ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Molecular  (167)
  • Nature Publishing Group (NPG)  (167)
  • Institute of Electrical and Electronics Engineers (IEEE)
  • 2005-2009  (167)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2009-12-22
    Description: Broken chromosomes arising from DNA double-strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holoenzyme that comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer Ku70/Ku80, has a major role in non-homologous end joining-the main pathway in mammals used to repair double-strand breaks. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4,128 amino acids and belonging to the phosphatidylinositol-3-OH kinase (PI(3)K)-related protein family. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA. Here we present the crystal structure of human DNA-PKcs at 6.6 A resolution, in which the overall fold is clearly visible, to our knowledge, for the first time. The many alpha-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The carboxy-terminal kinase domain is located on top of this structure, and a small HEAT repeat domain that probably binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sibanda, Bancinyane L -- Chirgadze, Dimitri Y -- Blundell, Tom L -- 079281/Wellcome Trust/United Kingdom -- A3846/Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Jan 7;463(7277):118-21. doi: 10.1038/nature08648. Epub 2009 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Old Addenbrooke's site, 80 Tennis Court Road, Cambridge CB2 1GA, UK. lynn@cryst.bioc.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20023628" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Nuclear/chemistry ; Catalytic Domain ; Crystallography, X-Ray ; DNA/metabolism ; DNA Breaks, Double-Stranded ; DNA-Activated Protein Kinase/*chemistry/metabolism ; DNA-Binding Proteins/chemistry ; HeLa Cells ; *Helix-Turn-Helix Motifs ; Humans ; Models, Molecular ; Nuclear Proteins/*chemistry/metabolism ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-14
    Description: Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christofk, Heather R -- Vander Heiden, Matthew G -- Wu, Ning -- Asara, John M -- Cantley, Lewis C -- R01 GM056203/GM/NIGMS NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- England -- Nature. 2008 Mar 13;452(7184):181-6. doi: 10.1038/nature06667.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337815" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Animals ; Catalysis ; Cell Line ; Cell Proliferation/drug effects ; Cells/drug effects/metabolism ; HeLa Cells ; Humans ; Lysine/metabolism ; Models, Molecular ; Peptide Library ; Phosphotyrosine/*metabolism ; Protein Binding ; Proteomics ; Pyruvate Kinase/antagonists & inhibitors/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-11-18
    Description: Pentraxins are a family of ancient innate immune mediators conserved throughout evolution. The classical pentraxins include serum amyloid P component (SAP) and C-reactive protein, which are two of the acute-phase proteins synthesized in response to infection. Both recognize microbial pathogens and activate the classical complement pathway through C1q (refs 3 and 4). More recently, members of the pentraxin family were found to interact with cell-surface Fcgamma receptors (FcgammaR) and activate leukocyte-mediated phagocytosis. Here we describe the structural mechanism for pentraxin's binding to FcgammaR and its functional activation of FcgammaR-mediated phagocytosis and cytokine secretion. The complex structure between human SAP and FcgammaRIIa reveals a diagonally bound receptor on each SAP pentamer with both D1 and D2 domains of the receptor contacting the ridge helices from two SAP subunits. The 1:1 stoichiometry between SAP and FcgammaRIIa infers the requirement for multivalent pathogen binding for receptor aggregation. Mutational and binding studies show that pentraxins are diverse in their binding specificity for FcgammaR isoforms but conserved in their recognition structure. The shared binding site for SAP and IgG results in competition for FcgammaR binding and the inhibition of immune-complex-mediated phagocytosis by soluble pentraxins. These results establish antibody-like functions for pentraxins in the FcgammaR pathway, suggest an evolutionary overlap between the innate and adaptive immune systems, and have new therapeutic implications for autoimmune diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688732/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688732/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Jinghua -- Marnell, Lorraine L -- Marjon, Kristopher D -- Mold, Carolyn -- Du Clos, Terry W -- Sun, Peter D -- R01 AI28358/AI/NIAID NIH HHS/ -- T32 AI007538/AI/NIAID NIH HHS/ -- Z01 AI000853-09/Intramural NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):989-92. doi: 10.1038/nature07468. Epub 2008 Nov 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19011614" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Binding, Competitive ; C-Reactive Protein/chemistry/*immunology/*metabolism ; Crystallography, X-Ray ; Cytokines/immunology/secretion ; Humans ; Immunity, Innate/*immunology ; Immunoglobulin G/immunology/metabolism ; Macrophages/cytology/immunology ; Models, Molecular ; Phagocytosis ; Protein Conformation ; Receptors, IgG/chemistry/*immunology/*metabolism ; Serum Amyloid P-Component/chemistry/*immunology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-28
