ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (23)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
  • Palaeoclimate
  • AGU  (24)
  • Nature Publishing Group  (5)
Collection
Years
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group
    Publication Date: 2017-04-04
    Description: One of the key issues in forecasting volcanic eruptions is to detect signals that can track the propagation of dykes towards the surface. Continuous monitoring of active volcanoes helps significantly in achieving this goal. The seismic data presented here are unique, as they document surface faulting processes close (tens to a few hundred meters) to their source, namely the dyke tip. They originated nearby - and under - a seismic station that was subsequently destroyed by lava flows during eruptive activity at Etna volcano, Italy, in 2013. On February 20, a ~600 m-long and ~120 m wide NW-SE fracture field opened at an altitude between 2750 and 2900 m. The consequent rock dislocation caused the station to tilt and offset the seismic signal temporarily. Data acquisition continued until the arrival of the lava flow that led to the breakdown of the transmission system. Shallow ground fracturing and repeated low-frequency oscillations occurred during two stages in which the seismic signal underwent a maximum offset ~2.57 E+04 nm/s. Bridging instrumental recordings, fieldwork and conceptual modelling, these data are interpreted as the seismic footprints of a magmatic dyke intrusion that moved at speed ~0.02 m/s (first stage) and 0.46 m/s (second stage).
    Description: This work was supported by the MED-SUV project, which has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 308665.
    Description: Published
    Description: 11908
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: dyke propagation ; Etna ; seismic signals ; ground fracturing ; conceptual modelling ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 21728, doi:10.1038/srep21728
    Description: Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.
    Description: This research was supported by NSF Awards: OCE-1519578, OCE-1356708, BCS-1118340.
    Keywords: Climate-change impacts ; Forest ecology ; Ocean sciences ; Palaeoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 29587, doi:10.1038/srep29587.
    Description: Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28–15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.
    Description: This work was supported by NSF grants EAR0601998, EAR0602355, AGS0402010, ATM0401908, ATM0214525, ATM0096232 and AGS1243125 and a Chevron Centennial Fellowship at the University of Texas at Austin awarded to T.M.S.
    Keywords: Climate-change ecology ; Palaeoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.
    Description: Published
    Description: 385
    Description: 3.1. Fisica dei terremoti
    Description: N/A or not JCR
    Description: restricted
    Keywords: Tohoku ; Subduction ; Tsunami ; Inverse problem ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We analyze the volcano seismicity recorded during the pre‐ and co‐eruptive regimes of the 2007 effusive crisis at Stromboli volcano (Italy). Data‐set is composed of the continuous recordings of a three‐component broad‐band seismometer and of a Sacks‐ Evertson strainmeter. Starting from the characterization of the non effusive phase as a stationary state of equilibrium, we investigate the effusive phase as a non‐equilibrium state. A statistical analysis reveals that the explosion occurrence is always driven by a nearly Poissonian process, as for the standard activity, even during the effusive phase, with the only difference in shortening the inter‐times. Explosion‐quake amplitudes are lognormally distributed until the effusive phase, becoming then broader. This indicates that many scales are involved. A slightly different process can be advocated for the swarms of the explosions occurring during the effusive phase. This suggests that the dynamics of the exsolution and/or aggregation of the gas slugs should differ from the nucleation mechanism responsible of the standard Strombolian activity. The pre‐eruptive regime is characterized by a very long deformative signal that appears as a transient oscillating signal with a period of about three days that modulates the explosion amplitudes. In a conceptual vibrating cavities model, it is related to a chocking phenomenon induced by magma injection, which in turn leads to the effusion.
