ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association of Petroleum Geologists
  • 2010-2014  (486)
  • 1940-1944  (700)
Collection
Years
Year
  • 1
    Publication Date: 2014-09-01
    Print ISSN: 1075-9565
    Electronic ISSN: 1526-0984
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-01
    Print ISSN: 1075-9565
    Electronic ISSN: 1526-0984
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-01
    Print ISSN: 1075-9565
    Electronic ISSN: 1526-0984
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-01
    Print ISSN: 1075-9565
    Electronic ISSN: 1526-0984
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-01
    Print ISSN: 1075-9565
    Electronic ISSN: 1526-0984
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-01
    Print ISSN: 1075-9565
    Electronic ISSN: 1526-0984
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-01
    Print ISSN: 1075-9565
    Electronic ISSN: 1526-0984
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-01
    Print ISSN: 1075-9565
    Electronic ISSN: 1526-0984
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-01
    Description: Detailed stratigraphic and paleogeographic analyses of data from 72 boreholes for the Middle Jurassic intermontane fluvial-lacustrine coal-bearing sequences were conducted in the Yuqia coalfield of the northern Qaidam Basin, northwestern China. Three third-order sequences lasting in total ca. 10.6 m.y., and an internal lowstand systems tract (LST), transgressive systems tract (TST), highstand systems tract (HST), and falling-stage systems tract (FSST) have been identified. A series of sequence-specific paleogeographic maps have been constructed based on the contours of lithological parameters. The paleogeographic units include alluvial fan-braided (meandering) fluvial plain, upper delta plain, lower delta plain, subaqueous delta, shore-shallow lake, and deep lake. The preferred sites of coal accumulation are interdelta bays, upper delta plains, lower delta plains, and fluvial back swamps. The sequence stratigraphic and sedimentological analysis of the Middle Jurassic coal-bearing measures of the Yuqia coalfield provides a basis for a comprehensive coal accumulation model that involves a six-period evolution from the LST, early TST, late TST, early HST, late HST to FSST. The major coal seams were accumulated in the early and late TST of the sequences S1 and S2. These results are of practical significance for coal resources exploration and enhance geological effects of prospecting engineering in the northern Qaidam Basin.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-01
    Description: Forward seismic modeling of outcrop analogs has been used to characterize the seismic expression of clinoforms in different deltaic depositional environments, and thus constrain uncertainty in interpretation of intra-reservoir clinoforms imaged in seismic data from the Troll field, Norwegian North Sea. Three outcrop analogs from the Cretaceous Western Interior seaway, United States, were studied to quantify the geometry, distribution, and lithologic character of clinoforms in fluvial-dominated and mixed-influence deltaic deposits. Outcrop-derived geometric data were calibrated to sedimentological and petrophysical data from the Krossfjord and Fensfjord Formations in the Troll field, and then used to create a suite of forward seismic models for comparison with real seismic reflection data from the Troll field. Clinoforms were imaged in the forward seismic models in which they were (1) spaced wider than the tuning thickness (〉10 m [〉33 ft]); (2) marked by pronounced interfingering of facies associations with different acoustic properties; and/or (3) lined by relatively thick (〉50 cm [〉20 in.]) carbonate-cemented layers. However, where clinothems are thinner than the vertical resolution limit of seismic data, destructive interference occurred creating misleading geometrical relationships. Furthermore, our ability to image clinoforms is dependent on (1) the frequency of the seismic wavelet; (2) the overburden velocity; and/or (3) the acoustic impedance contrast at the boundary between the overburden and the clinoform-bearing target. The established methodology has allowed characterization of deltaic clinoformal architectures in reservoir seismic data from the Troll field, and has facilitated a more robust interpretation by bridging the critical gap in resolution between well and seismic data.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-12-01
    Description: Assessing the production potential of shale gas can be assisted by constructing a simple, physics-based model for the productivity of individual wells. We adopt the simplest plausible physical model: one-dimensional pressure diffusion from a cuboid region with the effective area of hydrofractures as base and the length of horizontal well as height. We formulate a nonlinear initial boundary value problem for transient flow of real gas that may sorb on the rock and solve it numerically. In principle, solutions of this problem depend on several parameters, but in practice within a given gas field, all but two can be fixed at typical values, providing a nearly universal curve for which only the appropriate scales of time in production and cumulative production need to be determined for each well. The scaling curve has the property that production rate declines as one over the square root of time until the well starts to be pressure depleted, and later it declines exponentially. We show that this simple model provides a surprisingly accurate description of gas extraction from 8305 horizontal wells in the United States' oldest shale play, the Barnett Shale. Good agreement exists with the scaling theory for 2133 horizontal wells in which production started to decline exponentially in less than 10 yr. We provide upper and lower bounds on the time in production and original gas in place.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-12-01
    Description: Hydrous-pyrolysis experiments at 360°C (680 F) for 72 h were conducted on 53 humic coals representing ranks from lignite through anthracite to determine the upper maturity limit for hydrocarbon-gas generation from their kerogen and associated bitumen (i.e., primary gas generation). These experimental conditions are below those needed for oil cracking to ensure that generated gas was not derived from the decomposition of expelled oil generated from some of the coals (i.e., secondary gas generation). Experimental results showed that generation of hydrocarbon gas ends before a vitrinite reflectance (R0) of 2.0%. This reflectance is equivalent to Rock-Eval maximum-yield temperature (rmax) and hydrogen indices (HIs) of 555°C (1031°F) and 35 mg/g total organic carbon (TOC), respectively. At these maturity levels, essentially no soluble bitumen is present in the coals before or after hydrous pyrolysis. The equivalent kerogen atomic H/C ratio is 0.50 at the primary gas-generation limit and indicates that no alkyl moieties are remaining to source hydrocarbon gases. The convergence of atomic H/C ratios of type-II and -I kerogen to this same value at a reflectance of 2.0%Ro indicates that the primary gas-generation limits for humic coal and type-Ill kerogen also apply to oil-prone kerogen. Although gas generation from source rocks does not exceed vitrinite reflectance values greater than 2.0%Ro, trapped hydrocarbon gases can remain stable at higher reflectance values. Distinguishing trapped gas from generated gas in hydrous-pyrolysis experiments is readily determined by δ2H of the hydrocarbon gases when a 2H-depleted water is used in the experiments. Water serves as a source of hydrogen in hydrous pyrolysis and, as a result, the use of 2H-depleted water is reflected in the generated gases but not pre-existing trapped gases.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-11-01
    Description: The sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analyses to evaluate the effects of differential stress and rock type on fracture mode. Relative to the underlying sandstone reservoirs, all four seal types are low-permeability, heterolithic sequences that show mineralized hydraulic-extension fractures, extensional-shear fractures, and shear fractures. Burial-history models suggest that the cap-rock seal analogs reached a maximum burial depth 〉4 km (2.5 mi) and experienced a lithostatic load of up to 110 MPa (15,954 psi). Median tensile strength from indirect mechanical tests ranges from 2.3 MPa (334 psi) in siltstone to 11.5 MPa (1668 psi) in calcareous shale. Analysis of the pore-fluid factor (λv = Pf/σv) through time shows changes in the expected failure mode (extensional shear or hydraulic extension), and that failure mode depends on a combination of mechanical rock properties and differential stress. As expected with increasing lithostatic load, the amount of overpressure that is required to induce failure increases but is also lithology dependent.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-11-01
