcanian and Strombolian eruptions.
    Description: Paul Scherrer Institut http://dx.doi.org/10.13039/501100004219
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: NERC
    Description: Deutsche Forschungsgemeinschaft
    Keywords: ddc:550.724 ; Effusive-explosive transition ; Percolation threshold ; Outgassing ; Crystal-rich magma ; Magma viscosity ; Gas overpressure ; Porosity ; Pore connectivity ; Hysteresis ; Strombolian/Vulcanian eruptions ; Dome-forming eruptions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-06-23
    Description: Magma ascent during silicic dome-forming eruptions is characterized by significant changes in magma viscosity, permeability, and gas overpressure in the conduit. These changes depend on a set of parameters such as ascent rate, outgassing and crystallization efficiency, and magma viscosity, which in turn may influence the prevailing conditions for effusive versus explosive activity. Here, we combine chemical and textural analyses of tephra with viscosity models to provide a better understanding of the effusive-explosive transitions during Vulcanian phases of the 9.4 ka eruption of Kilian Volcano, Chaîne des Puys, France. Our results suggest that effusive activity at the onset of Vulcanian episodes at Kilian Volcano was promoted by (i) rapid ascent of initially crystal-poor and volatile-rich trachytic magma, (ii) a substantial bulk and melt viscosity increase driven by extensive volatile loss and crystallization, and (iii) efficient degassing/outgassing in a crystal-rich magma at shallow depths. Trachytic magma repeatedly replenished the upper conduit, and variations in the amount of decompression and cooling caused vertical textural stratification, leading to variable degrees of crystallization and outgassing. Outgassing promoted effusive dome growth and occurred via gas percolation through large interconnected vesicles, fractures, and tuffisite veins, fostering the formation of cristobalite in the carapace and talus regions. Build-up of overpressure was likely caused by closing of pore space (bubbles and fractures) in the dome through a combination of pore collapse, cristobalite formation, sintering in tuffisite veins, and limited pre-fragmentation coalescence in the dome or underlying hot vesicular magma. Sealing of the carapace may have caused a transition from open- to closed- system degassing and to renewed explosive activity. We generalize our findings to propose that the broad spectrum of eruptive styles for trachytic magmas may be inherited from a combination of characteristics of trachytic melts that include high water solubility and diffusivity, rapid microlite growth, and low melt viscosity compared to their more evolved subalkaline dacitic and rhyolitic equivalents. We show that trachytes may erupt with a similar style (e.g., Vulcanian) but at significantly higher ascent rates than their andesitic, dacitic, and rhyolitic counterparts. This suggests that the periodicity of effusive-explosive transitions at trachytic volcanoes may differ from that observed at the well-monitored andesitic, dacitic, and rhyolitic volcanoes, which has implications for hazard assessment associated with trachytic eruptions.