    Description: Published
    Description: B09312
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic tremor ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We study the seismic wavefield and the statistical properties of the Stromboli volcano explosions preceding and during the 2002–2003 crisis. We analyze the recordings of a three‐component seismometer operating since 23 May 2002 to 30 January 2003, including the first 34 days of the crisis. Before the crisis, we recognize three bell‐shaped classes of spectra with maxima falling in the range 1–5 Hz. Spectral content has two main changes, the most prominent one occurring at the crisis onset when the frequency peak at ∼0.3 Hz increases in amplitude. Independent component analysis extracts three time‐stable independent oscillations that peaked at 1.1, 1.8, and 2.5 Hz, with radial and shallow polarization indicating a stable source mechanism. Energy of the explosions is lognormally distributed, except during a 2 month time interval before the crisis when it also shows a higher mean value. The interoccurrence time distributions display an homogeneous Poissonian behavior with a mean intertime of 250 s, without changes at the crisis onset. Only swarms of explosions are not ruled by a Poisson process and display higher occurrence rates and higher energies. Finally, we depict a scheme of the crisis. A modification of the equilibrium is induced by rising magma that produces a change in the boundary conditions of the plumbing system. The escape from the equilibrium produces, at first, variations in the usual statistics of the explosions, then it leads to the lava effusion and to a pressure drop in the plumbing system that induces a deep gas slug nucleation and the excitation of low frequencies.
    Description: Published
    Description: B04303
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli volcano, explosion quakes, 2002-2003 eruption ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We study the seismic wavefield and the statistical properties of the Stromboli volcano explosions preceding and during 2002-2003 crisis. We analyze the recordings of a three-component seismometer operating since 23/05/2002 to 30/01/2003, including the first 34 days of the crisis. Before the crisis, we recognize three bell-shaped classes of spectra with maxima falling in the range 1–5 Hz. Spectral content has two main changes, the most prominent one occurring at the crisis onset when the frequency peak at ∼0:3 Hz increases in amplitude. Independent Component Analysis extracts three timestable independent oscillations peaked at 1.1, 1.8, and 2.5 Hz, respectively, with radial and shallow polarization indicating a stable source mechanism. Energy of the explosions is log-normally distributed, except during a twomonth time interval before the crisis when it shows also a higher mean value. The inter-occurrence time distributions display an homogeneous poissonian behaviour with a mean inter-time of 250 s, without changes at the crisis onset. Only swarms of explosions are not ruled by a Poisson process and display higher occurrence rates and higher energies. Finally, we depict a scheme of the crisis. A modification of the equilibrium is induced by rising magma that produces a change in the boundary conditions of the plumbing system. The escape from the equilibrium produces, at first, variations in the usual statistics of the explosions, then it leads to the lava effusion and to a pressure drop in the plumbing systems that induces a deep gas slug nucleation and the excitation of low frequencies.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: Stromboli ; explosion-quakes ; 2002-2003 eruptive crisis ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-17
    Description: We analyze the volcano seismicity recorded during the 2007 eruption of Stromboli. Data-set is composed of the continuous recordings of a three-component broad-band seismometer and of a strainmeter. Starting from the characterization of the standard activity as a stationary phase of equilibrium, we investigate the non-equilibrium phase of the effusive process. A statistical analysis of the explosions reveals that the occurrence is always driven by a Poisson process as for the standard activity, even approaching the effusion phase, with the only difference in shortening the inter-times just during the effusion. A slightly different process can be advocated for the swarms of the explosions, because a maximum in the distribution of inter-times can be evidenced. Regarding the amplitudes of the explosion-quakes, they have a log-normal distribution until the effusion onset as in the standard Strombolian activity. The actual departure from that stationarity seems to be traced by an early deformative response at very long period. It appears as a transient oscillating signal characterized by a period of about three days that modulates the explosion amplitudes. In a conceptual organ pipe-like model it is related to the chocking of the pipe. The successive activity can be interpreted as the response of volcano to restore the equilibrium condition.
    Description: Published
    Description: B09312
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Description: open
    Keywords: Stromboli ; eruption ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Fracture reactivation is a widespread process in nature even though evidence of magma-induced reactivation is less documented. Here we provide evidence of the reactivation of a fracture system on the upper flank of the Mt. Etna volcano and consider its possible implications in understanding the recent volcanic and tectonic activity. A NNW–SSE trending fracture, partly accompanied by magma emplacement in the form of a laterally propagating dike, formed in 1989 on the upper SE flank of Etna. Lava effusions in 1991–1993, 2001, and 2006 were associated with volcano-tectonic (VT) seismicity and ground deformations on the upper part of the volcano, which document the seismogenetic involvement of the 1989 fractures, although without eruptive phenomena along the discontinuity. In addition to the aforementioned episodes of VT seismicity, differences in the characteristics of the background seismic radiation (volcanic tremor) were measured at stations close to these fractures during the eruptive activity on 24 November 2006, for which more detailed volcanological and seismological time histories are available. Moving on from these findings, we analyze volcanic tremor data recorded close to the summit and along the S flank of the volcano to highlight the interactions between seismic radiation and the 1989 fracture system. Centroid location of volcanic tremor and wave field characteristics at stations of the permanent local seismic network of Etna highlight the guidance role played by the 1989 fractures during the eruptive activity on 24 November 2006. In addition, the collected data shed light on hitherto unknown structural features, which appear to connect the volcano summit to the lower SE slope and also play an important role in controlling the instability of the E flank. More generally, this study shows how (1) using an integrated approach, it is possible to link apparently different features to a common structure, showing uniform and distinct dynamics relevant at the volcano scale, and (2) fracture reactivation can also occur by means of magma intrusion, playing an important role in the transfer of magma within a volcanic edifice.
