ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (3,365)
  • Organic Chemistry  (1,958)
  • Aeronautics (General)
  • Cell & Developmental Biology
  • 2005-2009  (141)
  • 1935-1939  (5,912)
Collection
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This viewgraph presentation describes a general overview of Dryden Flight Research Center. Strategic partnerships, Dryden's mission activity, exploration systems and aeronautics research programs are also described.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.
    Keywords: Aeronautics (General)
    Type: E-17352 , 15th AIAA Conference; May 11, 2009 - May 13, 2009; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This study used a human-in-the-loop simulation to examine the feasibility of mixed equipage operations in an automated separation assurance environment under higher traffic densities. The study involved two aircraft equipage alternatives - with and without data link- and four traffic conditions. In all traffic conditions the unequipped traffic count was increased linearly throughout the scenario from approximately 5 to 20 aircraft. Condition One consisted solely of this unequipped traffic, while the remaining three conditions also included a constant number of equipped aircraft operating within the same airspace: 15 equipped aircraft in condition two, 30 in condition three, and 45 in condition four. If traffic load became excessive during any run, participants were instructed to refuse sector entry to inbound unequipped aircraft until sector load became manageable. Results showed a progressively higher number of unequipped aircraft turned away under the second, third, and fourth scenario conditions. Controller workload also increased progressively. Participants rated the mixed operations concept as acceptable, with some qualifications about procedures and information displays. These results showed that mixed operations might be feasible in the same airspace, if unequipped aircraft count is held to a workable level. This level will decrease with increasing complexity. The results imply that integrated airspace configuration is feasible to a limit. The results also indicate that the conflict detection and resolution automation, equipage, and traffic density are important factors that will need to be considered for airspace configuration.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN561 , Eighth USA/Europe Air Traffic Management Research and Development Seminar (ATM2009); Jun 29, 2009 - Jul 02, 2009; Napa, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode-transition constraints imposed by the turbine and the ramjet/scramjet flow paths (imposed variable geometry requirements), (3) turbine engine transients (and associated time scales) during transition, (4) high-altitude turbine engine re-light, and (5) the operating constraints of a Mach 3-7 combustor (specific to the TBCC). The model will be tested in several test phases to develop a unique TBCC database to assess and validate design and analysis tools and address operability, integration, and interaction issues for this class of advanced propulsion systems. The test article and all support equipment is complete and available at the facility. The test article installation and facility build-up in preparation for the inlet performance and operability characterization is near completion and testing is planned to commence in FY11.
    Keywords: Aeronautics (General)
    Type: E-17652 , 2009 Annual Meeting; Sep 29, 2009 - Oct 01, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-215807 , E-17070
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Rotating disks undergo rigorous mechanical loading conditions that make them subject to a variety of failure mechanisms leading to structural deformities and cracking. During operation, periodic loading fluctuations and other related factors cause fractures and hidden internal cracks that can only be detected via noninvasive types of health monitoring and/or nondestructive evaluation. These evaluations go further to inspect material discontinuities and other irregularities that have grown to become critical defects that can lead to failure. Hence, the objectives of this work is to conduct a collective analytical and experimental study to present a well-rounded structural assessment of a rotating disk by means of a health monitoring approach and to appraise the capabilities of an in-house rotor spin system. The analyses utilized the finite element method to analyze the disk with and without an induced crack at different loading levels, such as rotational speeds starting at 3000 up to 10 000 rpm. A parallel experiment was conducted to spin the disk at the desired speeds in an attempt to correlate the experimental findings with the analytical results. The testing involved conducting spin experiments which, covered the rotor in both damaged and undamaged (i.e., notched and unnotched) states. Damaged disks had artificially induced through-thickness flaws represented in the web region ranging from 2.54 to 5.08 cm (1 to 2 in.) in length. This study aims to identify defects that are greater than 1.27 cm (0.5 in.), applying available means of structural health monitoring and nondestructive evaluation, and documenting failure mechanisms experienced by the rotor system under typical turbine engine operating conditions.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-215675 , E-17038
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Very large eddy simulation (VLES) of the nonreacting turbulent flow in a single-element lean direct injection (LDI) combustor has been successfully performed via the approach known as the partially resolved numerical simulation (PRNS/VLES) using a nonlinear subscale model. The grid is the same as the one used in a previous RANS simulation, which was considered as too coarse for a traditional LES simulation. In this study, we first carry out a steady RANS simulation to provide the initial flow field for the subsequent PRNS/VLES simulation. We have also carried out an unsteady RANS (URANS) simulation for the purpose of comparing its results with that of the PRNS/VLES simulation. In addition, these calculated results are compared with the experimental data. The present effort has demonstrated that the PRNS/VLES approach, while using a RANS type of grid, is able to reveal the dynamically important, unsteady large-scale turbulent structures occurring in the flow field of a single-element LDI combustor. The interactions of these coherent structures play a critical role in the dispersion of the fuel, hence, the mixing between the fuel and the oxidizer in a combustor.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-215644 , E-16956
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: Results of an experimental study are presented on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF). The study is pertinent to film-cooling applications and its relevance to NASA programs is first briefly discussed. In the experiment, the jet issues into the boundary layer at an angle of 20deg to the free-stream. The effect of a triangular, ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are obtained for a case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. The VG produces a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1〈J〈11) show that the VG has a significant effect even at the highest J covered in the experiment. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact.
    Keywords: Aeronautics (General)
    Type: E-17584 , NASA''s Fundamental Aeronautics 2009 Technical Conference: Subsonic Fixed Wing Project; Sep 29, 2009 - Oct 01, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2007, through September 30, 2008.
    Keywords: Aeronautics (General)
    Type: NASA/NP-2009-05-581-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: In this paper the design and modeling of a sensor system that gives relative position measurements is described. The position is provided in the form of bearing and range to a retro target placed on a far field target.
    Keywords: Aeronautics (General)
    Type: AIAA Guidance, Navigation and Control Conference and Exhibit; Aug 10, 2009 - Aug 13, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: Simulation environments have been an integral part of Cassini's heritage. From the time of flight software development and testing to the beginning of the spacecraft's extended mission operations, both softsim and hardware-in-the-loop testbeds have played vital roles in verifying and validating key mission events. Satellite flybys and mission-critical events have established the need to model Titan's atmospheric torque, Enceladus' plume density, and other key parametric spacecraft environments. This paper will focus on enhancements to Cassini's Flight Software Development System (FSDS) and Integrated Test Laboratory (ITL) to model key event attributes which establish valid test environments and ensure safe spacecraft operability. Comparisons between simulated to in-flight data are presented which substantiate model validity.
    Keywords: Aeronautics (General)
    Type: AIAA Guidance, Navigation and Control Conference and Exhibit; Aug 10, 2009 - Aug 13, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-12
    Description: This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.
    Keywords: Aeronautics (General)
    Type: LF99-6817
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-215705 , L-19589 , LF99-8457
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-215680 , GT2009-59568 , ARL-TR-4719 , E-16910-1 , ASME Turbo 2009; Jun 08, 2009 - Jun 12, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: The American Institute of Aeronautics Astronautics (AIAA) Modeling and Simulation Technical Committee is in final preparation of a new standard for the exchange of flight dynamics models. The standard will become an ANSI standard and is under consideration for submission to ISO for acceptance by the international community. The standard has some a spects that should provide benefits to the simulation training community. Use of the new standard by the training simulation community will reduce development, maintenance and technical refresh investment on each device. Furthermore, it will significantly lower the cost of performing model updates to improve fidelity or expand the envelope of the training device. Higher flight fidelity should result in better transfer of training, a direct benefit to the pilots under instruction. Costs of adopting the standard are minimal and should be paid back within the cost of the first use for that training device. The standard achie ves these advantages by making it easier to update the aerodynamic model. It provides a standard format for the model in a custom eXtensible Markup Language (XML) grammar, the Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML). It employs an existing XML grammar, MathML, to describe the aerodynamic model in an input data file, eliminating the requirement for actual software compilation. The major components of the aero model become simply an input data file, and updates are simply new XML input files. It includes naming and axis system conventions to further simplify the exchange of information.