    Description: The increasing exploration and production in unconventional resource plays in the past decade has been accompanied by a greater need for understanding the effectiveness of multistage hydraulic fracturing programs, particularly in long (〉1500 m or 5000 ft) subhorizontal boreholes (laterals). Traditional (analytical) analysis techniques for estimating the size and orientation of fractures induced by fluid injection typically result in predictions of relatively long and planar extension (mode I) bi-wing fractures, which may not be representative of natural systems. Although these traditional approaches offer the advantage of rapid analysis, neglect of key features of the natural system (e.g., realistic mechanical stratigraphy, pre-existing natural faults and fractures, and heterogeneity of in situ stresses) may render results unrealistic for planning, executing, and interpreting multimillion-dollar hydraulic stimulation programs. Numerical geomechanical modeling provides a means of including key aspects of natural complexity in simulations of hydraulic fracturing. In this study, we present the results of two-dimensional finite element modeling of fluid-injection-induced rock deformation that combines a coupled stress–pore pressure analysis with a continuum damage-mechanics-based constitutive relationship. The models include both the natural mechanical stratigraphic variability as well as the in situ stress-state anisotropy, and permit tracking of the temporal and spatial development of shear and tensile permanent strains that develop in response to fluid injection. Our results show that simple, long planar fractures are unlikely to be induced in most mechanically layered natural systems under typical in situ stress conditions. Analyses that assume this type of fracture geometry may significantly overestimate the reach of hydraulically induced fractures and/or effectively stimulated rock volume.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-11-01
    Description: We report on subsurface deformation features measured from recently acquired core and image logs from the Marcellus Formation in north-central Pennsylvania, supplemented with data collected from Valley and Ridge outcrop. The subsurface data are from an area that bridges a gap in existing published data between outcrop in the Valley and Ridge province of Pennsylvania and the relatively undeformed outcrop exposed on the Appalachian Plateau of New York. We find one distinct set of vertical veins that strike orthogonal to Appalachian Plateau fold axes and an associated set of low-angle reverse faults and stylolites that strike parallel to fold axes. As the trend of the fold axes changes around the Pennsylvania salient, the trend of associated mesostructures changes to maintain kinematic compatibility with the shortening direction change along the salient. These structures are interpreted to support a single, although possibly protracted, strain event during Alleghanian deformation, as opposed to multiple events previously interpreted to occur in different regions and stratigraphic levels within the fold belt. The veins are associated with clusters of bedding-plane slip surfaces, which are found at distinct mechanical stratigraphic positions where the competence contrast between shale and stiff limestone units is greatest. We interpret this association to indicate that bed parallel-shear within detachment zones provides the sufficient driving force required to nucleate vertical veins, and the decoupling of beds accommodates extension orthogonal to the shortening direction. Although these veins are oriented orthogonal to the present-day maximum principal horizontal stress, they remain propped open by crystalline cements. Homogenization temperatures of fluid inclusions trapped in the veins, combined with one-dimensional burial and thermal history models, suggest that the pervasive vein set formed during the Late Pennsylvanian–Permian during the Alleghanian orogeny.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-12-01
    Description: The Woodbine and Eagle Ford Groups of the southwestern East Texas basin compose an emerging play, which has generated considerable interest because of its potential for new hydrocarbon production from both sandstone and mudrock reservoirs. However, the play’s stratigraphic and depositional relations are complex and directly relate to the play’s exploration challenges. Productive Woodbine and Eagle Ford (sub-Clarksville) sandstones intertongue with a poorly defined, subregional mudrock-dominated interval that thins southwestward toward the San Marcos arch. We propose dividing this succession into two intervals: (1) the Lower unit, a high-gamma-ray unit at the base of this mudrock succession that is inferred to be equivalent to the Maness Shale of the Washita Group and to part of the lower Eagle Ford Group on the San Marcos arch, and (2) an Upper unit, a basinward-thickening zone of consistently lower gamma-ray-log facies inferred to be equivalent to the Woodbine Group, Pepper Shale, and the Eagle Ford Group of the East Texas basin. Because the Cenomanian–Turonian boundary occurs within the Eagle Ford Group of the East Texas basin and the lower Eagle Ford section of the San Marcos arch, most of the Maness-through-Eagle Ford succession exists as a much-thinned section on the arch. Basinwide integration of the Woodbine sequence-stratigraphic framework shows that the number of fourth-order sequences in the unit decreases westward from 14 in the basin axis to no more than 9 in the most active part of the Eaglebine play because of their systematic depositional pinch out approaching the western basin margin. The Eagle Ford Group consists of three fourth-order sequences capped by the sub-Clarksville sandstones that accumulated after the major late Cenomanian–early Turonian flooding event recorded by a basinwide transgressive systems tract (TST) at the base of the unit. Depositional systems of the Woodbine Group vary within the study area, even between stratigraphically adjacent systems. On-shelf siliciclastic systems include fluvial-dominated-delta; incised-valley-fill fluvial and nearshore-marine; and wave-dominated-delta deposits.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-11-01
    Description: We investigate the geomechanical behavior of hydraulic-fracturing-induced microseismicity. Microseismic events are commonly used to discern stimulation patterns and hydraulic fracture evolution; however, techniques beyond fracture mapping are required to explain the mechanisms of microseismicity. In this series we present an approach to combine seismological and geomechanical techniques to investigate how microseismicity relates to propagating hydrofractures as well as existing natural fractures and faults. Part 1 describes the first analysis step, which is to characterize the microseismic events by their source parameters, focal mechanisms, and fault-plane orientations. These parameters are used to determine the mechanical conditions responsible for activation of discrete populations or subpopulations of microseismic events that then can be interpreted in their geological and operational context. First, we compare microseismic fault-plane populations from a Mississippian Barnett Shale, Texas data set that are determined using a traditional double-couple model (shear only) with a tensile source model (hybrid events), which may be more suitable for hydraulic fracturing conditions. Second, we employ a new method to distinguish fault planes from auxiliary planes using iterative stress inversion and critical stress (instability) selection criteria. The result is an enhanced microseismic characterization that includes geomechanical parameters such as slip tendency and local activation stress state during the operation. Using this approach on the Barnett Shale data, two microseismic fault sets are resolved: an inclined northeast–southwest set with dominant shear, and a vertical north–south set with more hybrid behavior. The results are used in part 2 to further investigate the heterogeneity of the stimulations and to compare models for microseismic activation.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-11-01
    Description: We investigate the hydraulic fracturing process by analysis of the associated microseismicity. In part 1, we recognized double-couple and hybrid microseismic events and their fault plane orientations. Critical stress (instability) and stress inversion techniques were used to assess fracture activation conditions. In part 2, we apply results from the tensile source model to investigate how activated faults relate to the stress state and geologic setting. We assess potential mechanisms for induced microseismicity including leakoff and diffuse pressurized fracture network flow, stress shadowing adjacent to large parent hydraulic fractures, and crack tip stress perturbations. Data are from the Mississippian Barnett Shale, Texas, and include microseismic events from sequential pumping stages in two adjacent horizontal wells that were recorded in two downhole monitor wells, as well as operations, wellbore-derived stress, and natural fracture data. Results point to activation of inclined faults whose orientation is dominantly northeast–southwest and vertical north–south faults. The activation stress states for a range of modeling scenarios show stress rotation, decreased mean stress, and increased deviatoric stress. This stress state cannot be explained by sidewall leakoff in the stress shadow region adjacent to hydrofractures, but is consistent with hybrid and shear activation obliquely ahead of pressurized fractures. Information about hydrofracture evolution and operationally related dynamic stress change is obscured by geomechanical heterogeneity that is likely geologic in nature. The most compelling observation is that the most highly misoriented microseismic faults occur in the same vicinity as a carbonate-dominated submarine fan feature that was previously expected to act as a minor fracture barrier.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-11-01
