ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4541 , L-17259 , NAS 1.15:4541
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A code has been developed to predict the periodic aerodynamic loads of an advanced turboprop propeller. The analytical formulation accounts for flow three-dimensionality and flow periodicity due to the propeller inclination. The flow past the blade sections is computed using a thin layer Navier-Stokes solver. An iterative procedure is used to account for the induced axial and rotational velocities. The viscous periodic results are obtained for an eight-bladed Hamilton Standard SR-7L advanced propeller at a cruise Mach number of 0.813 and 35,000 ft. altitude. The results are shown for flow field quantities and performance parameters during the blade passage in the plane of rotation illustrating the periodic nature of blade flow separation and shocks. The time averaged coefficients of thrust and power are computed and compared with available flight test data. The results obtained show excellent agreement at cruise conditions for small nacelle angles of attack.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-2250
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: An analytical/computational study has been conducted to predict the effect of an upstream wake on an operating propeller. The upstream wing/pylon was modeled by a constant chord wing of NACA 0012 sections and was placed at a variable distance (0.1 - 0.3 chord) upstream of a scaled model propeller (SR-2). The wake model was a similarity formulation. The periodic behavior ofthe flow during the passage through the wake was formulated in terms of time-dependent variation of each blade section's angle of attack. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficieents exhibit a hysteresis loop.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 86-2602
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An analytical/computational code has been developed to predict the performance of advanced turboprop propellers. The method of solution is based on strip theory and conservation of linear and angular momenta applied to a control volume enclosing the propeller and its far wake. An iterative procedure is used to account for the induced axial and rotational velocities. Sectional aerodynamic coefficients are explicitly accounted for by thin airfoil theory and refinement of the results is obtained using a two-dimensional vortex panel method and Euler equations. The results obtained compare well with wind-tunnel data obtained for advanced propellers, such as the Hamilton Standard SR-2 and SR-7.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 90-0440
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.
    Keywords: AERODYNAMICS
    Type: NASA-CR-4307 , NAS 1.26:4307
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted on the engine/airframe integration aerodynamics for potential high-lift aircraft configurations. The model consisted of a semispan wing with a double-isolated flap system and a Krueger leading edge device. The advanced propeller and the powered nacelle were tested and aerodynamic characteristics of the combined system are presented. It was found that the lift coefficient of the powered wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Moving the nacelle/propeller closer to the wing in the vertical direction indicated higher lift augmentation than a shift in the longitudinal direction. A pitch-down nacelle inclination enhanced the lift performance of the system much better than vertical and horizontal variation of the nacelle locations and showed that the powered wing can sustain higher angles of attack near maximum lift performance.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-0388
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4583 , L-17380 , NAS 1.15:4583
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: An analytical/computational study has been conducted to predict the effect of an upstream wing or pylon on the noise of an operating propeller. The wing trailing edge was placed at variable distances (0.1 and 0.3 chord) upstream of a scaled model propeller (SR-2). The wake was modeled using a similarity formulation. The instantaneous pressure distribution on the propeller blades during the passage through the wake was formulated in terms of a time-dependent variation of each blade section's angle of attack and in terms of the shed vortices from the blade trailing edge. It was found that the final expressions for the unsteady loads considerably altered the radiated noise pattern. Predicted noise for various observer positions, rotational speeds, and propeller/pylon distances were computed and are presented in terms of the pressure time history, harmonics of the Fourier analysis, and overall sound pressure levels (OASPL). The addition of the tangential stress due to skin friction was found to have a damping effect on the acoustic pressure time history and the resulting spectrum of the generated noise. It is shown that the positioning of a pylon upstream of a propeller indeed increases the overall noise.
    Keywords: ACOUSTICS
    Type: AIAA PAPER 87-2720
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A series of wind tunnel experiments were conducted to study the effect of propeller solidity and thrust axis inclination on the propeller normal force coefficient. Experiments were conducted in the Langley 14 by 22 foot Subsonic Tunnel with a sting mounted, counterrotation, scale model propeller and nacelle. Configurations had two rows of blades with combinations of 4 and 8 blades per hub. The solidity was varied by changing the number of blades on both rows. Tests were conducted for blade pitch setting of 31.34 deg, 36.34 deg, and 41.34 deg over a range of angle of attack from -10 deg to 90 deg and range of advance ratio from 0.8 to 1.4. The increase in propeller normal force with angle of attack is greater for propellers with higher solidity.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4316 , L-16933 , NAS 1.15:4316
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: An analytical/computational study has been conducted to predict the effect of an upstream wing or pylon on the noise of an operating propeller. The wing trailing edge was placed at variable distances (0.1 and 0.3 chord) upstream of a scaled model propeller (SR-2). The wake was modeled using a similarity formulation. The instantaneous pressure distribution on the propeller blades during the passage through the wake was formulated in terms of a time-dependent variation of each blade section's angle of attack and in terms of the shed vortices from the blade trailing edge. It was found that the final expressions for the unsteady loads considerably altered the radiated noise pattern. Predicted noise for various observer positions, rotational speeds and propeller/pylon distances were computed and are presented in terms of the pressure time history. It has been shown that the positioning of a pylon upstream of a propeller indeed increases the noise. Some comparisons with experimental results are also given.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 87-0255
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...