    Keywords: Aeronautics (General)
    Type: 9019-0929-0301 , LF99-9097 , Interservice/Industry Training, Simulation and Education Conference (I/ITSEC 2009); Nov 30, 2009 - Dec 03, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison
    Keywords: Aeronautics (General)
    Type: DFRC-1084 , Keck Institute for Space Studies (KISS) Exoplanet 2009 Workshop; Nov 09, 2009 - Nov 13, 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: This poster reviews the collarborative research approaches that NASA has been designing and implementing for the Integrated Vehicle Health Management (IVHM) Project. The inputs for the technical plan are reviewed, the Research Test and Integration Plan (RTIP) WIKI, is used to create and propose a multi-themed and multi-partner research testing opportunities. The outputs are testing opportunities.
    Keywords: Aeronautics (General)
    Type: DFRC-1091 , NASA ARMD/Aviation Safety Technical Conference; Nov 17, 2009 - Nov 19, 2009; McLean, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: The Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft and Civil Tiltrotor (CTR) are two examples of powered-lift aircraft concepts that are of interest to NASA. These concepts will be able to utilize the shorter unused or underutilized runways and corresponding airspace at the crowded hub airports and many unused airfields and airspace that currently exist in other expanding urban areas providing additional capacity to the airspace system and reductions in congestion and delays seen in the current system. By treating the use of CESTOL and CTR as critical components that supplement other green aircraft to be used in the overall airspace system, the efficiency and improvements gained by the entire system will offset the potential increased fuel usage and emissions that may be a result of providing short field capability to the powered-lift aircraft. My presentation will address how NASA and the aerospace industry may identify, analysis, and finally implement these powered-lift aircraft into the airspace system and improve the capacity and reduce delay, while obtaining an overall reduction in noise, fuel usage, and emissions.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN554 , Green Aviation Workshop; Apr 25, 2009 - Apr 26, 2009; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: This paper has two objectives. The first objective is to formulate a 3-dimensional Finite Element Model for the dynamic analysis of helicopter rotor blades. The second objective is to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is parallel and scalable, for the solution of the 3-D FEM analysis. The numerical and parallel scalability of the solver is studied using two prototype problems - one for ideal hover (symmetric) and one for a transient forward flight (non-symmetric) - both carried out on up to 48 processors. In both hover and forward flight conditions, a perfect linear speed-up is observed, for a given problem size, up to the point of substructure optimality. Substructure optimality and the linear parallel speed-up range are both shown to depend on the problem size as well as on the selection of the coarse problem. With a larger problem size, linear speed-up is restored up to the new substructure optimality. The solver also scales with problem size - even though this conclusion is premature given the small prototype grids considered in this study.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN483 , American Helicopter Society 65th Annual Forum; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Atmospheric turbulence cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. Cardullo and Ellor initially addressed this problem by directly porting the turbulence model output to the motion system. Reid and Robinson addressed the problem by employing a parallel aircraft model, which is only stimulated by the turbulence inputs and adding a filter specially designed to pass the higher turbulence frequencies. There have been advances in motion cueing algorithm development at the Man-Machine Systems Laboratory, at SUNY Binghamton. In particular, the system used to generate turbulence cues has been studied. The Reid approach, implemented by Telban and Cardullo, was employed to augment the optimal motion cueing algorithm installed at the NASA LaRC Simulation Laboratory, driving the Visual Motion Simulator. In this implementation, the output of the primary flight channel was added to the output of the turbulence channel and then sent through a non-linear cueing filter. The cueing filter is an adaptive filter; therefore, it is not desirable for the output of the turbulence channel to be augmented by this type of filter. The likelihood of the signal becoming divergent was also an issue in this design. After testing on-site it became apparent that the architecture of the turbulence algorithm was generating unacceptable cues. As mentioned above, this cueing algorithm comprised a filter that was designed to operate at low bandwidth. Therefore, the turbulence was also filtered, augmenting the cues generated by the model. If any filtering is to be done to the turbulence, it will utilize a filter with a much higher bandwidth, above the frequencies produced by the aircraft response to turbulence. The authors have developed an implementation wherein only the signal from the primary flight channel passes through the nonlinear cueing filter. This paper discusses three new algorithms. Testing shows that the new methods provide the pilot with a more realistic sensation of turbulence; the cues are not attenuated by algorithm. Results of offline testing show the credibility of the models. Offline test verification was based primarily on the evaluation of the power spectral density of the outputs and the time response.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2009-6247 , LF99-9191 , AIAA Modeling and Simulation Technologies Conference; Aug 10, 2009 - Aug 13, 2009; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.
    Keywords: Aeronautics (General)
    Type: DFRC-1055 , UCSD Seminar; Aug 26, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: An investigation of effectiveness of the reaction control system (RCS) of Mars Science Laboratory (MSL) entry capsule during atmospheric flight has been conducted. The reason for the investigation is that MSL is designed to fly a lifting actively guided entry with hypersonic bank maneuvers, therefore an understanding of RCS effectiveness is required. In the course of the study several jet configurations were evaluated using Langley Aerothermal Upwind Relaxation Algorithm (LAURA) code, Data Parallel Line Relaxation (DPLR) code, Fully Unstructured 3D (FUN3D) code and an Overset Grid Flowsolver (OVERFLOW) code. Computations indicated that some of the proposed configurations might induce aero-RCS interactions, sufficient to impede and even overwhelm the intended control torques. It was found that the maximum potential for aero-RCS interference exists around peak dynamic pressure along the trajectory. Present analysis largely relies on computational methods. Ground testing, flight data and computational analyses are required to fully understand the problem. At the time of this writing some experimental work spanning range of Mach number 2.5 through 4.5 has been completed and used to establish preliminary levels of confidence for computations. As a result of the present work a final RCS configuration has been designed such as to minimize aero-interference effects and it is a design baseline for MSL entry capsule.
    Keywords: Aeronautics (General)
    Type: LF99-7145 , 47th AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: This report gives an overview of physical modeling enhancements to the Wind-US flow solver which were made to improve the capabilities for simulation of hypersonic flows and the reliability of computations to complement hypersonic testing. The improvements include advanced turbulence models, a bypass transition model, a conjugate (or closely coupled to vehicle structure) conduction-convection heat transfer capability, and an upgraded high-speed combustion solver. A Mach 5 shock-wave boundary layer interaction problem is used to investigate the benefits of k- s and k-w based explicit algebraic stress turbulence models relative to linear two-equation models. The bypass transition model is validated using data from experiments for incompressible boundary layers and a Mach 7.9 cone flow. The conjugate heat transfer method is validated for a test case involving reacting H2-O2 rocket exhaust over cooled calorimeter panels. A dual-mode scramjet configuration is investigated using both a simplified 1-step kinetics mechanism and an 8-step mechanism. Additionally, variations in the turbulent Prandtl and Schmidt numbers are considered for this scramjet configuration.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-215615 , AIAA-2009-193 , E-16931 , 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, Fl; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the status of several NASA Dryden projects. These include: the Lift And Nozzle Change Effects on Tail Shock (LANCETS), Integrated Resilient Aircraft Control (IRAC) F-18 #853 Testbed X-48B, Blended Wing Body flights, Stratospheric Observatory for Infrared Astronomy (SOFIA), Ikhana Project, and the Orion Crew Exploration Vehicle (CEV) Launch Abort Systems Tests
    Keywords: Aeronautics (General)
    Type: DFRC-957 , Aerospace Control and Guidance Systems Committee Meeting 103; Feb 25, 2009 - Feb 27, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN848 , 2009 Fundamental Aeronautics Program Annual Meeting; Sep 09, 2009 - Oct 01, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: A computational fluid dynamics study is conducted to examine nozzle exhaust jet plume effects on the Sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock research airplane, is considered. The computational fluid dynamics code is validated using available wind-tunnel sonic boom experimental data. The effects of grid size, spatial order of accuracy. grid type, and flow viscosity on the accuracy of the predicted sonic boom pressure signature are quantified. Grid lines parallel to the Mach wave direction are found to give the best results. Second-order accurate upwind methods are required as a minimum for accurate sonic boom simulations. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature is observed for the highly underexpanded nozzle flow. Axisymmetric computational fluid dynamics simulations show the flow physics inside the F-15 nozzle to be nonisentropic and complex.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-214650 , AIAA Paper 2009-1054 , H-2923 , DFRC-938 , 47th AIAA Aerospace Sciences meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-215784 , L-19712 , LF-9138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-12
    Description: Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the aerostructures test wing (ATW), which was designed and tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-214646 , H-2942 , DFRC-963
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: This paper presents the results of an activity by the Large Eddy Simulation (LES) Working Group of the AIAA Fluid Dynamics Technical Committee to (1) address the current capabilities of LES, (2) outline recommended practices and key considerations for using LES, and (3) identify future research needs to advance the capabilities and reliability of LES for analysis of turbulent flows. To address the current capabilities and future needs, a survey comprised of eleven questions was posed to LES Working Group members to assemble a broad range of perspectives on important topics related to LES. The responses to these survey questions are summarized with the intent not to be a comprehensive dictate on LES, but rather the perspective of one group on some important issues. A list of recommended practices is also provided, which does not treat all aspects of a LES, but provides guidance on some of the key areas that should be considered.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-215616 , AIAA-2009-948 , E-16932 , 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: An experiment was performed to assess CFD modeling of a hypersonic-vehicle breach, boundary-layer flow ingestion and internal surface impingement. Tests were conducted in the NASA Langley Research Center 31-Inch Mach 10 Tunnel. Four simulated breaches were tested and impingement heat flux data was obtained for each case using both phosphor thermography and thin film gages on targets placed inside the model. A separate target was used to measure the surface pressure distribution. The measured jet impingement width and peak location are in good agreement with CFD analysis.