    Description: Outcrops of the middle Eagle Ford Formation in south-central Texas reveal well-developed joint networks in subhorizontal competent carbonate (chalk) beds and less well developed networks in interlayered incompetent calcareous mudrock beds. Northeast-striking bed-perpendicular joints in competent beds have the longest trace lengths and are abutted by northwest-striking joints. All observed joints terminate vertically in incompetent beds. Normal faults are common but less abundant than joints; dominantly dip north, northwest, or southeast; and are abutted by the joint sets and, thus, predated jointing. The faults cut multiple competent and incompetent beds, providing vertical connectivity across mechanical layering. Products of hybrid and shear failure, the dip of these faults is steep through competent beds and moderate through incompetent beds, resulting in refracted fault profiles with dilation and calcite precipitation along steep segments. Fluid inclusions in fault zone calcite commonly contain liquid hydrocarbons. Rare two-phase fluid inclusions homogenized between about (1) 40 and 58°C, and (2) 90 and 100°C, suggesting trapping of aqueous fluids at elevated temperatures and depths on the order of 2 km (6562 ft). Fluid inclusion and stable isotope geochemistry analyses suggest that faults transmitted externally derived fluids. These faults likely formed at depths equivalent to portions of the present-day oil and gas production from the Eagle Ford play in south Texas. Faults connect across layering and provide pathways for vertical fluid movement within the Eagle Ford Formation, in contrast to vertically restricted joints that produce bed-parallel fracture permeability. These observations elucidate natural fractures and induced hydraulic fracturing within the Eagle Ford Formation.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-11-01
    Description: Two of the major joint-driving mechanisms are joint-normal stretching and poroelastic shrinkage, and these lead to joint sets commonly associated with structural bending and natural hydraulic fracturing, respectively. Regardless of joint-driving mechanism, joint infilling is a nonhomogeneous Poisson process in the presence of stress shadows. Through probability modeling, we show that in all cases joint spacing is best fit with gamma distributions. The shape parameter of the best-fit gamma distribution to joint-spacing data is a quantitative means to assess the extent of saturation, which is represented in a new parameter, the joint-saturation ratio (JSR). To test the utility of JSR, we call upon published structural bending joint data (Elk Basin, Lilstock, and Rives plate-bending experiment). The shape parameters for these well-developed structural bending joints are equal to around three, corresponding to a JSR of approximately 30%. Using the same analysis on the spacing of natural hydraulic fractures collected from outcrops in the gas-prone Devonian sections of the Appalachian Basin, we find that natural hydraulic fractures differ in two aspects from structural bending joints. First, the joint spacing is proportional to bed thickness in bedded rocks but not in gas shale sections. Second, the joint saturation of natural hydraulic fractures is generally lower than in well-developed structural bending joints. Thus, the JSR is a means to distinguish the joint-driving mechanism and to represent joint-saturation level independent of bed thickness effects. It can be used to distinguish natural fractures from drilling-induced fractures and to improve the fracture-network modeling.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-10-01
    Description: Understanding the factors controlling the development of accommodation above collapsing salt diapirs and their influence on reservoir distribution is critical in reducing exploration risk in salt-influenced sedimentary basins. In this study, we use an integrated subsurface data set (three-dimensional and two-dimensional seismic reflection, wire-line-log, core, and biostratigraphic data) from the Upper Jurassic of the Cod terrace, Norwegian North Sea, to understand the influence of rifting on accommodation creation and shallow-marine deposition during the initial-stage collapse of salt diapirs. We demonstrate that rifting resulted in the rise and fall of salt diapirs, and the formation of supra-diapir minibasin-style depocenters that became sites for deposition and preservation of up to 500 m (1640 ft) thick net-transgressive shallow-marine sandstone reservoirs. Maximum thickness is recorded in the axis of minibasins with a reduction in thickness of up to 65% noted on their flanks. The stratigraphic architecture of individual minibasins is variable. Proximal-to-distal facies variations from shoreface to offshore shelf and commensurate changes in reservoir quality occur over scales larger than individual minibasins. These deposits contain large sand volumes, and are not confined to areas of localized sandstone subcrop. In combination, these features suggest that the minibasins formed a linked network supplied by regional sediment-routing systems. The results of this study provide a new tectono-stratigraphic model for prediction of reservoir presence, thickness, and continuity in diapir-collapse minibasins along salt walls in the Central North Sea, and in other less mature, data-poor basins where reservoirs have been identified in depocenters above salt walls.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-11-01
    Description: Production from self-sourced reservoirs relies on natural and induced fracturing for permeability and conductance of hydrocarbons to the producing wellbores, thus natural or induced fracturing is often a key to success in unconventional reservoir plays. On the other hand, fractures may compromise seals and large or well-connected fractures or faults may cause undesirable complications for unconventional reservoirs. Natural and induced fractures are influenced by (1) mechanical stratigraphy, (2) pre-existing natural deformation such as faults, fractures, and folds, and (3) in situ stress conditions, both natural and as modified by stimulation and pressure depletion. This special issue of the AAPG Bulletin elucidates some of these structural geologic and geomechanical controls. Understanding the occurrence and controls on natural and induced faulting and fracturing in self-sourced reservoirs is a key component for developing effective approaches for exploiting self-sourced reservoirs.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-10-01
    Description: We analyze fracture-density variations in subsurface fault-damage zones in two distinct geologic environments, adjacent to faults in the granitic SSC reservoir and adjacent to faults in arkosic sandstones near the San Andreas fault in central California. These damage zones are similar in terms of width, peak fracture or fault (FF) density, and the rate of FF density decay with distance from the main fault. Seismic images from the SSC reservoir exhibit a large basement master fault associated with 27 seismically resolvable second-order faults. A maximum of 5 to 6 FF/m (1.5 to 1.8 FF/ft) are observed in the 50 to 80 m (164 to 262 ft) wide damage zones associated with second-order faults that are identified in image logs from four wells. Damage zones associated with second-order faults immediately southwest of the San Andreas Fault are also interpreted using image logs from the San Andreas Fault Observatory at Depth (SAFOD) borehole. These damage zones are also 50–80 m wide (164 to 262 ft) with peak FF density of 2.5 to 6 FF/m (0.8 to 1.8 FF/ft). The FF density in damage zones observed in both the study areas is found to decay with distance according to a power law F=F0 r-n. The fault constant F0 is the FF density at unit distance from the fault, which is about 10–30 FF/m (3.1–9.1 FF/ft) in the SSC reservoir and 6–17 FF/m (1.8–5.2 FF/ft) in the arkose. The decay rate BLTN13173eq3 ranges from 0.68 to 1.06 in the SSC reservoir, and from 0.4 to 0.75 in the arkosic section. This quantification of damage-zone attributes can facilitate the incorporation of the geometry and properties of damage zones in reservoir flow simulation models.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-10-01