    Description: ERC ADV 2018
    Keywords: ddc:550.724 ; Effusive-explosive transitions ; Trachytic magma ; Vulcanian eruption ; Magma Viscosity ; Crystallization ; Degassing ; Nanolites ; Cristobalite
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-06-23
    Description: Subsurface magmatic–hydrothermal systems are often associated with elevated electrical conductivities in the Earthʼs crust. To facilitate the interpretation of these data and to allow distinguishing between the effects of silicate melts and fluids, the electrical conductivity of aqueous fluids in the system H 2 O–HCl was measured in an externally heated diamond anvil cell. Data were collected to 700 °C and 1 GPa, for HCl concentrations equivalent to 0.01, 0.1, and 1 mol/l at ambient conditions. The data, therefore, more than double the pressure range of previous measurements and extend them to geologically realistic HCl concentrations. The conductivities 𝜎 (in S/m) are well reproduced by a numerical model log 𝜎 = −2.032 + 205.8 T−1 + 0.895 log c + 3.888 log 𝜌 + logΛ0(T,𝜌), where T is the temperature in K, c is the HCl concentration in wt. %, and 𝜌 is the density of pure water at the corresponding pressure and temperature conditions. Λ0(T,𝜌) is the limiting molar conductivity (in S cm2 mol −1 ) at infinite dilution, Λ0(T,𝜌) = 2550.14 − 505.10𝜌 − 429,437 T−1 . A regression fit of more than 800 data points to this model yielded R2 = 0.95. Conductivities increase with pressure and fluid densities due to an enhanced dissociation of HCl. However, at constant pressures, conductivities decrease with temperature because of reduced dissociation. This effect is particularly strong at shallow crustal pressures of 100–200 MPa and can reduce conductivities by two orders of magnitude. We, therefore, suggest that the low conductivities sometimes observed at shallow depths below the volcanic centers in magmatic–hydrothermal systems may simply reflect elevated temperatures. The strong negative temperature effect on fluid conductivities may offer a possibility for the remote sensing of temperature variations in such systems and may allow distinguishing the effects of magma intrusions from changes in hydrothermal circulation. The generally very high conductivities of HCl–NaCl–H 2 O fluids at deep crustal pressures (500 MPa–1 GPa) imply that electrical conductors in the deep crust, as in the Altiplano magmatic province and elsewhere, may at least partially be due to hydrothermal activity.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Universität Bayreuth (3145)
    Keywords: ddc:550.724 ; Electrical conductivity ; Fluid ; HCl ; Hydrothermal systems ; Magnetotelluric data
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-06-23
    Description: Hydrothermal eruptions are characterised by violent explosions ejecting steam, water, mud, and rock. They pose a risk to tourism and the operation of power plants in geothermal areas around the world. Large events with a severe destructive threat are often intensified by the injection of magmatic fluids along faults and fractures within volcano-tectonic rifting environments, such as the Taupo Volcanic Zone. How these hydrothermal eruptions progress, how craters form and the scale of ejecta impacts, are all influenced by the local geology and reservoir hydrology. By analysing breccia lithology, undisturbed strata proximal to the explosion sites, and conducting tailored decompression experiments, we elucidate the eruption sequence that formed Champagne Pool, Wai-o-tapu, New Zealand. This iconic touristic site was formed by a violent hydrothermal eruption at ~ 700 years B.P. Samples from undisturbed drill cores and blocks ejected in the eruption were fragmented in shock-tube experiments under the moderate pressure/temperature conditions estimated for this system (3–4 MPa, 210–220 °C). Our results show that this was a two-phase eruption. It started with an initial narrow jetting of deep-sourced lithologies, ejecting fragments from at least a 110-m depth. This event was overtaken by a larger, broader, and dominantly shallower eruption driven by decompression of much more geothermal fluid within a soft and porous ignimbrite horizon. The second phase was triggered once the initial, deeper-sourced eruption broke through a strong silicified aquitard cap. The soft ignimbrite collapsed during the second-phase eruption into the crater, to repeatedly choke the explosions causing short-term pressure rises that triggered ongoing deeper-sourced eruptions. The eruption spread laterally also by exploiting a local fault. These results are relevant for hydrothermal eruption hazard scenarios in environments where strong vertical variations in rock strength and porosity occur.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Ministry of Business, Innovation and Employment http://dx.doi.org/10.13039/501100003524
    Keywords: ddc:550.724 ; Hydrothermal eruptions ; Geothermal ; Champagne pool ; Experimental ; Eruption dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-06-23
    Description: While Terzaghi justified his principle of effective stress for water-saturated soil empirically, it can be derived by means of the neutrality of the mineral with respect to changes of the pore water pressure p w. This principle works also with dilating shear bands arising beyond critical points of saturated grain fabrics, and with patterns of shear bands as relics of critical phenomena. The shear strength of over-consolidated clay is explained without effective cohesion, which results also from swelling up to decay, while rapid shearing of water-saturated clay can lead to a cavitation of pore water. The p w-neutrality is also confirmed by triaxial tests with sandstone samples, while Biot’s relation with a reduction factor for p w is contestable. An effective stress tensor is heuristically legitimate also for soil and rock with relics of critical phenomena, particularly for critical points with a Mohr–Coulomb condition. Therein, the p w-neutrality of the solid mineral determines the interaction of solid fabric and pore water, but numerical models are questionable due to fractal features.