    Keywords: Aeronautics (General)
    Type: LF99-8070 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: Due to unprecedented extent and flexibility of the coverage that is now attainable both in space and time, stratospheric unmanned aircraft, such as the Global Hawk (GH), offers new opportunities for the study of climate changes. The capability of performing long flights at altitudes close to the boundary conditions of radiative processes, and of following the diurnal variation of chemical species and clouds, make the GH competitive with LEO and geosynchronous satellites, and even capable of new observations that are not possible from satellites. This paper discusses how the GH can be used to make relevant advancements in most of the issues that are related to climate change studies, such as: Earth Radiation Budget, Water Cycle, Ecosystems and Upper Troposphere-Lower Stratosphere, as well as to the monitoring and control of Greenhouse Gases and Air Quality . Collaboration between NASA and Italian scientific institutions, within the framework of the US.-Italy Cooperation on Climate Change, is providing the opportunity to rapidly deploy new instruments on the GH and to possibly operate the aircraft from an Italian site in the Mediterranean area. From this area, which is considered highly vulnerable to climate change, meridional transects would allow the crossing of Polar and Sub Tropical Jets, as well as a complete crossing of the Inter Tropical Convergence Zone, while latitudinal ones would follow the influx from Asia and North America. Regions otherwise difficult to access, such as Central Africa and the Tibetan Plateau, could be reached and better investigated. An overview of these new opportunities will be given and discussed.
    Keywords: Aeronautics (General)
    Type: DFRC-921 , 33rd International Symposium on Remote Sensing of Environment; May 04, 2009 - May 08, 2009; Stresa; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2009-216088 , AIAA Paper 2009-4012 , E-17132 , 39th Fluid Dynamics Conference and Exhibit; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: The Mars Entry Atmospheric Data System (MEADS) is being developed as part of the Mars Science Laboratory (MSL), Entry, Descent, and Landing Instrumentation (MEDLI) project. The MEADS project involves installing an array of seven pressure transducers linked to ports on the MSL forebody to record the surface pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the total pressure, dynamic pressure, Mach number, angle of attack, and angle of sideslip. Secondary objectives are to estimate atmospheric winds by coupling the pressure measurements with the on-board Inertial Measurement Unit (IMU) data. This paper provides details of the algorithm development, MEADS system performance based on calibration, and uncertainty analysis for the aerodynamic and atmospheric quantities of interest. The work presented here is part of the MEDLI performance pre-flight validation and will culminate with processing flight data after Mars entry in 2012.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2009-3916 , LF99-8954 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated using comparisons with a complex-variable technique, and a number of single- and multi-point optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.
    Keywords: Aeronautics (General)
    Type: LF99-8473 , AHS International 65th Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the Global Hawk, a unmanned aerial vehicle (UAV) that NASA plans to use for Earth Sciences research. The Global Hawk is the world's first fully autonomous high-altitude, long-endurance aircraft, and is capable of conducting long duration missions. Plans are being made for the use of the aircraft on missions in the Arctic, Pacific and Western Atlantic Oceans. There are slides showing the Global Hawk Operations Center (GHOC), Flight Control and Air Traffic Control Communications Architecture, and Payload Integration and Accommodations on the Global Hawk. The first science campaign, planned for a study of the Pacific Ocean, is reviewed.
    Keywords: Aeronautics (General)
    Type: DFRC-997 , 33rd International Symposium on Remote Sensing of Environment; May 04, 2009 - May 08, 2009; Stresa; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: This viewgraph presentation reviews the Wright Brothers's flight research during the 10 years between 1899 and 1908. The Wright Brothers began their research in flight with gliders. The presentation shows pictures, replicas and characteristics of the gliders that the Wright Brothers used. This presentation is not just a history lesson. In the end it investigates "What Does Flight Research Accomplish?" Flight research can serve many uses, such as Separates the Real from the Imagined, Uncovers the Unexpected and the Overlooked, Forces the Realistic Integration of the Pilot, Forces the Development of Reliable Prediction and Test Processes, Requires Every Problem to Be Addressed, Promotes Technology Transfer, and Builds a Core Technical Team,
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-06
    Description: Objectives: a) Map the vortex effects; b) Formation Auto-Pilot Requirements. Two NASA F/A-18 aircraft in formation: a) NASA 845 Systems Research Aircraft; b) NASA 847 Support Aircraft. Flight Conditions: M = 0.56, 25000 feet (Subsonic condition); b) M = 0.86, 36000 feet (Transonic condition). Nose-To-Tail (N2T) Distances: 20, 55, 110 and 190 feet. Lessons learned: a) Controllable flight in vortex is possible with pilot feedback (displays); b) Position hold at best C(sub D), is attainable; c) Best drag location is close to max rolling moment; e) Drag reductions demonstrated up to 22% (WFE up to 20%); f) Induced drag results compare favorably with simple prediction model; g) "Sweet Spot" (lateral & vertical area 〉 25%) is larger than predicted; h) Larger wing overlaps result in sign reversals in roll, yaw; i) As predicted, favorable effects degrade gradually with increased nose-to-tail distances after peaking at 3 span lengths aft; and j) Demonstrated - over 100 N mi (〉15%) range improvement and 650 lbs (14%) fuel savings on actual simulated F/A-18 cruise mission.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-27
    Description: In conjunction with NASA and the Department of Defense, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been investigating analytical techniques to address many of the fundamental issues associated with solar exploration spacecraft and high-speed atmospheric vehicle systems. These issues include: thermo-structural response including the effects of thermal management via the use of surface optical properties for high-temperature composite structures; aerodynamics with the effects of non-equilibrium chemistry and gas radiation; and aero-thermodynamics with the effects of material ablation for a wide range of thermal protection system (TPS) materials. The need exists to integrate these discrete tools into a common framework that enables the investigation of interdisciplinary interactions (including analysis tool, applied load, and environment uncertainties) to provide high fidelity solutions. In addition to developing robust tools for the coupling of aerodynamically induced thermal and mechanical loads, JHU/APL has been studying the optimal design of high-speed vehicles as a function of their trajectory. Under traditional design methodology the optimization of system level mission parameters such as range and time of flight is performed independently of the optimization for thermal and mechanical constraints such as stress and temperature. A truly optimal trajectory should optimize over the entire range of mission and thermo-mechanical constraints. Under this research, a framework for the robust analysis of high-speed spacecraft and atmospheric vehicle systems has been developed. It has been built around a generic, loosely coupled framework such that a variety of readily available analysis tools can be used. The methodology immediately addresses many of the current analysis inadequacies and allows for future extension in order to handle more complex problems.