    Description: Published
    Description: B11306
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; fracture system ; volcanic tremor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union.
    Description: On multi-vents volcanoes changes in activity between different vents reflect a complex fluid-dynamics of the shallow feeding systems and are often explained numerically and experimentally in terms of conduit branches and bifurcations. We present new geophysical constraints on the shallow feeding system of Etna volcano derived from array analysis of infrasound radiated from two distinct sources, one located in the SE crater and one in the Voragine or NE crater (VNE). These two sources alternated in their behavior, with the VNE crater system radiating low amplitude background infrasound interrupted by episodes of increased infrasound radiation from the SE crater. This switching behavior suggested a branched shallow feeding system strongly controlled by the gas/magma-flux. Here, the VNE craters represented the preferential and most stable branch of degassing during stationary flux regime, while the SE crater branch activated in response to an increase in the magma/gas supply rate.
    Description: INGV-DPC V3 for the years 2005– 2007
    Description: Published
    Description: L19308
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Infrasound ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Five three-component broadband ocean bottom seismometers (OBSs) were deployed on the seafloor around the Aeolian Islands (Southern Tyrrhenian Sea). By comparing OBSs digital seismograms, we found a low-frequency seismicity recorded only at OBS05, the nearest seafloor station to Stromboli volcano. This seismicity appears in the form of a continuous seismic signal (tremor-like-signal) as well as a considerable number of shock-like events. We focused on recordings from OBS05 to verify their correlation with Stromboli volcanic activity. From the spectral analysis, we observed low-frequency events (LP events), superposed upon the continuous background noise (tremor). LP events and tremor, showing similar energy fluctuations and frequency content, appear to be produced by the same dynamic processes. We interpret this low-frequency seismicity as probably originating from a continuous uprising of gas bubbles from the deeper part of the Stromboli magmatic column. This could highlight the existence of a deeper source for low-frequency seismicity.
    Description: Published
    Description: L04305
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano-seismology ; low-frequency events ; tremor ; OBSs ; Stromboli (Southern Tyrrhenian Sea) ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: We propose a 3-D crust–upper mantle seismic attenuation (QP) model of the southern Apennines–Calabrian Arc subduction zone together with a 3-D velocity (VP) model. The QP model is calculated from relative t* using the spectral ratio method and the VP from traveltime data. The final data set used for the inversion of the VP model consists of 2400 traveltime arrivals recorded by 34 short-period stations that are part of the Italian National Seismic Network, and for the QP model, 2178 Pn phases recorded by a subset of 32 stations. Traveltimes and waveforms come from 272 intermediate-depth Calabrian slab events. This 3-D model of attenuation, together with the 3-D velocity model, improves our knowledge of the slab/mantle wedge structure and can be a starting point in determining the physical state of the asthenosphere (i.e., its temperature, the presence of melt and/or fluids) and its relation to volcanism found in the study area. Main features of the QP and VP models show that the mantle wedge/slab, in particular, the area of highest attenuation, is located in a volume underlying the Marsili Basin. The existence and shape of this main low-QP (and low-VP) anomaly points to slab dehydration and fluid/material flow, a process that may explain the strong geochemical affinities between the subduction-related magmas from Stromboli and Vesuvius. Other interesting features in the models are strong lateral variations in QP and VP that are put in relation with known important tectonic structures and volcanic centers in the area.