    Description: Karlsruher Institut für Technologie (KIT) (4220)
    Keywords: ddc:550.724 ; Effective stress ; Interaction of solid fabric and pore water ; Pore pressure neutrality of mineral ; Shear bands and cracks
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-06-23
    Description: In this work, a constitutive model able to capture the strain rate dependency, small strain effects and the inherent anisotropy is proposed considering the influence of the overconsolidation ratio (OCR). Small strain effects are captured by using an extended ISA plasticity formulation (Fuentes and Triantafyllidis in Int J Numer Anal Methods Geomech 39(11):1235–1254, 2015). The strain rate dependency is reproduced by incorporating a third strain rate mechanism (in addition to the elastic and hypoplastic strain rate). A loading surface has been incorporated to define a three-dimensional (3D) overconsolidation ratio and to account for its effects on the simulations. Experimental investigations using Kaolin Clay and Lower Rhine Clay with horizontal bedding plane have shown that under undrained cycles of small strain amplitudes (\10-4 ), the effective stress path in the p–q space is significantly inclined towards the left upper corner of the p - q plane. Consequently, a transversely (hypo)elastic stiffness has been successfully formulated to capture this behaviour. The performance of the model has been inspected by simulating the database of approximately 50 cyclic undrained triaxial (CUT) tests on low-plasticity Kaolin Clay (Wichtmann and Triantafyllidis) considering different deviatoric stress amplitudes, initial stress ratios, displacement rate, overconsolidation ratio and cutting direction. Furthermore, 4 CUT tests conducted on high-plasticity Lower Rhine Clay were simulated, whereby the influence of the displacement rate, as well as the deviatoric stress amplitude, has been analysed. The simulations showed a good congruence with the experimental observations.
    Keywords: ddc:550.724 ; Anisotropy ; Clay ; Cyclic loading ; Excessive pore water pressure ; Rate dependency ; Soft soils ; Silt ; Time dependency ; Viscosity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-06-10
    Description: Between January 2011 and April 2012, Santorini volcano (Greece) experienced a period of unrest characterised by the onset of detectable seismicity and caldera-wide uplift. This episode of inflation represented the first sizeable intrusion of magma beneath Santorini in the past 50 years. We employ a new approach using 222 Rn– δ 13 C systematics to identify and quantify the source of diffuse degassing at Santorini during the period of renewed activity. Soil CO 2 flux measurements were made across a network of sites on Nea Kameni between September 2010 and January 2012. Gas samples were collected in April and September 2011 for isotopic analysis of CO 2 ( δ 13 C), and radon detectors were deployed during September 2011 to measure ( 222 Rn). Our results reveal a change in the pattern of degassing from the summit of the volcano (Nea Kameni) and suggest an increase in diffuse CO 2 emissions between September 2010 and January 2012. High-CO 2 -flux soil gas samples have δ 13 C ∼ 0 .Using this value and other evidence from the literature we conclude that these CO 2 emissions from Santorini were a mixture between CO 2 sourced from magma, and CO 2 released by the thermal or metamorphic breakdown of crustal limestone. We suggest that this mixing of magmatic and crustal carbonate sources may account more broadly for the typical range of δ 13 CvaluesofCO 2 (from ∼− 4 to ∼+ 1 )in diffuse volcanic and fumarole gas emissions around the Mediterranean, without the need to invoke unusual mantle source compositions. At Santorini a mixing model involving magmatic CO 2 (with δ 13 C of − 3 ± 2 and elevated ( 222 Rn)/CO 2 ratios ∼ 10 5 –10 6 Bqkg − 1 )andCO 2 released from decarbonation of crustal limestone (with ( 222 Rn)/CO 2 ∼ 30–300 Bqkg − 1 ,and δ 13 Cof + 5 ) can account for the δ 13 C and ( 222 Rn)/CO 2 characteristics of the ‘high flux’ gas source. This model suggests ∼ 60% of the carbon in the high flux deep CO 2 end member is of magmatic origin. This combination of δ 13 Cand( 222 Rn) measurements has potential to quantify magmatic and crustal contributions to the diffuse outgassing of CO 2 in volcanic areas, especially those where breakdown of crustal limestone is likely to contribute significantly to the CO 2 flux