    Keywords: Aeronautics (General)
    Type: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference; 28 Apr.?1 May 2008; Dayton, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The NASA Glenn Research Center is pushing the envelope of research and technology in aeronautics, space exploration, science, and space operations. Our research in aeropropulsion, structures and materials, and instrumentation and controls is enabling next-generation transportation systems that are faster, more environmentally friendly, more fuel efficient, and safer. Our research and development of space flight systems is enabling advanced power, propulsion, communications, and human health systems that will advance the exploration of our solar system. This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2007. Comprising 104 short articles submitted by the staff scientists and engineers, the report is organized into six major sections: Aeropropulsion, Power and Space Propulsion, Communications, Space Processes and Experiments, Instrumentation and Controls, and Structures and Materials. It is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year; most of the work is reported in Glenn-published technical reports, journal articles, and presentations. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2008-215054 , E-16282
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-12
    Description: Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2008-214640 , H-2890
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: Two Reynolds-averaged Navier-Stokes computer codes - one unstructured and one structured - are applied to two workshop cases (for the 3rd Workshop on CFD Uncertainty Analysis, held at Instituto Superior Tecnico, Lisbon, in October 2008) for the purpose of uncertainty analysis. The Spalart-Allmaras turbulence model is employed. The first case uses the method of manufactured solution and is intended as a verification case. In other words, the CFD solution is expected to approach the exact solution as the grid is refined. The second case is a validation case (comparison against experiment), for which modeling errors inherent in the turbulence model and errors/uncertainty in the experiment may prevent close agreement. The results from the two computer codes are also compared. This exercise verifies that the codes are consistent both with the exact manufactured solution and with each other. In terms of order property, both codes behave as expected for the manufactured solution. For the backward facing step, CFD uncertainty on the finest grid is computed and is generally very low for both codes (whose results are nearly identical). Agreement with experiment is good at some locations for particular variables, but there are also many areas where the CFD and experimental uncertainties do not overlap.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2008-215537 , L-19547
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-12
    Description: An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-12
    Description: Several recent workshops and studies are used to make an assessment of the current status of CFD for subsonic fixed wing aerodynamics. Uncertainty quantification plays a significant role in the assessment, so terms associated with verification and validation are given and some methodology and research areas are highlighted. For high-subsonic-speed cruise through buffet onset, the series of drag prediction workshops and NASA/Boeing buffet onset studies are described. For low-speed flow control for high lift, a circulation control workshop and a synthetic jet flow control workshop are described. Along with a few specific recommendations, gaps and needs identified through the workshops and studies are used to develop a list of broad recommendations to improve CFD capabilities and processes for this discipline in the future.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2008-215318 , L-19484
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-12
    Description: The Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure (ITP) Validation Simulation Study investigated the viability of an ITP designed to enable oceanic flight level changes that would not otherwise be possible. Twelve commercial airline pilots with current oceanic experience flew a series of simulated scenarios involving either standard or ITP flight level change maneuvers and provided subjective workload ratings, assessments of ITP validity and acceptability, and objective performance measures associated with the appropriate selection, request, and execution of ITP flight level change maneuvers. In the majority of scenarios, subject pilots correctly assessed the traffic situation, selected an appropriate response (i.e., either a standard flight level change request, an ITP request, or no request), and executed their selected flight level change procedure, if any, without error. Workload ratings for ITP maneuvers were acceptable and not substantially higher than for standard flight level change maneuvers, and, for the majority of scenarios and subject pilots, subjective acceptability ratings and comments for ITP were generally high and positive. Qualitatively, the ITP was found to be valid and acceptable. However, the error rates for ITP maneuvers were higher than for standard flight level changes, and these errors may have design implications for both the ITP and the study's prototype traffic display. These errors and their implications are discussed.
    Keywords: Aeronautics (General)
    Type: NASA/TP-2008-215313 , L-19442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: In support of the NASA Aviation Safety Program's Synthetic Vision Systems Project, a series of piloted simulations were conducted to explore and quantify the relationship between candidate Terrain Portrayal Concepts and Guidance Symbology Concepts, specific to General Aviation. The experiment scenario was based on a low altitude en route flight in Instrument Metrological Conditions in the central mountains of Alaska. A total of 18 general aviation pilots, with three levels of pilot experience, evaluated a test matrix of four terrain portrayal concepts and six guidance symbology concepts. Quantitative measures included various pilot/aircraft performance data, flight technical errors and flight control inputs. The qualitative measures included pilot comments and pilot responses to the structured questionnaires such as perceived workload, subjective situation awareness, pilot preferences, and the rare event recognition. There were statistically significant effects found from guidance symbology concepts and terrain portrayal concepts but no significant interactions between them. Lower flight technical errors and increased situation awareness were achieved using Synthetic Vision Systems displays, as compared to the baseline Pitch/Roll Flight Director and Blue Sky Brown Ground combination. Overall, those guidance symbology concepts that have both path based guidance cue and tunnel display performed better than the other guidance concepts.
    Keywords: Aeronautics (General)
    Type: NASA/TP-2008-215127 , L-19329
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-16
    Description: This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.
    Keywords: Aeronautics (General)
    Type: W-HALES 2008: NASA-NICT Joint Workshop on HALE UAV and Wireless System; Apr 15, 2008 - Apr 18, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-13
    Description: The Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed three major milestones during Fiscal Year (FY)08: "Requirements Definition" Milestone (1/31/08); "GEN 1 Integrated Multi-disciplinary Toolset" (Annual Performance Goal) (6/30/08); and "Define Architecture & Interfaces for Next Generation Open Source MDAO Framework" Milestone (9/30/08). Details of all three milestones are explained including documentation available, potential partner collaborations, and next steps in FY09.
    Keywords: Aeronautics (General)
    Type: E-16918 , Fundamental Aeronautics Program 2nd Annual Meeting; Oct 07, 2008 - Oct 09, 2008; Georgia; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: The USAF transferred ownership of two pre-production Global Hawk aircraft to NASA Dryden in September 2007. Both aircraft have low flight hours and they were transferred to NASA with most of the equipment required for flight. NASA Dryden and Northrop Grumman have developed a partnership for standing up the capability over 1 year, operating the system for 4 years, and sharing use of the assets. The agreement was signed in April 2008. NASA Dryden will focus on Earth Science missions and Northrop Grumman will focus on DoD and internal company payload and system developments.
    Keywords: Aeronautics (General)
    Type: 17th William T. Pecora Memorial Remote Sensing Symposium; Nov 16, 2008 - Nov 20, 2008; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Aviation has experienced one hundred years of evolution, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. While the first fifty years involved disruptive technologies that required frequent vehicle adaptation, the second fifty years produced a stable evolutionary optimization of decreasing costs with increasing safety. This optimization has resulted in traits favoring a centralized service model with high vehicle productivity and cost efficiency. However, it may also have resulted in a system that is not sufficiently robust to withstand significant system disturbances. Aviation is currently facing rapid change from issues such as environmental damage, terrorism threat, congestion and capacity limitations, and cost of energy. Currently, these issues are leading to a loss of service for weaker spoke markets. These catalysts and a lack of robustness could result in a loss of service for much larger portions of the aviation market. The impact of other competing transportation services may be equally important as casual factors of change. Highway system forecasts indicate a dramatic slow down as congestion reaches a point of non-linearly increasing delay. In the next twenty-five years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient and environmentally friendly system. To achieve these characteristics, the new system will likely be based on a distributed model that enables more direct services. Short range travel is already demonstrating itself to be inefficient with a centralized model, providing opportunities for emergent distributed services through air-taxi models. Technologies from the on-demand revolution in computers and communications are now available as major drivers for aviation on-demand adaptation. Other technologies such as electric propulsion are currently transforming the automobile industry, and will also significantly alter the functionality of future distributed aviation concepts. Many hurdles exist, including technology, regulation, and perception. Aviation has an inherent governmental role not present in other recent on-demand transformations, which may pose a risk of curtailing aviation democratization .