    Description: A new stable isotope approach was used to determine the total dissolved solids concentration and stable isotope composition for oil sands drill core extracted porewater at the Suncor-Firebag oil sands field in northeastern Alberta, Canada. A stable isotope mixing approach was used to correct for contamination by drilling fluids in the porewater samples. The mean isotopic compositions of oxygen (δ18O) and hydrogen (δ2H) in water for fluid samples from 12 wells at Firebag were -20.5 ± 1.4%0 and -157 ± 11%0, respectively. The mean total dissolved solids (TDS) concentration of the reservoir formation water in 12 sampled wells was 1100 ± 400 mg/L (1ω). These results suggest that the McMurray Formation water at Firebag is primarily derived from Holocene groundwater recharge, and that the water within the bitumen reservoir is similar to groundwater well samples obtained within the McMurray Formation at Firebag. The results obtained in this study are consistent with regional trends and previously proposed local hydrogeological flow conditions.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-10-01
    Description: We present a new method to determine the total dissolved solids (TDS) concentration and the stable isotope composition of drill-core-derived Porewater in oil sands reservoirs of northeastern Alberta, Canada. The technique described here uses two end-member mixing relationships between the stable isotope compositions of drilling fluids and formation waters from mechanically extracted porewater samples to calculate the formation water TDS, δ2H, and δ180 values. Analysis of water samples extracted directly from McMurray Formation drill core provides an inexpensive and robust advance in the ability to characterize the properties of reservoir pore waters that can be widely deployed because of the ubiquity of drill-core sampling. Porewater data from three oil sands wells from different locations within the Athabasca region are presented in this study. Water derived from these wells had TDS values of 860 to 45, 000 mg/L, δ2H values of -172 to -149%0, and δ180 values of -22.4 to -19.3%0. These values are consistent with regional trends in formation water salinity and stable isotope compositions, and illustrate the wide range of TDS values that can be found in McMurray Formation waters. The ability to characterize aqueous fluids within bitumen-saturated reservoirs is a new development that enables measurement of aqueous fluid properties that is not easily obtained by other sampling means. This methodology provides a tool to understand the origin and movement of reservoir water related to natural groundwater flow, or to anthropogenic influence by steam injection. Novel in situ extraction technologies that use electromagnetic heating systems may also benefit from detailed characterization of aqueous reservoir fluids to accurately determine the properties of the reservoir porewater.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-10-01
    Description: Our work on the dark pelitic sediments of the Polish Carpathians and eastern Alps shows that these Jurassic through Lower Cretaceous sediments owe their organic content to a combination of global processes, such as climatic changes and changes to the carbonate compensation depth (CCD), and local controls, such as basin morphology, input of terrestrial organic material, and local volcanic activity. These sediments developed in basins both floored by oceanic crust as well as within the continental crust (North European platform). Our data show that these anoxic or poorly oxygenated deposits (average total organic carbon [TOC] value is around 2.5 wt. %) were laid down in the individual basins at different times, from the Late Jurassic to the Barremian and almost continuously up to the early Cenomanian, a period of 30 to 50 m.y., and their thickness reached hundreds of meters. This long time span made it impossible to distinguish precisely the known Aptian and Albian oceanic anoxic events (OAE). Our data show that sedimentation of dark organic-rich deposits was not only controlled by global events such as climatic and CCD changes, but also by local ones as a result of differences in their basin morphology and development, input of land-plant detritus, and local volcanic activity. As an example of the anoxic succession, a detailed description of the black sediments of the proto-Silesian basin is presented. Some of these anoxic shales were buried to a depth of a few thousand meters during the folding and overthrusting movements. We propose that these shales could represent a unique shale-oil and shale-gas resource in an intensely structured basin.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-10-01
    Description: A normal-fault network from Milne Point, Alaska, is investigated focusing on characterizing geometry, displacement, strain, and different fault interactions. The network, constrained from three-dimensional seismic reflection data, comprises two generations of faults: Cenozoic north-northeast–trending faults and Jurassic west-northwest–trending faults, which highly compartmentalize Upper Triassic to Lower Cretaceous reservoirs. The west-northwest–trending faults are influenced by a similarly oriented underlying structural grain. This influence is characterized by increases in throw on several faults, strain localization, reorientation of faults and an increase in linkage maturity. Reconstructing fault plane geometries and mapping spatial variations in throw identified key characteristic features in their interactions and reactivation of pre-existing structures. Faults are divided into isolated, abutting, and splaying faults. Isolated faults exhibit a range of displacement profiles depending on the degree of restriction at fault tips. Fault splays accommodate step-like decreases in throw along larger main faults with a throw maximum at the intersection with the main fault. Throw profiles of abutting faults are divided into two groups: early stage abutting faults with throw minima at both the isolated and abutting tips, and developed abutting faults with throw maxima near the abutting tip. Developed abutting faults accumulate throw after initial abutment, locally reactivating and transferring throw onto the pre-existing fault. Two abutting faults can link kinematically by reactivating a segment of the pre-existing fault forming a trailing fault. The motion sense of the trailing fault can be synthetic or antithetic to the reactivated pre-existing fault, producing increases or decreases in the throw of the pre-existing fault, respectively.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-10-01
    Description: A probabilistic method has been devised to assess the geologic realism of subsurface well-to-well correlations that entail the lateral tracing of geologic bodies across well arrays with constant spacing. Models of geo-body correlability (based on the ratio between correlatable and penetrated geo-bodies) are obtained from total probabilities of penetration and correlation, which are themselves dependent on the distribution of lateral extent of the geo-body type. Employing outcrop-analog data to constrain the width distribution of the geo-bodies, it is possible to generate a model that describes realistic well-to-well correlation patterns for given types of depositional systems. This type of correlability model can be applied for checking the quality of correlation-based subsurface interpretations by assessing their geologic realism as compared with one or more suitable outcrop analogs. The approach is illustrated by generating total-probability curves that refer to fluvial channel complexes and that are categorized on the basis of outcrop-analog classifications (e.g., braided system, system with 20% net-to-gross), employing information from a large fluvial geo-body database, Fluvial Architecture Knowledge Transfer System (FAKTS), which stores information relating to fluvial architecture. From these total-probability functions, values can be drawn to adapt the correlability models to any well-array spacing. The method has been specifically applied to rank three published alternative interpretations of a stratigraphic interval of the Travis Peak Formation (Texas), previously interpreted as a braided fluvial depositional system, in terms of realism of correlation patterns as compared to (1) all analogs recorded in FAKTS and considered suitable for large-scale architectural characterization, and (2) a subset of them including only systems interpreted as braided.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-10-01