    Description: Published
    Description: 180-190
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic unrest ; soil gas measurements ; carbon isotopic analysis ; magmatic degassing ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-06-08
    Description: Contact interaction of two bodies can be modeled using the penalty function approach while its accuracy and robustness are directly associated with the geometry of contact bodies. Particularly, in the research fields of rock mechanics, we need to treat polygonal shapes such as mineral grains/particles at a mesoscale and rock blocks at a macroscale. The irregular shapes (e.g., polygons with small angles or small edges) pose challenges to traditional contact solution approach in terms of algorithmic robustness and complexity. This paper proposed a robust potential-based penalty function approach to solve contact of polygonal particles/block. An improved potential function is proposed considering irregular polygonal shapes. A contact detection procedure based on the entrance block concept is presented, followed by a numerical integral algorithm to compute the contact force. The proposed contact detection approach is implemented into discontinuous deformation analysis with an explicit formulation. The accuracy and robustness of the proposed contact detection approach are verified by benchmarking examples. The potential of the proposed approach in analysis of kinetic behavior of complex polygonal block systems is shown by two application examples. It can be applied in any discontinuous computation models using stepwise contact force-based solution procedures.
    Description: Alexander von Humboldt Foundation
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:550.724 ; Block system ; Explicit discontinuous deformation analysis ; Irregular polygon ; Penalty function method ; Potential contact force
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-06-08
    Description: The water retention curve (WRC), representing an important key for the modelling of hydro-mechanical behaviour of unsaturated soils, is still not fully understood, because it originates from microscopic hydraulic and capillary phenomena. Furthermore, its experimental measurement, especially for cyclic drainage and imbibition paths, is challenging and time-consuming. In this contribution, a recently developed low-cost easy-to-use miniature testing device for the investigation of the WRC of unsaturated granular soils, such as coarse-grained sand and a packing of glass beads, is presented. With the help of the new device, that can be controlled by a Raspberry Pi single-board computer, the hysteretic WRC can be investigated in a conventional macroscopic approach by plotting the macroscopic specimen degree of saturation versus measured matric suction. The test set-up allows an automatic measurement of the WRC which is measured continuously following a programmed test procedure. In addition to the technical realisation of the new device, this contribution focuses on macroscopic results of water retention tests. Moreover, the testing device has been designed in a miniaturised size, in order to obtain microscopic insights into the phase distribution during cyclic drainage and imbibition paths with the help of computed tomography in future applications.