    Keywords: Aeronautics (General)
    Type: SAE 2008-01-2268 , Wichita Aviation Technology Conference; Aug 19, 2008 - Aug 21, 2008; Wichita, KS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: The FUN3D unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been modified to allow prediction of trimmed rotorcraft airloads. The trim of the rotorcraft and the aeroelastic deformation of the rotor blades are accounted for via loose coupling with the CAMRAD II rotorcraft computational structural dynamics code. The set of codes is used to analyze the HART-II Baseline, Minimum Noise and Minimum Vibration test conditions. The loose coupling approach is found to be stable and convergent for the cases considered. Comparison of the resulting airloads and structural deformations with experimentally measured data is presented. The effect of grid resolution and temporal accuracy is examined. Rotorcraft airloads prediction presents a very substantial challenge for Computational Fluid Dynamics (CFD). Not only must the unsteady nature of the flow be accurately modeled, but since most rotorcraft blades are not structurally stiff, an accurate simulation must account for the blade structural dynamics. In addition, trim of the rotorcraft to desired thrust and moment targets depends on both aerodynamic loads and structural deformation, and vice versa. Further, interaction of the fuselage with the rotor flow field can be important, so that relative motion between the blades and the fuselage must be accommodated. Thus a complete simulation requires coupled aerodynamics, structures and trim, with the ability to model geometrically complex configurations. NASA has recently initiated a Subsonic Rotary Wing (SRW) Project under the overall Fundamental Aeronautics Program. Within the context of SRW are efforts aimed at furthering the state of the art of high-fidelity rotorcraft flow simulations, using both structured and unstructured meshes. Structured-mesh solvers have an advantage in computation speed, but even though remarkably complex configurations may be accommodated using the overset grid approach, generation of complex structured-mesh systems can require months to set up. As a result, many rotorcraft simulations using structured-grid CFD neglect the fuselage. On the other hand, unstructured-mesh solvers are easily able to handle complex geometries, but suffer from slower execution speed. However, advances in both computer hardware and CFD algorithms have made previously state-of-the-art computations routine for unstructured-mesh solvers, so that rotorcraft simulations using unstructured grids are now viable. The aim of the present work is to develop a first principles rotorcraft simulation tool based on an unstructured CFD solver.
    Keywords: Aeronautics (General)
    Type: 26th AIAA Applied Aerodynamics Conference; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.
    Keywords: Aeronautics (General)
    Type: LAR-17589-1 , 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference; Jun 23, 2008 - Jun 26, 2008; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2008-215240 , E-16499
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.
    Keywords: Aeronautics (General)
    Type: NAVAIR Meeting; Feb 07, 2008; Edwards AFB, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: The wind computational fluid dynamics code was used to perform a series of analyses on a single-flow plug nozzle with chevrons. Air was injected from tubes tangent to the nozzle outer surface at three different points along the chevron at the nozzle exit: near the chevron notch, at the chevron mid-point, and near the chevron tip. Three injection pressures were used for each injection tube location--10, 30, and 50 psig-giving injection mass flow rates of 0.1, 0.2, and 0.3 percent of the nozzle mass flow. The results showed subtle changes in the jet plume s turbulence and vorticity structure in the region immediately downstream of the nozzle exit. Distinctive patterns in the plume structure emerged from each injection location, and these became more pronounced as the injection pressure was increased. However, no significant changes in centerline velocity decay or turbulent kinetic energy were observed in the jet plume as a result of flow injection. Furthermore, computational acoustics calculations performed with the JeNo code showed no real reduction in jet noise relative to the baseline chevron nozzle.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2008-215150 , AIAA Paper-2008-0037 , E-16329 , 46th AIAA Aerospace Sciences Meeting and Exhibit; Jan 07, 2008 - Jan 10, 2008; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The impact of azimuthally controlled air injection on broadband shock noise and mixing noise for single and dual stream jets was investigated. The single stream experiments focused on noise reduction for low supersonic jet exhausts. Dual stream experiments included high subsonic core and fan conditions and supersonic fan conditions with transonic core conditions. For the dual stream experiments, air was injected into the core stream. Significant reductions in broadband shock noise were achieved in a single jet with an injection mass flow equal to 1.2% of the core mass flow. Injection near the pylon produced greater broadband shock noise reductions than injection at other locations around the nozzle periphery. Air injection into the core stream did not result in broadband shock noise reduction in dual stream jets. Fluidic injection resulted in some mixing noise reductions for both the single and dual stream jets. For subsonic fan and core conditions, the lowest noise levels were obtained when injecting on the side of the nozzle closest to the microphone axis.
    Keywords: Aeronautics (General)
    Type: 14th AIAA CEAS Aeroacoustics Conference; May 05, 2008 - May 07, 2008; Vancouver; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.
    Keywords: Aeronautics (General)
    Type: ASCE 11th Earth and Space Conference; Mar 03, 2008 - Mar 05, 2008; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: Planar laser-induced fluorescence (PLIF) has been used to investigate hypersonic flows associated with capsule reentry vehicles. These flows included reaction control system (RCS) jets, shear layer flow, and simulated forebody heatshield ablation. Pitch, roll, and yaw RCS jets were studied. PLIF obtained planar slices in these flowfields. These slices could be viewed individually or they could be combined using computer visualization techniques to reconstruct the three dimensional shape of the flow. The tests described herein were conducted in the 31-Inch Mach 10 Air Tunnel at NASA Langley Research Center. Improvements to many facets of the imaging system increased the efficiency and quality of both data acquisition, in addition to increasing the overall robustness of the system.
    Keywords: Aeronautics (General)
    Type: 46th AIAA Aerospace Sciences Meeting and Exhibit; Jan 07, 2008 - Jan 10, 2008; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This viewgraph presentation concerns the experience that Dryden has had with Certificate of Authorization (COA) in reference to unmanned aerial systems (UAS). It reviews recent Certificate of Authorization UAS's i.e., 2005 Altair NOAA Mission, 2006 Altair Western States Fire Mission, and 2007 Ikhana. The priorities for the safety process is reviewed, as are typical UAS hazards. Slides also review the common COA provisions, best practices and lessons learned, the 2005 NOAA/NASA Science Demonstration Flights and the use of the UAS systems during fire emergencies.
    Keywords: Aeronautics (General)
    Type: UAS Symposium/National Transportation Safety Board; Apr 29, 2008 - Apr 30, 2008; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.
    Keywords: Aeronautics (General)
    Type: 14th International Electromagnetic Launch Symposium; Jun 10, 2008 - Jun 13, 2008; Victoria, BC; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: The following NASA Contractor Report documents the in-depth studies on select technologies that could support long-term aeronautical mobile communications operating concepts. This work was performed during the third and final phase of NASA s Technology Assessment for the Federal Aviation Administration (FAA)/EUROCONTROL Future Communications Study (FCS) under a multiyear NASA contract. It includes the associated findings of ITT Corporation and NASA Glenn Research Center to the FAA as of the end of May 2007. The activities documented in this report focus on three final technology candidates identified by the United States, and were completed before sufficient information about two additional technology candidates proposed by EUROCONTROL was made available. A separate report to be published by NASA/CR-2008-215144, entitled Final Report on Technology Investigations for Provision of Future Aeronautical Communications will include an assessment of all five final candidate technologies considered by the U.S. agencies (FAA and NASA) and EUROCONTROL. It will also provide an overview of the entire technology assessment process, including final recommendations. All three phases of this work were performed in compliance with the Terms of Reference for the Action Plan number 17 (AP-17) cooperative research agreement among EUROCONTROL, FAA, and NASA along with the general guidance of the FAA and EUROCONTROL available throughout this study.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2008-214987 , E-16183 , WP13 , Aeronautics Communications Panel (ACP), Working Group T-1; Sep 19, 2007 - Sep 21, 2007; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: This paper provides an elementary tutorial overview of Bayesian inference and its potential for application in aerospace experimentation in general and wind tunnel testing in particular. Bayes Theorem is reviewed and examples are provided to illustrate how it can be applied to objectively revise prior knowledge by incorporating insights subsequently obtained from additional observations, resulting in new (posterior) knowledge that combines information from both sources. A logical merger of Bayesian methods and certain aspects of Response Surface Modeling is explored. Specific applications to wind tunnel testing, computational code validation, and instrumentation calibration are discussed.