    Description: Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. A nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1), has a primary structure similar to that of the hormone-sensitive lipases (HSLs). Here we analyse the crystal structure of Oryza sativa GID1 (OsGID1) bound with GA(4) and GA(3) at 1.9 A resolution. The overall structure of both complexes shows an alpha/beta-hydrolase fold similar to that of HSLs except for an amino-terminal lid. The GA-binding pocket corresponds to the substrate-binding site of HSLs. On the basis of the OsGID1 structure, we mutagenized important residues for GA binding and examined their binding activities. Almost all of them showed very little or no activity, confirming that the residues revealed by structural analysis are important for GA binding. The replacement of Ile 133 with Leu or Val-residues corresponding to those of the lycophyte Selaginella moellendorffii GID1s-caused an increase in the binding affinity for GA(34), a 2beta-hydroxylated GA(4). These observations indicate that GID1 originated from HSL and was further modified to have higher affinity and more strict selectivity for bioactive GAs by adapting the amino acids involved in GA binding in the course of plant evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimada, Asako -- Ueguchi-Tanaka, Miyako -- Nakatsu, Toru -- Nakajima, Masatoshi -- Naoe, Youichi -- Ohmiya, Hiroko -- Kato, Hiroaki -- Matsuoka, Makoto -- England -- Nature. 2008 Nov 27;456(7221):520-3. doi: 10.1038/nature07546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19037316" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Gibberellins/*chemistry/*metabolism ; Hydrolases/chemistry/metabolism ; Hydroxylation ; Models, Molecular ; Oryza/*chemistry/genetics/metabolism ; Plant Growth Regulators/*chemistry/*metabolism ; Plant Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Substrate Specificity ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-05-16
    Description: The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability. However, there have been reports of drug-resistant mutant selection in vitro and from infected humans. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Patrick J -- Haire, Lesley F -- Lin, Yi Pu -- Liu, Junfeng -- Russell, Rupert J -- Walker, Philip A -- Skehel, John J -- Martin, Stephen R -- Hay, Alan J -- Gamblin, Steven J -- MC_U117512711/Medical Research Council/United Kingdom -- MC_U117512723/Medical Research Council/United Kingdom -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117584222/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2008 Jun 26;453(7199):1258-61. doi: 10.1038/nature06956. Epub 2008 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480754" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; *Drug Resistance, Viral ; Enzyme Inhibitors/chemistry/metabolism/pharmacology ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology/genetics ; Influenza A Virus, H5N1 Subtype/*drug effects/*enzymology/genetics ; Influenza, Human/virology ; Kinetics ; Models, Molecular ; Molecular Conformation ; Mutation/*genetics ; Neuraminidase/antagonists & inhibitors/*chemistry/*genetics/metabolism ; Oseltamivir/chemistry/metabolism/*pharmacology ; Protein Binding ; Zanamivir/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-09-02
    Description: Translation initiation, the rate-limiting step of the universal process of protein synthesis, proceeds through sequential, tightly regulated steps. In bacteria, the correct messenger RNA start site and the reading frame are selected when, with the help of initiation factors IF1, IF2 and IF3, the initiation codon is decoded in the peptidyl site of the 30S ribosomal subunit by the fMet-tRNA(fMet) anticodon. This yields a 30S initiation complex (30SIC) that is an intermediate in the formation of the 70S initiation complex (70SIC) that occurs on joining of the 50S ribosomal subunit to the 30SIC and release of the initiation factors. The localization of IF2 in the 30SIC has proved to be difficult so far using biochemical approaches, but could now be addressed using cryo-electron microscopy and advanced particle separation techniques on the basis of three-dimensional statistical analysis. Here we report the direct visualization of a 30SIC containing mRNA, fMet-tRNA(fMet) and initiation factors IF1 and GTP-bound IF2. We demonstrate that the fMet-tRNA(fMet) is held in a characteristic and precise position and conformation by two interactions that contribute to the formation of a stable complex: one involves the transfer RNA decoding stem which is buried in the 30S peptidyl site, and the other occurs between the carboxy-terminal domain of IF2 and the tRNA acceptor end. The structure provides insights into the mechanism of 70SIC assembly and rationalizes the rapid activation of GTP hydrolysis triggered on 30SIC-50S joining by showing that the GTP-binding domain of IF2 would directly face the GTPase-activated centre of the 50S subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simonetti, Angelita -- Marzi, Stefano -- Myasnikov, Alexander G -- Fabbretti, Attilio -- Yusupov, Marat -- Gualerzi, Claudio O -- Klaholz, Bruno P -- England -- Nature. 2008 Sep 18;455(7211):416-20. doi: 10.1038/nature07192. Epub 2008 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Genetics and of Molecular and Cellular Biology, Department of Structural Biology and Genomics, Illkirch F-67404, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18758445" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; Guanosine Triphosphate/chemistry/metabolism ; Models, Molecular ; Multiprotein Complexes/*chemistry/genetics/metabolism/*ultrastructure ; *Peptide Chain Initiation, Translational ; Prokaryotic Initiation Factor-1/chemistry/genetics/metabolism/ultrastructure ; Prokaryotic Initiation Factor-2/chemistry/genetics/metabolism/ultrastructure ; Protein Conformation ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Transfer, Met/chemistry/genetics/metabolism/ultrastructure ; Ribosome Subunits/chemistry/metabolism/ultrastructure ; Ribosomes/chemistry/*metabolism/*ultrastructure ; Thermus thermophilus/*enzymology/genetics/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghirlanda, Giovanna -- England -- Nature. 2008 May 8;453(7192):164-6. doi: 10.1038/453164a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18464727" target="_blank"〉PubMed〈/a〉