    Description: By using recently acquired three-dimensional seismic data, a seismic-based sediment provenance analysis was conducted in the late Paleogene sequence of the western slope of the Bozhong sag, Bohai Bay Basin, where the main depositional center was between the Shaleitian uplift and the Shijiutuo uplift. Three styles of sediment-transport pathways were identified in the study area, including sediment transport via (1) faulted troughs, (2) incised valleys, and (3) structural transfer zones. The Paleogene deposits in the study area were primarily controlled by the faulted-trough pathways, which are northeast–southwest oriented in between different northeast–southwest-trending faults with sediments derived primarily from the Shaleitian uplift. The sediments to the east of the Shaleitian uplift were interpreted to have sourced via relatively long-distance transportation and deposited along the northeast–southwest-trending faulted troughs, forming a deltaic sediment belt. In contrast, sediments derived from the Shijiutuo uplift, which were transported by the incised-valley pathways and deposited in the southern margin of the uplift, formed proximal fan-deltas. The depositional systems in the study area are characterized by the coupling of source–faulted-trough pathway–deltaic–lacustrine deposits in the eastern margin of the Shaleitian uplift and that of source–incised-valley-pathway–fan-deltaic–lacustrine deposits near the southern margin of the Shijiutuo uplift. The proposed spatial distribution of the sand bodies extends the distribution range for potential reservoir sand bodies beyond the currently exploration area. This work may serve as a useful reference for sedimentary provenance analysis in other types of sedimentary basins.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-11-01
    Description: In the central Appalachians, fluid inclusion microthermometry and oxygen and carbon stable isotope analysis vein minerals from the Middle Devonian shale section show that fluid conditions (pressure, temperature, and composition) are constantly changing during deformation and vary spatially across the fold-thrust belt. The earliest fractures in the region formed prior to folding, early during the Alleghenian orogeny as the rocks were buried into the oil generation window. They contain minerals that contain degraded hydrocarbon inclusions and basinal brine inclusions. During multiple vein reopening events, later mineral stages contain increasingly more mature hydrocarbon fluids. Late quartz mineralization is pervasive and typically contains the high-temperature brine inclusions. The vein opening history is related to changes in fluid connectivity associated with (1) burial by over-thrusting and/or syntectonic depositional loading and/or (2) folding during uplift and erosion. Initial fracture formation and fluid-trapping depths range from 3.5 km (2.2 mi) in the Plateau province and along the Appalachian structural front to 4.5 to 5.0 km (2.8 to 3.1 mi) in the Valley and Ridge province. Late-stage fracturing and fracture reopening is related to the maximum syntectonic burial, which varies from about 4 km (2.5 mi) in the Plateau to over 11 km (6.8 mi) in the Valley and Ridge. Fractures in the Valley and Ridge and western Pennsylvania Plateau provinces cannot be categorized into the simple J1 and J2 classification model. Burial history modeling indicates that fractures forming within and near the end of the oil window were NNW- and NW-striking, not ENE-striking, J1 fractures.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-11-01
    Description: Natural fractures have long been suspected as a factor in production from shale reservoirs because gas and oil production commonly exceeds the rates expected from low-porosity and low-permeability shale host rock. Many shale outcrops, cores, and image logs contain fractures or fracture traces, and microseismic event patterns associated with hydraulic-fracture stimulation have been ascribed to natural fracture reactivation. Here we review previous work, and present new core and outcrop data from 18 shale plays that reveal common types of shale fractures and their mineralization, orientation, and size patterns. A wide range of shales have a common suite of types and configurations of fractures: those at high angle to bedding, faults, bed-parallel fractures, early compacted fractures, and fractures associated with concretions. These fractures differ markedly in their prevalence and arrangement within each shale play, however, constituting different fracture stratigraphies—differences that depend on interface and mechanical properties governed by depositional, diagenetic, and structural setting. Several mechanisms may act independently or in combination to cause fracture growth, including differential compaction, local and regional stress changes associated with tectonic events, strain accommodation around large structures, catagenesis, and uplift. Fracture systems in shales are heterogeneous; they can enhance or detract from producibility, augment or reduce rock strength and the propensity to interact with hydraulic-fracture stimulation. Burial history and fracture diagenesis influence fracture attributes and may provide more information for fracture prediction than is commonly appreciated. The role of microfractures in production from shale is currently poorly understood yet potentially critical; we identify a need for further work in this field and on the role of natural fractures generally.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-09-01
    Description: Lacustrine basins are key oil-productive areas of the world. Because fewer lacustrine exist than marine basins, lacustrine systems are relatively less well studied. This paper investigates fluvial-lacustrine depositional environments and their representation in wireline logs in the lower part of the Green River Formation, Uinta Basin, Utah. The five principal depositional environments of the lower Green River Formation are (1) deep lacustrine, (2) shallow lacustrine, (3) lacustrine delta, (4) coastal plain, and (5) alluvial plain. Deep-lake environments are characterized by laminated oil shales and fine-grained carbonates. These facies exhibit anomalously high neutron porosity, and low bulk density relative to other settings. Shallow-lake environments are dominated by weakly laminated to massive gray mudstones, and limestones, with occasional thin high-bulk-density sandstones. Lacustrine deltas (both sand-prone and mud-prone) grade from shallow-lake muds to ripple-laminated to cross-bedded sandstones. The upward decrease in clay can be seen in the gamma-ray, neutron-porosity, and bulk-density profiles of deltaic intervals. Coastal plain mudstones have a greenish hue, and frequently contain organic matter. Channels in coastal plain settings are typically thin, isolated, and heterolithic. Alluvial plain channels tend to be sandier, thicker, and less isolated than coastal plain channels. Alluvial mudstones are reddish with abundant pedogenic features. The vertical association of depositional environments in the lower Green River indicates both high-amplitude and high-frequency lake-level fluctuations. However, the macro-scale trend shows a rapid deepening of the lake lower in the section, followed by a gradual filling of the accommodation, and a gradual flooding near the top of the studied interval. The lower Green River depositional environments form key petroleum system components. Oil shales in the deep lacustrine settings are the major source rock, and coastal plain muds are a potential minor source. Regional seals are formed by deposits of tight lacustrine shale and carbonate deposited in both marginal and deep lacustrine settings. Delta, coastal plain, and alluvial plain sands form the principal reservoirs. Some deep lacustrine mudstones and carbonates are also potential unconventional reservoirs. Correlation of outcrop observations from well log expressions allows depositional environments to be interpreted in the Uinta Basin and other lacustrine basins.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-10-01
    Description: Tracing petroleum migration pathways is essential for predicting petroleum occurrence and reducing exploration risks associated with hydrocarbon charge, but a difficult task because of rapid lateral and vertical facies changes in lacustrine basins. An integration of geological, geophysical, and geochemical analysis is employed to investigate the origin of crude oil, the carrier-bed architecture, and migration pathways from source to trap in the JX1-1 oil field, Liaodong Bay subbasin, Bohai Bay Basin. Detailed geochemical studies suggest that three potential source-rock intervals (E2S3, E2S1 and E3d3) exist in the Liaodong Bay subbasin, and crude oil in the JX1-1 field was derived from the E2S3 and E2S1 source rocks. The carrier beds from E2S3 and E2S1 source rocks to the trap were characterized using geophysical data. The fan-delta sandstone in the E2S3 Member has an immediate contact with E2S3 source rock and served as dominant conduit for the expulsion and migration of oil generated from E2S3 source rock. The E3d3 braided-delta sandstones overlying the E2S1 source rock served as dominant conduit for E2s1-sourced oil. The focusing of petroleum migration pathways and the merge of migration pathways in E2S3 and E3d3 sandstones account for the accumulation of the JX1-1 field and the mixing of E2S3- and E2s1-sourced oil in the field. This study suggests that the distribution of permeable sandstones and their stratigraphic contact with the source rocks are key for petroleum migration and occurrence, and integration of geophysical, geological, and geochemical studies provide an effective way to trace petroleum migration pathways.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-09-01