    Keywords: Aeronautics (General)
    Type: 46th AIAA Aerospace Sciences Meeting and Exhibit; Jan 07, 2008 - Jan 10, 2008; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: This paper reports on progress towards developing a spatial stability code for compressible shear flows with two inhomogeneous directions, such as crossflow dominated swept-wing boundary layers and attachment line flows. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined. Finally, extension of the spatial stability analysis to supersonic attachment line flows is also considered.
    Keywords: Aeronautics (General)
    Type: AIAA Paper-2008-590 , 46th AIAA Aerospace Sciences Meeting and Exhibit; Jan 07, 2008 - Jan 10, 2008; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 3.2 of this software, which is called LEWICE. This version differs from release 2.0 due to the addition of advanced thermal analysis capabilities for de-icing and anti-icing applications using electrothermal heaters or bleed air applications, the addition of automated Navier-Stokes analysis, an empirical model for supercooled large droplets (SLD) and a pneumatic boot option. An extensive effort was also undertaken to compare the results against the database of electrothermal results which have been generated in the NASA Glenn Icing Research Tunnel (IRT) as was performed for the validation effort for version 2.0. This report will primarily describe the features of the software related to the use of the program. Appendix A has been included to list some of the inner workings of the software or the physical models used. This information is also available in the form of several unpublished documents internal to NASA. This report is intended as a replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this software.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2008-214255 , E-15537
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-12
    Description: A risk assessment of the Silent Aircraft Initiative's SAX-40 concept design for extremely low noise has been performed. A NASA team developed a list of 27 risk items, and evaluated the level of risk for each item in terms of the likelihood that the risk would occur and the consequences of the occurrence. The following risk items were identified as high risk, meaning that the combination of likelihood and consequence put them into the top one-fourth of the risk matrix: structures and weight prediction; boundary-layer ingestion (BLI) and inlet design; variable-area exhaust and thrust vectoring; displaced-threshold and continuous descent approach (CDA) operational concepts; cost; human factors; and overall noise performance. Several advanced-technology baseline concepts were created to serve as a basis for comparison to the SAX-40 concept. These comparisons indicate that the SAX-40 would have significantly greater research, development, test, and engineering (RDT&E) and production costs than a conventional aircraft with similar technology levels. Therefore, the cost of obtaining the extremely low noise capability that has been estimated for the SAX-40 is significant. The SAX-40 concept design proved successful in focusing attention toward low noise technologies and in raising public awareness of the issue.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2008-215112 , L-19438
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-15
    Description: The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA's research program? This report continues the good work begun by the Decadal Survey of Civil Aeronautics, and it expands that work to consider in more depth NASA aeronautics research issues related to the space program, non-civil applications, workforce, and facilities.
    Keywords: Aeronautics (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: This paper addresses Monte Carlo simulation analyses that are being conducted to understand the behavior of the Ares I launch vehicle, and to assist with its design. After describing the simulation and modeling of Ares I, the paper addresses the process used to determine what simulations are necessary, and the parameters that are varied in order to understand how the Ares I vehicle will behave in flight. Outputs of these simulations furnish a significant group of design customers with data needed for the development of Ares I and of the Orion spacecraft that will ride atop Ares I. After listing the customers, examples of many of the outputs are described. Products discussed in this paper include those that support structural loads analysis, aerothermal analysis, flight control design, failure/abort analysis, determination of flight performance reserve, examination of orbit insertion accuracy, determination of the Upper Stage impact footprint, analysis of stage separation, analysis of launch probability, analysis of first stage recovery, thrust vector control and reaction control system design, liftoff drift analysis, communications analysis, umbilical release, acoustics, and design of jettison systems.
    Keywords: Aeronautics (General)
    Type: 2008 AIAA Guidance, Navigation and Control Conference; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: In this paper, the results of an extensive assessment exercise carried out to establish the current state of the art for predicting fan noise at NASA are presented. Representative codes in the empirical, analytical, and computational categories were exercised and assessed against a set of benchmark acoustic data obtained from wind tunnel tests of three model scale fans. The chosen codes were ANOPP, representing an empirical capability, RSI, representing an analytical capability, and LINFLUX, representing a computational aeroacoustics capability. The selected benchmark fans cover a wide range of fan pressure ratios and fan tip speeds, and are representative of modern turbofan engine designs. The assessment results indicate that the ANOPP code can predict fan noise spectrum to within 4 dB of the measurement uncertainty band on a third-octave basis for the low and moderate tip speed fans except at extreme aft emission angles. The RSI code can predict fan broadband noise spectrum to within 1.5 dB of experimental uncertainty band provided the rotor-only contribution is taken into account. The LINFLUX code can predict interaction tone power levels to within experimental uncertainties at low and moderate fan tip speeds, but could deviate by as much as 6.5 dB outside the experimental uncertainty band at the highest tip speeds in some case.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2008-215415 , E-16579 , 14th Aeroacoustics Conference; May 05, 2008 - May 07, 2008; Vancouver; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: This paper presents the results of a comprehensive assessment of High Gain Antenna System induced jitter on the Solar Dynamics Observatory. The jitter prediction is created using a coupled model of the structural dynamics, optical response, control systems, and stepper motor actuator electromechanical dynamics. The paper gives an overview of the model components, presents the verification processes used to evaluate the models, describes validation and calibration tests and model-to-measurement comparison results, and presents the jitter analysis methodology and results.
    Keywords: Aeronautics (General)
    Type: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Apr 07, 2008 - Apr 10, 2008; Schaumburg, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-12
    Description: A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
    Keywords: Aeronautics (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-12
    Description: The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2007-214624 , H-2634
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-12
    Description: The Terrain Portrayal for Head-Down Displays (TP-HDD) simulation experiment addressed multiple objectives involving twelve display concepts (two baseline concepts without terrain and ten synthetic vision system (SVS) variations), four evaluation maneuvers (two en route and one approach maneuver, plus a rare-event scenario), and three pilot group classifications. The TP-HDD SVS simulation was conducted in the NASA Langley Research Center's (LaRC's) General Aviation WorkStation (GAWS) facility. The results from this simulation establish the relationship between terrain portrayal fidelity and pilot situation awareness, workload, stress, and performance and are published in the NASA TP entitled Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results. This is a collection of pilot comments during each run of the TP-HDD simulation experiment. These comments are not the full transcripts, but a condensed version where only the salient remarks that applied to the scenario, the maneuver, or the actual research itself were compiled.
    Keywords: Aeronautics (General)
    Type: NASA/TP-2007-214864/SUPPL1 , L-19336/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-28
    Description: A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: The NASA Johnson Space Center's X-38 program designed a new backup parachute system to recover the 25,000 lb X-38 prototype for the Crew Return Vehicle spacecraft. Due to weight and cost constraints, the main backup parachute design incorporated rapid and low cost fabrication techniques using off-the-shelf materials. Near the vent, the canopy was constructed of continuous ribbons, to provide more damage tolerance. The remainder of the canopy was a constructed with a continuous ringslot design. After cancellation of the X-38 program, the parachute design was resized, built, and drop tested for Natick Soldiers Center's Low Velocity Air Drop (LVAD) program to deliver cargo loads up to 22,000 lbs from altitudes as low as 500 feet above the ground. Drop tests results showed that the 500-foot LVAD parachute deployment conditions cause severe skirt inversion and inflation problems for large parachutes. The bag strip occurred at a high angle of attack, causing skirt inversion before the parachute could inflate. The addition of a short reefing line prevented the skirt inversion. Using a lower porosity in the vent area, than is normally used in large parachutes, improved inflation. The drop testing demonstrated that the parachute design could be refined to meet the requirements for the 500-foot LVAD mission.