    Description: German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
    Keywords: ddc:550.724 ; Single-board computers ; Suction measurement ; Unsaturated granular soils ; Water retention behaviour ; X-ray computed tomography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-06-08
    Description: The knowledge about thermo-mechanical properties of granite is still limited to some extent. Individual measurements are necessary to obtain reliable properties for specific granite types. A reliable numerical model of thermal cracking behaviours of granite exposed to extreme high temperatures (e.g. 800–1000 °C) is missing. In this study, the impact of temperature up to 1000 °C on physical, mechanical, and thermal properties as well as thermo-mechanical coupled behaviour of Eibenstock granite was investigated by laboratory testing and numerical simulations. The physical properties including mineral composition, density, P-wave velocity, and open porosity are measured to be temperature dependent. Uniaxial compression and Brazilian tests were carried out to measure uniaxial compressive strength (UCS), Young’s modulus, stress–strain relationship, and tensile strength of Eibenstock granite before and after thermal treatment, respectively. Thermal properties including specific heat, thermal conductivity, thermal diffusivity, and linear thermal expansion coefficient are also measured and found to be temperature dependent, especially the expansion coefficient which shows a steep increase around 573 °C as well as at 870 °C. The numerical simulation code FLAC3D was used to develop a numerical scheme to simulate the thermal-induced damage of granite at high temperatures. Statistical methods combined with real mineral composition were used to characterize the heterogeneity of granite. The numerical model is featured with reliable temperature-dependent parameters obtained from laboratory tests. It can well reproduce the laboratory results in form of thermal-induced micro- and macrocracks, as well as the stress–strain behaviour and the final failure pattern of Eibenstock granite after elevated temperatures up to 1000 °C. The simulation results also reveal that the thermal-induced microcracks are randomly distributed across the whole sample. Although most thermal-induced damages are tensile failures, shear failure begins to develop quickly after 500 °C. The obvious UCS reduction in granite due to heating is mainly caused by the increase in shear failure. The simulation also shows that the dominant impact of α–β quartz transition is widening pre-existing cracks rather than the formation of new microcracks.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Keywords: ddc:550.724 ; Granite property ; Heterogeneity ; Numerical simulation ; Thermo-mechanical behaviour ; Thermal damage
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-05-09
    Description: Abstract A geochemical survey of fumarolic and submerged gases from fluid discharges located in the Nea Kameni and Palea Kameni islets (Santorini Island, Greece) was carried out before, during, and after the unrest related to the anomalously high seismic and ground deformation activity that affected this volcanic system since January 2011. Our data show that from May 2011 to February 2012, the Nea Kameni fumaroles showed a significant increase of H2 concentrations. After this period, an abrupt decrease in the H2 contents, accompanied by decreasing seismic events, was recorded. A similar temporal pattern was shown by the F−, Cl−, SO4 2−, and NH4 + concentrations in the fumarolic condensates. During the sharp increase of H2 concentrations, when values up to 158 mmol/ mol were measured, the δ13C–CO2 values, which prior to January 2011 were consistent with a dominant CO2 thermometamorphic source, have shown a significant decrease, suggesting an increase of mantle CO2 contribution. Light hydrocarbons, including CH4, which are controlled by chemical reactions kinetically slower than H2 production from H2O dissociation, displayed a sharp increase in March 2012, under enhanced reducing conditions caused by the high H2 concentrations of May 2011–February 2012. The general increase in light hydrocarbons continued up to July 2012, notwithstanding the contemporaneous H2 decrease. The temporal patterns of CO2 concentrations and N2/Ar ratios increased similarly to that of H2, possibly due to sealing processes in the fumarolic conduits that diminished the contamination related to the entrance of atmospheric gases in the fumarolic conduits. The compositional evolution of the Nea Kameni fumaroles can be explained by a convective heat pulse from depth associated with the seismic activation of the NE–SW-oriented Kameni tectonic lineament, possibly triggered by either injection of new magma below Nea Kameni island, as apparently suggested by the evolution of the seismic and ground deformation activity, or increased permeability of the volcanic plumbing system resulting from the tectonic movements affecting the area. The results of the present study demonstrate that the geophysical and geochemical signals at Santorini are interrelated and may be precursory signals of renewed volcanic activity and encourage the development of interdisciplinary monitoring program to mitigate the volcanic risk in the most tourist-visited island of the Mediterranean Sea.
    Description: Published
    Description: 711
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Santorini Island . ; Fluid geochemistry ; Geochemical monitoring ; Seismic crisis ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-05-09
    Description: Copahue volcano is part of the Caviahue–Copahue Volcanic Complex (CCVC),which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina–Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe–Ofqui strike slip and the northern Copahue–Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from −8.8‰ to −6.8‰ vs. V-PDB), δ15N values (+5.3‰ to +5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°–220 °C. On the contrary, rock–fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006–2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and isotope variations were likely related to injection of mafic magma that likely triggered the 2000 eruption. Therefore, changes affecting the magmatic systemhad a delayed effect on the chemistry of the CCVC gases due to the presence of the hydrothermal reservoir. However, geochemical monitoring activities mainly focused on the behavior of inert gas compounds (N2 and He), should be increased to investigate the mechanism at the origin of the unrest started in 2011.