    Description: We present the results of a seismic interpretational study of amplitude anomalies in the East Falkland basin using an extensive grid of approximately 8000 line kilometers (4971 line miles) of high-resolution two-dimensional seismic reflection data. We mapped 474 discrete amplitude anomalies developed within a dominantly hemipelagic and highly reflective megasequence of the Cretaceous to early Cenozoic that is distributed in a northeast–southwest swath across the basin. The amplitude anomalies range from a kilometer to over 25 km (15.5 mi) in lateral extent, have sharp lateral amplitude cutoffs, sometimes at faulted margins, and are invariably associated with reflections with negative acoustic impedance contrasts. They exhibit class III amplitude versus offset (AVO) responses, frequency shadows, and push-down effects, from which the amplitude anomalies are interpreted as related to free gas. All the amplitude anomalies are characterized by vertical clustering, and based on this strong spatial association we refer to these mappable groups of amplitude anomalies as vertical anomaly clusters (VACs). We suggest that VACs form by strongly focused vertical hydrocarbon migration in a heterogeneous stacked sequence of poor-quality reservoirs interbedded with layers with lower permeability, and where the necessary bottom-to-top cross-stratal flow exploits a well-developed fault and fracture network. Similar vertical associations of gas-related amplitude anomalies could be expected in many other basins, so VACs may be a useful direct hydrocarbon indicator with specific genetic significance for hydrocarbon migration mechanisms.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-10-01
    Description: The long and narrow island Hopen exposes mainly the Late Triassic De Geerdalen Formation, which is time-equivalent to the upper part of the Snadd Formation: a proven hydrocarbon reservoir in the Barents Sea. The De Geerdalen Formation on Hopen has previously been superficially described in a regional context and has been suggested to represent tidally dominated, paralic coastal plain deposits. Recent sedimentological investigations explain subtle but important variability in sedimentary architecture pointing to different depositional processes. Tidal and fluvial channel deposits show equal size and geometry, but are distinguishable by virtue of characteristic internal heterogeneities and structures. Lateral correlation along the island suggests that the channel-sandstone deposits are positioned at different stratigraphic levels and that they were deposited in a dynamic, paralic depositional environment. Based on the interpreted gross depositional environments, sequence-stratigraphic intervals are defined; these can be used as a basis for correlation. The scales of depositional architectures at Hopen are found to be directly relatable to subsurface seismic data from the upper part of the Snadd Formation in the Barents Sea, and, through regionally correlatable maximum flooding surfaces, these depositional elements can be put in a stratigraphic context. Additionally, some of the channel features demonstrated at Hopen are of comparable size and geometry to plan-view channel bodies extracted from seismic attribute mapping in the Snadd Formation. Detailed sedimentological studies undertaken on Hopen explain these depositional elements in more detail than can be resolved in subsurface data, with implications for future exploration efforts in the Barents Sea.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-09-01
    Description: This paper, the first of a two-part series, provides a sound background of the volumetric response of sorptive porous media to gas depletion under in situ boundary conditions in producing reservoirs. As a first step, the overall rock matrix deformation is split into two separate components, elastic deformation caused by mechanical decompression and the nonelastic swelling or shrinkage strain induced by adsorption or desorption of gas. The shrinkage or swelling compressibility is estimated by the first derivative of pure adsorption or desorption strain with variations of gas pressure. The pore volume, or fracture, compressibility is then estimated by application of a semi-empirical model under uniaxial strain conditions. Based on the proposed model, both shrinkage or swelling and pore volume compressibilities show strong pressure dependence for sorbing gases and are thus variables for which gas production is controlled by desorption of gas. In Part 2, the experimental work under best-replicated in situ conditions is described in detail along with the results obtained and application of the theory presented in this paper.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-09-01
    Description: Wireline logs were used to document the stratigraphic framework of Upper Devonian–Mississippian strata in the Arkoma Basin, and maps of high-gamma ray (HGR) log response were used to analyze the spatial distribution of potential source rocks in the Woodford–Chattanooga and Fayetteville–Caney shale-gas systems. The Woodford–Chattanooga shale is a transgressive deposit that accumulated on an arid continental margin influenced by marine upwelling and minimal sediment influx. A broad HGR depocenter along the southwestern margin of the basin includes two areas of higher accommodation containing the thickest HGR concentrations. Basin-wide patterns of HGR likely reflect broad tectonic influence on accommodation. The proportion of chert in the formation increases eastward and southward, likely reflecting latitudinal and bathymetric influence on the accumulation of siliceous ooze. The Lower Mississippian Burlington sequence, which lies between the two shale-gas systems, comprises carbonate ramp and distal shale deposits. Proximal ramp facies form an apron around the southern flank of the Ozark uplift and grade radially basinward into distal facies. An Upper Mississippian succession in the east includes lowstand deposits of the Batesville delta, which onlap the relict Burlington ramp. Basinwide, the succession includes the transgressive Fayetteville–Caney shale overlain by regressive deposits of the proximal Pitkin Limestone and distal upper Fayetteville (Arkansas) and “false” Caney (Oklahoma) shale. The HGR shale is concentrated in an area of intermediate accommodation on the western margin of the Mississippi Embayment and just basinward of the Pitkin Limestone pinchout in Arkansas, and in an area of relatively high accommodation in Oklahoma.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-09-01
    Description: Polygonal faults are compaction-related normal faults that develop in very fine-grained sedimentary successions. Despite their ubiquity, few studies have highlighted the application of polygonal fault mapping to identifying deep-water sandstone reservoirs. We use three-dimensional seismic and borehole data from the Måløy slope, offshore Norway to demonstrate that the distribution, cross-sectional geometry, and throw characteristics of polygonal faults can be used to locate deep-water sandstone reservoirs. We identify two tiers of polygonal faults in the Cretaceous to lower Paleogene succession. The lowermost tier is stratigraphically restricted to the lower Barremian-to-lowermost Turonian succession and likely formed during the early Turonian. The uppermost tier spans the entire Cretaceous succession and likely formed during the Maastrichtian. An abrupt decrease in the thickness of the upper tier occurs where a 92-m (302-ft) thick, sandstone-rich slope fan is developed in the upper Turonian interval. Furthermore, the lower tips of faults in the upper tier, which are defined by anomalously high throw gradients, cluster at the top of the sandstone, resulting in decoupling of this tier from the underlying, lower Turonian tier. We interpret that faults in the upper tier nucleated above the reservoir across the entire slope and that the slope-fan sandstone acted as a mechanical barrier to downward fault propagation, resulting in abrupt thinning of the tier at the sandstone pinchout. We demonstrate polygonal faults are not simply an academic curiosity; mapping of these enigmatic structures can have practical applications for the delineation of a variety of reservoir types in hydrocarbon-bearing sedimentary basins worldwide.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-08-01