    Keywords: Aeronautics (General)
    Type: 18th AIAA Aerodynamic Decelerator Systems Technology Conference; May 23, 2005 - May 26, 2005; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: As part of a session at the 2007 Thermal & Fluids Analysis Workshop (TFAWS), an overview of the operations at NASA Dryden Flight Research Center was given. Mission support at this site includes the Aeronautics Research Mission Directorate (ARMD); Exploration Systems Mission Directorate (ESMD), Science - ER-2; Science - G3 UAVSAR; Science - Ikhana and Space Operations. In addition, the presentation describes TFAWS related work at Dryden.
    Keywords: Aeronautics (General)
    Type: Thermal and Fluids Analysis Workshop (TFAWS 2007); Sep 10, 2007 - Sep 14, 2007; Warrensville Heights, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: An overview of the Aerothermodynamics Discipline within NASA s Subsonic Fixed Wing Project is given. The primary focus of the presentation is on the research efforts conducted in fiscal year 2007. This year (2007), the work primarily consisted of efforts under level 1 (foundational research) and level 2 (tools and technology development). Examples of work under level 1 are large eddy simulation development, advanced turbine cooling concept development, and turbomachinery flow control development. Examples of level 2 research are the development of highly-loaded compressor and turbine test programs and advanced turbomachinery simulation development, including coupled inlet-fan simulations. An overview of the NRA research activity is also provided. This NRA focused on plasma and aspiration flow control for low pressure turbine application. Finally, a status report on the turbomachinery CFD code assessment activity is provided. This activity focuses on the use of several NASA in-house codes for the NASA rotor 37 and stage 35 test cases.
    Keywords: Aeronautics (General)
    Type: NASA Fundamental Aeronautics 2007 Annual Meeting; Oct 30, 2007 - Nov 01, 2007; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2007-5818 , 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 08, 2007 - Jul 11, 2007; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.
    Keywords: Aeronautics (General)
    Type: First CEAS European Air and Space Conference; Sep 10, 2007 - Sep 13, 2007; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Two experimental boundary layer transition studies in support of fundamental hypersonics research are reviewed. The two studies are the HyBoLT flight experiment and a new ballistic range effort. Details are provided of the objectives and approach associated with each experimental program. The establishment of experimental databases from ground and flight are to provide better understanding of high-speed flows and data to validate and guide the development of simulation tools.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2007-4266 , 39th AIAA Thermophysics Conference; Jun 25, 2007 - Jun 28, 2007; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Two computational fluid dynamics codes have been merged to permit rapid calculations of inlet/fan interaction. Inlets are modeled using the WIND-US Navier-Stokes code. Fans are modeled using a new three-dimensional Euler code called CSTALL that solves the flow through the entire compression system but models blade rows using body forces for turning and loss. The body force model is described and it is shown how unknown terms in the model can be estimated from other Navier-Stokes solutions of the blade rows run separately. The inlet and fan calculations are run simultaneously and are coupled at an interface plane using a third code called SYNCEX that is described briefly. Results are shown for an axisymmetric nacelle at high angle of attack modeled both as an isolated inlet and coupled to a single stage fan. The isolated inlet calculations are unrealistic after the flow separates but the coupled codes can model large regions of separated flow extending from the lower lip of the nacelle into the fan rotor.
    Keywords: Aeronautics (General)
    Type: Fundamental Aeronautics 2007 Annual Meeting; Oct 30, 2007 - Nov 01, 2007; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: Design of Experiments (DOE) techniques were applied to the Launch Abort System (LAS) of the NASA Crew Exploration Vehicle (CEV) parametric geometry Computational Fluid Dynamics (CFD) study to efficiently identify and rank the primary contributors to the integrated drag over the vehicles ascent trajectory. Typical approaches to these types of activities involve developing all possible combinations of geometries changing one variable at a time, analyzing them with CFD, and predicting the main effects on an aerodynamic parameter, which in this application is integrated drag. The original plan for the LAS study team was to generate and analyze more than1000 geometry configurations to study 7 geometric parameters. By utilizing DOE techniques the number of geometries was strategically reduced to 84. In addition, critical information on interaction effects among the geometric factors were identified that would not have been possible with the traditional technique. Therefore, the study was performed in less time and provided more information on the geometric main effects and interactions impacting drag generated by the LAS. This paper discusses the methods utilized to develop the experimental design, execution, and data analysis.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2007-1615 , U.S. Air Force T&E Days; Feb 13, 2007 - Feb 15, 2007; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: An experimental investigation of turbulent aeroheating on the Mars Science Laboratory entry vehicle heat shield has been conducted in the Arnold Engineering Development Center Hypervelocity Wind Tunnel No. 9. Testing was performed on a 6-in. (0.1524 m) diameter MSL model in pure N2 gas in the tunnel s Mach 8 and Mach 10 nozzles at free stream Reynolds numbers of 4.1x10(exp 6)/ft to 49x10(exp 6)/ft (1.3x10(exp 7)/m to 16x10(exp 7)/m) and 1.2x10(exp 6)/ft to 19x10(exp 6)/ft (0.39x10(exp 7)/m to 62x10(exp 7)/m), respectively. These conditions were sufficient to span the regime of boundary-layer flow from completely laminar to fully-developed turbulent flow over the entire forebody. A supporting aeroheating test was also conducted in the Langley Research Center 20-Inch Mach 6 Air Tunnel at free stream Reynolds number of 1x10(exp 6)/ft to 7x10(exp 6)/ft (0.36x10(exp 7)/m to 2.2x10(exp 7)/m) in order to help corroborate the Tunnel 9 results. A complementary computational fluid dynamics study was conducted in parallel to the wind tunnel testing. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins on predictions for aeroheating environments during entry into the Martian atmosphere. Data from both wind tunnel tests and comparisons with the predictions are presented herein. It was concluded from these comparisons that for perfect-gas conditions, the computational tools could predict fully-laminar or fully-turbulent heating conditions to within 10% of the experimental data
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2007-1208 , 45th AIAA Aerospace Sciences Meeting and Exhibit; Jan 08, 2007 - Jan 11, 2007; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-12
    Description: Selected research and technology activities at Dryden Flight Research Center are summarized. These activities exemplify the Center's varied and productive research efforts.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2007-214622 , H-2715
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2007-214619 , H-2703
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: A critical component of SVS displays is the appropriate presentation of terrain to the pilot. At the time of this study, the relationship between the complexity of the terrain presentation and resulting enhancements of pilot SA and pilot performance had been largely undefined. The terrain portrayal for SVS head-down displays (TP-HDD) simulation examined the effects of two primary elements of terrain portrayal on the primary flight display (PFD): variations of digital elevation model (DEM) resolution and terrain texturing. Variations in DEM resolution ranged from sparsely spaced (30 arc-sec) to very closely spaced data (1 arc-sec). Variations in texture involved three primary methods: constant color, elevation-based generic, and photo-realistic, along with a secondary depth cue enhancer in the form of a fishnet grid overlay.
    Keywords: Aeronautics (General)
    Type: NASA/TP-2007-214864 , L-19222
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: This report consists of two major parts: 1) the approach to develop morphing wing weight equations, and 2) the approach to size morphing aircraft. Combined, these techniques allow the morphing aircraft to be sized with estimates of the morphing wing weight that are more credible than estimates currently available; aircraft sizing results prior to this study incorporated morphing wing weight estimates based on general heuristics for fixed-wing flaps (a comparable "morphing" component) but, in general, these results were unsubstantiated. This report will show that the method of morphing wing weight prediction does, in fact, drive the aircraft sizing code to different results and that accurate morphing wing weight estimates are essential to credible aircraft sizing results.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2007-214860
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2007-213926 , NIA Report No. 2005-08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: The use of unmanned aircraft in national airspace has been characterized as the next great step forward in the evolution of civil aviation. To make routine and safe operation of these aircraft a reality, a number of technological and regulatory challenges must be overcome. This report discusses some of the regulatory challenges with respect to deriving safety and reliability requirements for unmanned aircraft. In particular, definitions of hazards and their classification are discussed and applied to a preliminary functional hazard assessment of a generic unmanned system.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2007-214539 , L-19299
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: This document describes an algorithm for the generation of a four dimensional aircraft trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival Route (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2007-214899 , L-70750D
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-27
    Description: This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews Ikhana's project goals: (1) Develop an airborne platform to conduct Earth observation and atmospheric sampling science missions both nationally and internationally, (2) develop and demonstrate technologies that improve the capability of UAVs to conduct science collection missions, (3) develop technologies that improve manned and unmanned aircraft systems, and (4) support important national UAV development activities. The criteria that guided the selection of the aircraft are listed. The payload areas on Ikhana are shown and the network that connects the systems are also reviewed. The data recorder is shown. Also the diagram of the Airborne Research Test System (ARTS) is reviewed. The Mobile Ground Control Station and the Mobile Ku SatCom Antenna are also shown and described.