    Description: Published
    Description: B06304
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: seismic attenuation tomography ; Calabrian Arc subduction zone ; fluids and melts ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: A fundamental goal of volcano seismology is to understand the dynamics of active magmatic systems in order to assess eruptive behavior and the associated hazard. Imaging of magma conduits, quantification of magma transport and investigation of long-period seismic sources, together with their temporal variations, are crucial for the comprehension of eruption-triggering mechanisms. At Mt. Etna volcano, several intense episodes of tremor activity were recorded during 2007, in association with strombolian activity and/or intense fire fountaining episodes occurring from the South East Crater (SEC). The locations of the tremor sources and of the long-period seismic events are used here to constrain both the area and the depth range of magma degassing, highlighting the geometry of the shallow conduits feeding SEC. The imaged conduits consist of two connected resonating dike-like bodies, NNW-SSE and NW-SE oriented, extending from sea level to the surface. In addition, we show how tremor, long-period (LP) and very-long-period (VLP) event locations and signatures reflect pressure fluctuations in the plumbing system associated with the ascent/discharge of gas-rich magma linked to the lava fountains. The evidence here reported, also corroborated by ground deformation variations, can help develop a better prediction and early-warning system for those eruptions (effusive or explosive) that apparently manifest no clear precursors.
    Description: Supported by grants from the European Union VOLUME FP6-2004-Global-3
    Description: Published
    Description: Q12021
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: volcano plumbing system ; volcanic tremor ; LP and VLP events ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: During the December 2005-January 2006 non-eruptive period, the tremor amplitude at Etna markedly increased and negatively correlated with the gravity signal from one of the two summit station, over 2-3 hour periods. No correlation was found with the signal from the other gravity station. We locate the tremor source by inverting the spatial distribution of seismic amplitudes. Relying on the relative position of the two stations, we define a volume within which the gravity source must lie. During the period of marked anti-correlation, the tremor sources intersect this volume in a region located 1 km S-SE of the summit craters and about 2 km beneath the surface. This finding suggests that the anti-correlation marks the activation of a joint source process, possibly related to the arrival of fresh magma and the consequent gas separation. Our study has implications for the early recognition of gas segregation processes at active volcanoes.
    Description: Published
    Description: L06305
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic tremor ; Etna volcano ; gravity changes ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: This paper presents the results of hydrogeochemical and seismological studies carried out at Mt. Vesuvius during the period June 1998 – December 2005. Hydrogeochemical data show the occurrence of slowly varying long-term variations in the total dissolved salts and bicarbonate contents of the groundwaters, accompanied by a general decline in water temperatures. The temporal distributions of air temperature and rainfall in the Vesuvius area suggest that these variations do not depend on changes in the hydrological regime. The changes in the geochemical parameters are accompanied by slight variations in both the seismicity rate and energy release. A further relationship between seismic activity and fluid discharge rate is highlighted by a particular episode that occurred in August 2005, when a soil thermal anomaly was observed a few weeks before the occurrence of a very shallow earthquake. Moment-tensor analysis of this earthquake suggests that the most plausible source mechanism is a shear faulting combined with the opening of tensile crack. This feature is often observed in volcanic areas and it is usually related to fluid-/gas-driven rock fracturing. The observed seismological, hydrological, and geochemical temporal changes are interpreted not as changes of the volcanic system, but in terms of an external forcing as identified in the variation of the regional and local stress field acting on the volcano. This study has inferences onto the evaluation of the state of activity of volcanic systems and the eventual detection of unrest phenomena.