    Description: James Frederick Read was born in Manchester, England in April 1944, however, he spent most of his youth in Perth, Australia. Fred earned his undergraduate (honors) degree from the University of Western Australia in 1966. Fred stayed on at the university to study modern and Pleistocene carbonates in Shark Bay with Brian Logan, earning his Ph.D. in 1971. The entirety of Fred’s Ph.D. was published in AAPG special memoirs. Fred continued at the University of Western Australia as a Postdoctoral Research Fellow studying the Devonian backreef, Pillara Formation in the Canning Basin of Western Australia. In 1973 Fred moved to Virginia to become an assistant professor in the rapidly expanding Department of Geological Sciences at Virginia Polytechnic Institute and State University (Virginia Tech) in Blacksburg. Fred was promoted to associate professor in 1978 and full professor in 1983. Fred taught at Virginia Tech for 38 years until he retired in 2012 and is now Emeritus Professor. He and his students published more than 120 papers, and he guided 12 M.S. students and 20 Ph.D. and postdoctoral students to complete their research during his tenure. Many of Fred’s M.S. students are leaders in carbonate research in the energy industry. Many of Fred’s Ph.D. students also became leaders in carbonate research in the petroleum industry (ExxonMobil, Chevron, BP, etc.) and others went on to become faculty members at universities all over the United States (including Massachusetts Institute of Technology; California Institute of Technology; University of California, Riverside; University of California, Davis; University of New Mexico; and Texas A&M University) mentoring a new generation of carbonate sedimentologists and stratigraphers. Fred and his students made many lasting contributions in understanding carbonate platform morphologies, computer modeling of carbonate platforms, diagenesis, paleoclimate and paleooceanographic interpretations of carbonate platforms, and reservoir characterization. Fred and his students twice …
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-08-01
    Description: The Upper Ordovician Montoya Group crops out in southern New Mexico and westernmost Texas and records predominantly subtidal deposition on a gently dipping carbonate ramp that was subsequently almost entirely dolomitized. The Montoya Group is a third-order composite sequence composed of six regionally correlative, shallowing-upward, third-order depositional sequences (M0–M5). Sequence M0 has sandstone at its base that is overlain by skeletal packstone-grainstone. Sequence M0 occurs only locally and was likely deposited in a topographic low formed during regional development of the unconformity following El Paso Group deposition. Sequence M1, marking the initial widespread transgression over the Ellenburger unconformity, consists of sandstone updip that passes downramp into skeletal packstone. The highstand systems tract (HST) of M1 consists of a prograding skeletal grainstone that was subaerially exposed upramp. Sequence M2, which contains the second-order maximum flooding surface, has abundant subtidal cherty carbonate at its base, which shallows upward into a widespread, prograding coral packstone-grainstone in the HST. Sequence M3 also contains abundant downramp chert that passes upramp into an aggrading crinoidal shoal and farther upramp into peritidal mudstone. Sequence M4 records an extensive basinward shift in facies as peritidal burrowed and cryptalgalaminated mudstone prograded over subtidal carbonate. Sequence M5 is only locally developed downramp and consists of crinoidal grainstone with abundant evidence of subaerial exposure. A regional unconformity separates the Montoya Group from the Silurian Fusselman Dolostone or younger units. Parasequences (meter-scale cycles) recording low- to moderate-amplitude relative sea level fluctuations are ubiquituous features at individual outcrops but are difficult to correlate regionally. The abundance of syn- or early depositional chert in the subtidal facies indicates that the Montoya Group was deposited within a region of strong regional upwelling along southern Laurentia. This early formed chert was the reservoir facies in a successful Upper Ordovician gas play in Ward and Reeves Counties, Texas.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-08-01
    Description: Basin-scale correlations in the subsurface generally rely on lithostratigraphic information synthesized from wireline logs, and, in some cases, well cuttings, and cores. However, lithostratigraphic boundaries are often diachronous, and, as such, the correlations based upon them may not provide reliable timelines. In this paper, we use δ13C carb data from well cuttings and a core to generate chronostratigraphic logs of Late Ordovician strata spanning the Black River Group, Trenton Group, and Utica Shale across the subsurface of New York State. Although particular δ13C carb values may be impacted by (primary) variability in local dissolved inorganic carbon reservoirs and/or (secondary) diagenetic alteration, it is possible to identify spatially and stratigraphically coherent patterns in δ13C carb, which can be used to effectively correlate time-equivalent strata on a basin-wide (or even global) scale, including across lithologies (e.g., between limestone and calcareous shale). The present study emphasizes the use of well cuttings, as these are commonly collected during drilling and can provide the maximum lateral resolution for subsurface correlation. Parallel geochemical (percent carbonate and total organic carbon) and isotopic (δ18O carb and δ13C org) data are used to understand the origin of stratigraphic and spatial variability in the δ13C carb signal and to identify diagenetic alteration. Stratigraphically coherent δ13C carb trends across New York were used to identify six isotopically distinct packages of time-equivalent strata within these formations. Pairing chemostratigraphic and lithostratigraphic data improves our ability to document the diachronous nature of lithologic contacts, including the base of the Utica Shale, which is progressively younger moving west through New York.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-07-01
    Description: Well-exposed three-dimensional fluvial outcrops of the high net-sand content middle Wasatch Formation in Three Canyon, Uinta Basin, Utah, were used to create and develop a new methodology for describing the architecture of fluvial systems. The methodology builds on the works of Campbell, Jackson, Allen, and Miall, and addresses sedimentary processes, scale, and temporal context for reservoir and non-reservoir bodies. The methodology developed herein is a three-level hierarchical framework that classifies meso- and macroscale architecture of fluvial systems. The three-level hierarchy contains, from smallest to largest: stories, elements, and archetypes. Eight story types provide the foundational building blocks of this framework and account for sedimentation in both channel-belt and floodplain-belt elements, including (1) downstream accreting; (2) laterally accreting; (3) erosionally-based fine-grained fill; (4) fine-grained fill associated with laterally accreting; (5) levee; (6) splay; (7) crevasse or overbank channels; and (8) floodplain fines. Two types of elements are recognized: (1) channel belt and (2) floodplain belt. An archetype consists of a channel-belt element and its genetically related floodplain-belt elements. Two distinct upward-stacking patterns differentiate braided and meandering archetypes. In deconstructing the evolution of archetypes, three distinct associations between channel-belt elements and their adjacent splays are documented: (1) unassociated splays; (2) associated coeval splays; and (3) associated non-coeval splays.Width and thickness for stories, channel-belt elements, and archetypes are documented providing dimensional constraints for analog high-net-sand-content fluvial systems. Additionally, this methodology provides object-based models with shape-defined reservoir and nonreservoir geobodies that realistically compare to fluvial systems.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-07-01
    Description: Bohai Bay Basin, located in eastern China, is considered a Cenozoic rifted basin. The basin is atypical in terms of its Neogene-Quaternary postrift subsidence history in that it experienced intensive tectonic reactivation, rather than the relative tectonic quiescence experienced during this stage by most rift basins. This Neogene-Quaternary tectonic reactivation arose principally in response to two tectonic events: (1) activity on a dense array of shallow faults and (2) accelerated tectonic subsidence that occurred during the postrift stage. These two events were neither strictly temporally nor spatially equivalent. The dense array of shallow faults form a northwest-southeast-trending belt in the central part of the basin, with displacement induced by the reactivation of older northeast- and northwest-trending basement faults and an associated substantial component of strike-slip displacement occurring after 5.3 Ma. The intensive reactivation of these faults contributed to the atypically accelerated rate of postrift tectonic subsidence of the basin that commenced ca. 12 Ma. However, this was not the sole cause of this accelerated tectonic subsidence: A combination of geological activity deep within the crust led to the buildup of intraplate stresses, and this, combined with ongoing thermal subsidence, acted as an additional contributory factor that drove unusually high rates of subsidence for this basin. This episode of accelerated postrift tectonic reactivation resulted in conditions favorable for hydrocarbon accumulation.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-07-01