    Keywords: Aeronautics (General)
    Type: 32nd International Symposium on Remote Sensing of Environment; Jun 25, 2007 - Jun 29, 2007; San Jose; Costa Rica
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: On July 17, 2006 Dean Acosta (NASA Press Secretary), Mike Griffin (Administrator), Bill Gerstenmaier (Associate Administrator of Space Operations), and Mike Leinbach (NASA Launch Director) expressed how proud they were to be a part of the STS-121/ Discovery team. They also explained how flawlessly the mission performed and how it was the best mission ever flown. They proceeded to answer numerous questions from the press.
    Keywords: Aeronautics (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-27
    Description: Studies were conducted for the In-Space Propulsion (ISP) Ultralightweight Ballute Technology Development Program to increase the technical readiness level of inflatable decelerator systems for planetary aerocapture. The present experimental study was conducted to develop the capability for testing lightweight, flexible materials in hypersonic facilities. The primary objectives were to evaluate advanced polymer film materials in a high-temperature, high-speed flow environment and provide experimental data for comparisons with fluid-structure interaction modeling tools. Experimental testing was conducted in the Langley Aerothermodynamics Laboratory 20-Inch Hypersonic CF4 and 31-Inch Mach 10 Air blowdown wind tunnels. Quantitative flexure measurements were made for 60 degree half angle afterbody-attached ballutes, in which polyimide films (1-mil and 3-mil thick) were clamped between a 1/2-inch diameter disk and a base ring (4-inch and 6-inch diameters). Deflection measurements were made using a parallel light silhouette of the film surface through an existing schlieren optical system. The purpose of this paper is to discuss these results as well as free-flying testing techniques being developed for both an afterbody-attached and trailing toroidal ballute configuration to determine dynamic fluid-structural stability. Methods for measuring polymer film temperature were also explored using both temperature sensitive paints (for up to 370 C) and laser-etched thin-film gages.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: A multi-year Fast Technology Infusion initiative proposes a model for aerospace organizations to improve the cost-effectiveness by which they mature new, in-house developed software and hardware technologies for space mission use. The first year task under the umbrella of this initiative will provide the framework to demonstrate and document the fast infusion process. The viability of this approach will be demonstrated on two technologies developed in prior years with internal Jet Propulsion Laboratory (JPL) funding. One hardware technology and one software technology were selected for maturation within one calendar year or less. The overall objective is to achieve cost and time savings in the qualification of technologies. At the end of the recommended three-year effort, we will have demonstrated for six or more in-house developed technologies a clear path to insertion using a documented process that permits adaptation to a broad range of hardware and software projects.
    Keywords: Aeronautics (General)
    Type: IEEEAC Paper 1607 , IEEE Aerospace Conference; May 03, 2006 - May 10, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-13
    Description: A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.
    Keywords: Aeronautics (General)
    Type: JANNAF 1st Spacecraft Propulsion Subcommittee Meeting; Dec 05, 2005 - Dec 08, 2005; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: Various practical aspects of the equation-error approach to aircraft parameter estimation were examined. The analysis was based on simulated flight data from an F-16 nonlinear simulation, with realistic noise sequences added to the computed aircraft responses. This approach exposes issues related to the parameter estimation techniques and results, because the true parameter values are known for simulation data. The issues studied include differentiating noisy time series, maximum likelihood parameter estimation, biases in equation-error parameter estimates, accurate computation of estimated parameter error bounds, comparisons of equation-error parameter estimates with output-error parameter estimates, analyzing data from multiple maneuvers, data collinearity, and frequency-domain methods.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2006-6144 , AIAA Atmospheric Flight Mechanics Conference and Exhibit; Aug 21, 2006 - Aug 24, 2006; Keystone, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Since 1940 Aeronautics has had an immense impact upon Global Human lifestyles and affairs - in both the Civilian and Military arenas. During this period Long distance Train and Ship passenger transport were largely supplanted by Air Travel and Aviation assumed a dominant role in warfare. The early 1940 s to the mid 1970 s was a particularly productive period in terms of Aeronautical Technology. What is interesting is that, since the mid 1970 s, the rate of Aeronautical Technological Progress has been far slower, the basic technology in nearly all of our current Aero Systems dates from the mid 70 s or earlier. This is especially true in terms of Configuration Aerodynamics, Aeronautics appears to have "settled" on the 707, double delta and rotary wing as the approach of choice for Subsonic long haul, supersonic cruise and VTOL respectively. Obviously there have been variants and some niche digression from this/these but in the main Aeronautics, particularly civilian Aeronautics, has become a self-professed "mature", Increasingly "Commodity", Industry. The Industry is far along an existing/deployed technology curve and focused, now for decades, on incremental/evolutionary change - largely Appliers vs. developers of technology. This is, of course, in sharp contrast to the situation in the early-to-later 20th century where Aeronautics was viewed as A Major Technological Engine, much the way IT/Bio/Nano/Energetics/Quantum Technologies are viewed today. A search for Visionary Aeronautical "Futures" papers/projections indicates a decided dearth thereof over the last 20 plus years compared to the previous quarter Century. Aeronautics is part of Aerospace and Aerospace [including Aeronautics] has seen major cutbacks over the last decades. Some numbers for the U.S. Aerospace Industry serve as examples. Order of 600,000 jobs lost, with some 180,000 more on the block over the next 10 years. Approximately 25% of the Aerospace workforce is eligible to retire and the average Engineer age is in the mid-50 s. Firms such as Microsoft, Intel and Walmart are individually capitalized at a factor of 4 or more than the Aerospace industry as a whole. Aerospace Research levels are in the less than 5% range in terms of overall U.S. Research Investments.
    Keywords: Aeronautics (General)
    Type: 46th Israel Annual Conference on Aerospace Sciences; Mar 01, 2006 - Mar 03, 2006; Tel Aviv; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: The state-of-the-practice for engineering and development of Ground Systems has evolved significantly over the past half decade. Missions that challenge ground system developers with significantly reduced budgets in spite of requirements for greater and previously unimagined functionality are now the norm. Making the right trades early in the mission lifecycle is one of the key factors to minimizing ground system costs. The Mission Operations Strategic Leadership Team at the Jet Propulsion Laboratory has spent the last year collecting and working through successes and failures in ground systems for application to future missions.
    Keywords: Aeronautics (General)
    Type: SpaceOps Conference 2006: Earth, Moon, Mars, and Beyond; Jun 19, 2006 - Jun 23, 2006; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.
    Keywords: Aeronautics (General)
    Type: 44th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2006 - Jan 12, 2006; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: We consider two spacecraft flying in formation to create interferometric synthetic aperture radar (InSAR). Several candidate orbits for such in InSar formation have been previously determined based on radar performance and Keplerian orbital dynamics. However, with out active control, disturbance-induced drift can degrade radar performance and (in the worst case) cause a collision. This study evaluates the feasibility of operating the InSAR spacecraft as a formation, that is, with inner-spacecraft sensing and control. We describe the candidate InSAR orbits, design formation guidance and control architectures and algorithms, and report the (Delta)(nu) and control acceleration requirements for the candidate orbits for several tracking performance levels. As part of determining formation requirements, a formation guidance algorithm called Command Virtual Structure is introduced that can reduce the (Delta)(nu) requirements compared to standard Leader/Follower formation approaches.
    Keywords: Aeronautics (General)
    Type: AIAA/AAS Astrodynamics Specialist Conference; Aug 20, 2006 - Aug 25, 2006; Keystone, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...