    Keywords: Biochemistry/*methods ; Catalysis ; Computational Biology/*methods ; Directed Molecular Evolution/*methods ; Drug Design ; Drug Evaluation, Preclinical ; Enzymes/*chemistry/*metabolism ; Models, Molecular ; Protein Engineering/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-12-19
    Description: Here we report on a 3.0 A crystal structure of a ternary complex of wild-type Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-nucleotide guide DNA and a 20-nucleotide target RNA containing cleavage-preventing mismatches at the 10-11 step. The seed segment (positions 2 to 8) adopts an A-helical-like Watson-Crick paired duplex, with both ends of the guide strand anchored in the complex. An arginine, inserted between guide-strand bases 10 and 11 in the binary complex, locking it in an inactive conformation, is released on ternary complex formation. The nucleic-acid-binding channel between the PAZ- and PIWI-containing lobes of argonaute widens on formation of a more open ternary complex. The relationship of structure to function was established by determining cleavage activity of ternary complexes containing position-dependent base mismatch, bulge and 2'-O-methyl modifications. Consistent with the geometry of the ternary complex, bulges residing in the seed segments of the target, but not the guide strand, were better accommodated and their complexes were catalytically active.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yanli -- Juranek, Stefan -- Li, Haitao -- Sheng, Gang -- Tuschl, Thomas -- Patel, Dinshaw J -- R01 AI068776/AI/NIAID NIH HHS/ -- R01 AI068776-02/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):921-6. doi: 10.1038/nature07666.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial-Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092929" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; Base Pair Mismatch ; Base Pairing ; Base Sequence ; Crystallography, X-Ray ; DNA/chemistry/genetics/*metabolism ; Methylation ; Models, Molecular ; Phosphorylation ; Protein Conformation ; RNA/chemistry/genetics/*metabolism ; RNA Interference ; RNA-Induced Silencing Complex/*chemistry/genetics/*metabolism ; Substrate Specificity ; Thermus thermophilus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-11-21
    Description: Replication forks are impeded by DNA damage and protein-nucleic acid complexes such as transcribing RNA polymerase. For example, head-on collision of the replisome with RNA polymerase results in replication fork arrest. However, co-directional collision of the replisome with RNA polymerase has little or no effect on fork progression. Here we examine co-directional collisions between a replisome and RNA polymerase in vitro. We show that the Escherichia coli replisome uses the RNA transcript as a primer to continue leading-strand synthesis after the collision with RNA polymerase that is displaced from the DNA. This action results in a discontinuity in the leading strand, yet the replisome remains intact and bound to DNA during the entire process. These findings underscore the notable plasticity by which the replisome operates to circumvent obstacles in its path and may explain why the leading strand is synthesized discontinuously in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605185/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605185/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pomerantz, Richard T -- O'Donnell, Mike -- R01 GM038839/GM/NIGMS NIH HHS/ -- R01 GM038839-21/GM/NIGMS NIH HHS/ -- R37 GM038839/GM/NIGMS NIH HHS/ -- R37 GM038839-20/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Dec 11;456(7223):762-6. doi: 10.1038/nature07527. Epub 2008 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19020502" target="_blank"〉PubMed〈/a〉
    Keywords: DNA Polymerase III/*metabolism ; DNA Replication ; DNA, Bacterial/metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Escherichia coli/genetics/*metabolism ; Models, Molecular ; *Rna ; RNA, Bacterial/*metabolism ; RNA, Messenger/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-09-02
    Description: A common hallmark of human cancers is the overexpression of telomerase, a ribonucleoprotein complex that is responsible for maintaining the length and integrity of chromosome ends. Telomere length deregulation and telomerase activation is an early, and perhaps necessary, step in cancer cell evolution. Here we present the high-resolution structure of the Tribolium castaneum catalytic subunit of telomerase, TERT. The protein consists of three highly conserved domains, organized into a ring-like structure that shares common features with retroviral reverse transcriptases, viral RNA polymerases and B-family DNA polymerases. Domain organization places motifs implicated in substrate binding and catalysis in the interior of the ring, which can accommodate seven to eight bases of double-stranded nucleic acid. Modelling of an RNA-DNA heteroduplex in the interior of this ring demonstrates a perfect fit between the protein and the nucleic acid substrate, and positions the 3'-end of the DNA primer at the active site of the enzyme, providing evidence for the formation of an active telomerase elongation complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gillis, Andrew J -- Schuller, Anthony P -- Skordalakes, Emmanuel -- England -- Nature. 2008 Oct 2;455(7213):633-7. doi: 10.1038/nature07283. Epub 2008 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18758444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Binding Sites ; Catalysis ; Catalytic Domain ; Conserved Sequence ; Crystallization ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Nucleotides/metabolism ; Protein Structure, Tertiary ; Telomerase/*chemistry/metabolism ; Tribolium/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...