    Description: Published
    Description: B05206
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; seismicity ; fluid circulation ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: During local and regional earthquakes, an evident amplification of horizontal ground motion is observed at two seismological stations near the Tremestieri fault, on the southeastern flank of Mt. Etna volcano. Rotated-component spectral ratios show a narrow spectral peak around 4-Hz along a N40°E direction. A conventional polarization analysis using the eigenvectors of the covariance matrix confirms the very stable directional effect enhancing the approximately NE-SW elongation of the horizontal ground motion in the fault zone. The effect is evident during the entire seismogram and independent of source backazimuth as well as distance and depth of earthquakes. The same polarization is observed in ambient noise as well. This consistency allowed us to use microtremors for checking ground motion polarization along and across the Tremestieri fault zone with a high spatial resolution. The result is a stable polarization of horizontal motion in the entire area, interesting a broad frequency band. To check whether this ground motion property is recurrent and understand a possible relationship with fault strike, faulting style, or orientation of fractures, ambient noise was recorded on other mapped faults of the Mt. Etna area, the Moscarello, Acicatena and Pernicana faults. The latter, in particular, is characterized by different strike and faulting style. A systematic tendency of ambient noise to be polarized is found in all of the faults. A picture emerges where normal faults of the eastern flank show a E-W to NE-SW polarization that changes on the Pernicana fault, which develops approximately E-W and is characterized by a prevailing NW-SE to NS polarization. Directions of polarization were never parallel to the fault strike. Moreover, polarization persists too far away from the fault trace, excluding an effect limited to a narrow low velocity zone hosted between harder wall rocks. Both these observations rule out an interpretation in terms of fault-trapped waves. The cause of observed polarizations will be the subject of future studies. However, the consistency with recent results of velocity anisotropy in a part of the investigated area suggests a possible role of attenuation anisotropy on horizontal amplitude variations versus azimuth.
    Description: Published
    Description: B10306
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: polarization ; fault zones ; Etna volcano ; microtremors ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Two swarms of microearthquakes (ML ≤ 2.2), occurred on July 2-7 and August 22, 2000 at Campi Flegrei, accompained by a ground uplift episode (4 cm) which interrupted on early March 2000 the descending trend started on 1985. Spectral analysis indicates a direct involvement of magmatic/hydrothermal fluids in the source process of the July swarm, while the August events are typical of shear failure, similar to most of the earthquakes that occurred during the last (1982-1984) bradyseismic crisis. Precise 3-D relative location applied to similar earthquakes allows for the recognition of two parallel alignments trending NE-SW at depths of 1.7 and 3.2 Km. This trend is consistent with the direction of the main focal plane obtained from fault plane solutions and evidences tensile failure in close proximity to the zone of maximum uplift as depicted by geodetic measurements. A fault weakening mechanism triggered by increasing pore pressure is invoked as the cause of these earthquakes.
    Description: Published
    Description: 2525-2528
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; seismic swarm ; earthquakes locations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-03
    Description: A lava emission started at Mt. Etna, Italy, on 7 September, 2004. Neither earthquake seismicity heralded or accompanied the opening of the fracture field from which the lava poured out, nor volcanic tremor changed in amplitude and frequency content at the onset of the effusive activity. To highlight long-term changes, we propose a method for the location of the tremor source based on a 3D grid search, using the amplitude decay of the seismic signal, from January to November 2004. We find the centroid of the tremor source within a zone close to and partially overlapped with the summit craters (pre-effusive phase), which extended up to 2 km south of them (effusive phase). The depths are of between 1698 and 2387 m a.s.l. We hypothesize the lava effusion stemmed from a degassed magma body, although we find evidence of temporary magma overpressure conditions, such as those documented on 25 September.
    Description: Published
    Description: L09304
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1254005 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: On 5 April 2003 at 07:13 GMT (09:13 local time) a violent vulcanian explosion occurred at Stromboli volcano. At the time of the event an eruptive crisis was ongoing at the volcano with a lava flow outpouring along the Sciara del Fuoco flank. The seismic signals related to the event were recorded by 8 permanent broadband stations and gives information about the eruption kinematics. An ultra-longperiod signal (period 〉 20 s), that we interpret as the effect of the ground tilt on the broadband sensors, starts about 4 min before and terminates about 1 min after the explosion. On the basis of the radial pattern of tilt directions we conclude that this signal is the effect of the deformation of the volcanic edifice, due to the rapid rising of a batch of magma, its ejection and the magma column readjustment. About 1 min before the explosion we observe an high frequency signal (period 〈 0.1 s) that we believe to be related to the vesiculation of the rising batch of gas-rich magma. At 07:13:35 GMT a powerful very-long-period signal (period 2 20 s), marking the onset of the explosive fragmentation, is recorded. This is confirmed by a blast wave following few seconds later. The remaining seismic signal (more than 3 min), shows an higher frequency content being related only to the fall of ballistic ejecta and to landslides along Sciara del Fuoco.We propose the implementation of an early warning system for the short-term forecast of such explosions, based on the real-time automatic detection of the tilt signals preceding such events.