    Description: Published
    Description: 44–56
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Fluid geochemistry ; Copahue volcano ; Fumarolic fluid ; Hydrothermal reservoir ; Volcanic unrest ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-05-09
    Description: Measurements of soil fluxes of hydrothermal gases, with special emphasis on C6H6, as well as chemical composition of mono-aromatic compounds in fumaroles and air, were carried out in April 2012 at the Solfatara crater (Campi Flegrei, Southern Italy) to investigate the distribution and behavior of these species as they migrate through the soil from their deep source to the atmosphere. Soil fluxes of CO2, CH4 and C6H6 exhibit good spatial correlation, suggesting that diffuse degassing is mainly controlled by local fractures. The calculated total output of diffuse C6H6 from Solfatara is 0.10 kg day 1, whereas fluxes of CO2 and CH4 are 79 103 and 1.04 kg day 1, respectively. A comparison between soil gas fluxes and fumarole composition reveals that within the crater soil CH4 is significantly affected by oxidation processes, which are more efficient for low gas fluxes, being dependent on the residence time of the uprising hydrothermal gases at shallow depth. Benzene degradation, mainly proceeding through oxidation via benzoate, seems to be strongly controlled by the presence of a shallow SO2 4 -rich aquifer located in the central and southwestern sectors of the crater, suggesting that the process is particularly efficient when SO2 4 acts as terminal electron acceptor (SO4 reduction). Relatively high C6H6/C7H8 ratios, typical of hydrothermal fluids, were measured in air close to the main fumarolic field of Solfatara crater. Here, C6H6 concentrations, whose detection limit is 0.1 lgm 3, are more than one order of magnitude higher than the limit value for ambient air (5 lgm 3). This suggests that hydrothermal fluids have a strong impact on air quality in the immediate surroundings of the fumarolic vents. Significant concentrations of endogenous mono-aromatics were also detected in air samples collected from the northern and western sides of the crater, where these gas compounds are mostly fed by diffuse degassing through the crater bottom soil.
    Description: Published
    Description: 142–153
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: hydrothermal gases ; Solfatara crater ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-05-09
    Description: Lake Albano (Alban Hills volcanic complex, Central Italy) is located in a densely populated area near Rome. The deep lake waters have significant dissolved CO2 concentrations, probably related to sub-lacustrine fluid discharges fed by a pressurized CO2-rich reservoir. The analytical results of geochemical surveys carried out in 1989 2010 highlight the episodes of CO2 removal from the lake. The total mass of dissolved CO2 decreased from ∼5.8× 107 kg in 1989 to ∼0.5×107 kg in 2010, following an exponential decreasing trend. Calculated values of both dissolved inorganic carbon and CO2 concentrations along the vertical profile of the lake indicate that this decrease is caused by CO2 release from the epilimnion, at depth 〈9 m, combined with (1) water circulation at depth 〈95 m and (2) CO2 diffusion from the deeper lake layers. According to this model, Lake Albano was affected by a large CO2 input that coincided with the last important seismic swarm at Alban Hills in 1989, suggesting an intimate relationship between the addition of deep-originated CO2 to the lake and seismic activity. In the case of a CO2 degassing event of an order of magnitude larger than the one that occurred in 1989, the deepest part of Lake Albano would become CO2-saturated, resulting in conditions compatible with the occurrence of a gas outburst. These results reinforce the idea that a sudden CO2 input into the lake may cause the release of a dense gas cloud, presently representing the major volcanic threat for this densely populated area
    Description: Published
    Description: 861-871
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Crater lakes ; Limnic eruption ; CO2 outburst ; Lake Albano ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...