    Description: Published
    Description: L08308
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 773734 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: In the text
    Description: Published
    Description: 1545-1548
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: anisotropy ; eruptive fracture ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    AGU
    In:  Citation: Tedesco, D., et al. (2007), Cooperation on Congo Volcanic and Environmental Risks, Eos Trans. AGU, 88(16), 177.
    Publication Date: 2024-05-09
    Description: Article
    Description: On 17 January 2002, the Nyiragongo volcano (1.52°S, 29.25°E, 3469 meters above sea level), located about 18 kilometers north of Lake Kivu in the Democratic Republic of Congo, erupted, releasing a volume of 14-34 million cubic meters of lava. Lava flows originated from north-south oriented fractures that rapidly developed along the southern flank of the volcano. Two lava flows divided the nearby city of Goma (~500,000 people) into two parts, forcing a rapid exodus of the population into Rwanda. One of these lava flows ran into Lake Kivu, encroaching 60 meters below lake level with a submerged lava volume of 1 million cubic meters. About 15% of the town was directly affected, leaving approximately 120,000 people homeless. At least 170 people died as a direct consequence of the eruption
    Description: American Geophysical Union
    Description: Published
    Description: 177-188
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: N/A or not JCR
    Description: reserved
    Keywords: Volcanology ; Telemetered Seismic Network ; Effusive volcanism ; Volcanology ; Experimental volcanism ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: In the Apennines subduction (Italy), earthquakes mainly occur within overriding plate, along the chain axis. The events concentrate in the upper 15 km of the crust above the mantle wedge and focal solutions indicate normal faulting. In the foreland, the seismogenic volume affects the upper 35 km of the crust. Focal solutions indicate prevailing reverse faulting in the northern foreland and strike-slip faulting in the southern one. The deepening of the seismogenic volume from the chain axis to the foreland follows the deepening of the Moho and isotherms. The seismicity above the mantle wedge is associated with uplift of the chain axial zone, volcanism, high CO2 flux, and extension. The upward pushing of the asthenospheric mantle and the mantle-derived, CO2-rich fluids trapped within the crust below the chain axis causes this seismicity. All these features indicate that the axial zone of Apennines is affected by early rifting processes. In northern Italy, the widespread and deeper seismicity in the foreland reflects active accretion processes. In the southern foreland, the observed dextral strike-slip faulting and the lack of reverse focal solutions suggest that accretion processes are not active at present. In our interpretation of the Apennines subduction, the shallower seismicity of the overriding plate is due to the dynamics (uprising and eastward migration) of the asthenospheric wedge.
    Description: Published
    Description: Q02013
    Description: JCR Journal
    Description: open
    Keywords: Apenninnes ; crustal seismicity ; rifting ; subduction ; fluids ; geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2459547 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: Seismic activity linked to the 2002–03 Mt. Etna eruption was investigated by analyzing the Md 〉 2.3 earthquakes. The results of 3D relocation were used to compute fault plane solutions and a selected dataset was inverted to determine stress and strain tensors. The analysis revealed a complex kinematic response of the eastern flank dominated by fast stress propagation and reorientation. We hypothesize that a vertical dike intruded the southern flank, generating an extensional regime that triggered a radial intrusion in the northeast sector of the volcano. The combined effects gave rise to a rotation of the stress tensor that controlled the activation of the Pernicana fault system. The volcanic and tectonic interactions produced a second reorientation of the stress tensor, causing a structural response in the southeast lower flank. The overall result of the deformation processes observed during the eruption was an E-W extension on the eastern flank of the volcano.
    Description: Published
    Description: 4
    Description: partially_open
    Keywords: Seismology: Seismicity and seismotectonics ; Seismology: Volcano seismology ; Volcanology: Eruption mechanisms ; Volcanology: Magma migration ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 788747 bytes
    Format: 490 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: To recognize possible signals of intrusive processes leading to the last 2002–2003 flank eruption at Mt. Etna, we analyzed the spatial pattern of microseismicity between August 2001 and October 2002 and calculated 23 fault plane solutions (FPSs) for shocks with magnitude greater than 2.5. By applying the double-difference approach of Waldhauser and Ellsworth [2000] on 3D locations, we found that most of the scattered epicentral locations further collapse in roughly linear features. High-precision locations evidenced a distribution of earthquakes along two main alignments, oriented NE-SW to ENE-WSW and NW-SE, matching well both with the known tectonic and volcanic lineaments of Etna and FPSs results. Moreover, microseismicity and swarms located along the NNW-SSE volcano-genetic trend suggest, together with geodetic data and volcanological evidence that progressive magma refilling has occurred since February 2002.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Earthquake dynamics and mechanics ; Seismology: Earthquake parameters ; Seismology: Volcano seismology ; Volcanology: Eruption monitoring ; Volcanology: Magma migration. ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 1909477 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: Soil radon emissions have been proved as a useful tool for predicting earthquakes and volcanic eruptions and furthermore aided in determining the location of active faults. Continuous radon monitoring was carried out near Southeast Crater of Mt. Etna in September–November 1998, during a period of frequent eruptive episodes at that crater. Radon anomalies were detected when eruptive episodes and the accompanying volcanic tremor became increasingly intense: no anomalies in radon activity were observed during the first five, and weaker, eruptive episodes, whereas significant spikes in radon activity preceded the latter five episodes by ≥46 hours. This probably reflects increased gas leakage through fractures intersecting the shallow plumbing system, as gas pressure in the Southeast Crater conduit became higher with time. Radon monitoring thus might serve to better understand eruptive mechanisms and possible precursors, making further studies in this field a promising perspective.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Volcano seismology ; Structural Geology: Role of fluids ; Volcanology: Volcano monitoring ; Volcanology: Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 152534 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: The understanding of shallow intrusive processes during 2002–2004, as well as the causes of the volcano-tectonic seismicity, has been improved at Mt. Etna by comparing the inversion results from GPS data with accurate 3D hypocentral locations. Our findings indicate that short periods of deflation (about six months) were followed by recharging phases after the end of both the 2001 and 2002–2003 flank eruptions. During the last recharging phase (June 2003–August 2004), modeling results and seismic observations suggest a composite mechanism of re-injection of magma into the rift-zones (S and NE), similar to that leading to the 2002–2003 flank eruption, which could have triggered the summit eruption started on September 7, 2004.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Volcanology: Magma migration and fragmentation ; Seismology: Earthquake interaction, forecasting, and prediction ; Seismology: Seismicity and tectonics ; Volcanology: Volcano monitoring ; Volcanology: Eruption mechanisms and flow emplacement ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 868891 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: A selected dataset of 151 events, leading the July 17–August 9, 2001 lateral eruption at Mt. Etna volcano, has been analyzed for three-dimensional hypocenter locations, focal mechanisms and stress tensor inversions. The seismic pattern provided indications for two main spatial clusters of foci located along and eastwards of the 2001 Mt. Etna eruptive fractures system. The 151 fault plane solutions (mostly strike slip) were inverted for stress tensor parameters, and space variations of seismogenic stress orientations have been identified. The stress inversion results and the axi-symmetric orientation of P-axes, in the region surrounding the modeled dike, well support the evidence of a unique stress source in agreement with the ground deformation results.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Volcano seismology ; Volcanology: Eruption mechanisms ; Volcanology: Magma migration ; Volcanology: Eruption monitoring. ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 2920311 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Changes in Coulomb failure stress (ΔCFS) induced by dike propagation during two flank eruptions on Mt. Etna (1981 and 2001) are calculated for the most seismically active faults on the east slope of the volcano (the right-lateral Timpe fault system, oriented NNW-SSE, and the left-lateral Pernicana fault, oriented E-W). Calculations performed using Coulomb 2.5 software indicate that intrusion of a NNW dike on the NW side of the volcano (1981 eruption) rises ΔCFS on both the Timpe and Pernicana faults. In contrast, intrusion of a N-S dike at high elevation on the south flank (2001 eruption) rises ΔCFS only on Timpe fault System. These results are compatible with the observed pattern of seismicity, but emphasize an extremely heterogeneous state of stress on the east flank of the volcano.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Earthquake interaction, forecasting, and prediction ; Seismology: Volcano seismology ; Tectonophysics: Stresses: crust and lithosphere ; Volcanology: Magma migration and fragmentation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 288903 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...