    Description: Modeling naturally fractured reservoirs requires a detailed understanding of the three-dimensional (3D) fracture-network characteristics, whereas generally only one-dimensional (1D) data, often suffering from sampling artifacts, are available as inputs for modeling. Additional fracture properties can be derived from outcrop analogs with the scanline method, but it does not capture their full two-dimensional (2D) characteristics. We propose an improved workflow based on a 2D field-digitizing tool for mapping and analyzing fracture parameters as well as relations to bedding. From fracture data collected along 11 vertical surface outcrops in a quarry in southeast France, we quantify uncertainties in modeling fracture networks. The fracture-frequency distribution fits a Gaussian distribution that we use to evaluate the intrinsic fracture density variability within the quarry at different observation scales along well-analog scanlines. Excluding well length as a parameter, we find that 30 wells should be needed to fully (i.e., steady variance) capture the natural variability in fracture spacing. This illustrates the challenge in trying to predict fracture spacing in the subsurface from limited well data. Furthermore, for models with varying scanline orientations we find that Terzaghi-based spacing corrections fail when the required correction angle is more than 60°. We apply the 1D well analog data to calculate 3D fracture frequency using stereological relations and find that these relations only work for cases in which the orientation distribution is accurately described, as results greatly vary with small changes in the orientation distribution.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-08-01
    Description: Intrasalt carbonates of the Ediacaran Cambrian Ara Group constitute a significant reservoir element of the intrasalt "stringer" play in Oman, in which dolomitic carbonates are encased in salt at depths of 3 to 7 km (1.9 to 4.3 mi). These reservoir carbonates have significant microbial influences. Although Ara Group reservoirs are mostly latest Precambrian, the models developed here may be applicable to younger microbially dominated carbonate reservoirs in basins of higher salinity when higher organisms are excluded, in lacustrine settings where calcified invertebrates are not a significant source of carbonate, or after periods of mass extinction before faunal recovery. A broad range of carbonate facies provides the context in which to understand the origin of the microbialite-dominated reservoirs developed across both ramp and rimmed shelf profiles. Major facies associations include carbonate-evaporite transition zone, deep ramp and slope, subtidal microbialites, clastic-textured carbonates, and restricted peritidal carbonates. Microbialites are subdivisible into a number of facies that all have significance in terms of understanding environmental history as well as reservoir properties, and that help in predicting the location of reservoir fairways. Microbially influenced facies include shallow subtidal thrombolites with massive clotted textures and very high initial porosities (〉50%), shallow subtidal pustular laminites with cm-scale variability of lamina morphology, deeper subtidal crinkly laminites that show mm-scale variability of lamina morphology, and intertidal tufted laminates that show mm- to cm-scale tufted textures. Other reservoir facies are more conventional grainy carbonates including ripple cross-stratified grainstone-packstone, hummocky cross-stratified grainstone-packstone, flat pebble conglomerate, ooid and intraclast grainstone-packstone, and Cloudina grainstone-pack: stone. These facies are almost invariably dolomitized and all have moderate to excellent reservoir quality. These facies comprise carbonate platforms, broken up during salt tectonics, that range up to 160 m (525 ft) in thickness and extended laterally, prior to halokinesis, for tens to over 50 km (31 mi). The distribution of reservoir facies follows sequence stratigraphic predictions, with microbialites occurring in every accommodation profile. Late highstand and early transgressive systems tracts favor greater lateral extent of thrombolite build-ups, whereas later transgressive to early highstand system tracts favor greater lateral discontinuity and compartmentalization of buildup reservoir facies. Pustular laminites occur in close association with thrombolite buildups but form laterally extensive sheets in late transgressive to late highstand periods. Crinkly laminites form during late transgressive to early highstand systems tracts and may represent maximum flooding intervals when the flux of carbonate sediment was greatly reduced allowing pelagically derived organics to accumulate.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-08-01
    Description: High-resolution carbon isotope signatures were integrated with core descriptions and gamma-ray logs and used as a correlation tool for better age control to refine the sequence-stratigraphic framework of the Shu'aiba Formation in Saudi Arabia. The carbon isotope variations of the shallow carbonate Shu'aiba Formation correlate well with the Tethyan pelagic record and indicate an original marine C-13 signature for the Lower Cretaceous (Aptian) Shu'aiba Formation. Carbon isotope values of the Shu'aiba Formation range from 1.5 parts per thousand to 6 parts per thousand with minimal or no diagenetic effects. Oxygen isotope values range from -2.7 parts per thousand to -6.7 parts per thousand but were reset during diagenesis and cannot be applied for chemostratigraphic analysis. The Shu'aiba strontium isotope records range from 0.707356 to 0.707454 and differ slightly from the standard Aptian record because of diagenesis. The Shu'aiba Formation platform is a large-scale composite sequence (similar to 7 m.y.) composed of seven lower Aptian high-frequency sequences and two additional upper Aptian prograding sequences. Carbon isotope data were calibrated with core descriptions and gamma-ray logs to construct two detailed high-resolution stratigraphic cross sections. Carbon isotope data help refine the internal stratigraphic architecture of the Shu'aiba Formation especially on the slope and open-marine settings across the lower to upper Aptian boundary. The carbon isotope values of the Hawar "dense" unit in the base of the Shu'aiba Formation record major depletion corresponding to the global dissociation of methane hydrates, followed by major positive excursion associated with the deposition of Lithocodium and Bacinella facies coeval with the global oceanic anoxic event la. The rudist buildups on the platform have a value of approximately 4.5 parts per thousand at their base in most wells with a general uniform carbon isotope trend, followed by a gradual depletion to the top of the Shu'aiba Formation. Although some variations are observed in carbon isotope values associated with the lateral facies change from lagoon, margin, slope, open-marine, and basinal settings, carbon isotope trends are still similar and can be correlated fieldwide. Little evidence exists of meteoric diagenesis associated with the depletion of carbon isotope values. However, oxygen isotope records were possibly affected by meteoric diagenesis associated with subaerial exposure surfaces but did not get affected by the late Aptian hiatus, despite the massive karstification observed in cores. The good correlation between the original carbon isotope fluctuations and the third-order sequence framework of the Shu'aiba Formation fits well with the established carbon isotope curves that have been used as a proxy for global sea level changes during the Early Cretaceous. This study also shows that small-scale parasequences (fifth-order or higher) can be calibrated with carbon isotope curves, but they most likely represent relative sea level changes with local effects instead of global signatures. Application of high-resolution carbon isotope stratigraphy for the Shu'aiba Formation significantly constrain the stratigraphic framework and will lead to better geologic and simulation models for reservoir characterization and development.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-05-01
    Description: Peak-stress zones and pressure anomalies around wellbores through moving salt bodies threaten well integrity. Our study provides a conceptual framework to identify the depth of peak zones of shear stress in moving salt sheets, whether autochthonous or allochthonous. We use analytical methods to determine the principal stress magnitudes and stress-trajectory orientations caused by ductile creep in crystalline salt. The four basic flow types analyzed are Couette, Poiseuille, no-slip squeezing, and free-slip squeezing flow. The analytical formulae specify velocity gradients, shear-stress profiles, and principal stress trajectories. The analytical results are compared with detailed flow visualizations in numerical and physical models of salt tectonics to test our generic conclusions. We offer guidelines to optimize drilling operations in moving salt bodies. The study suggests that stress trajectories and zones of viscous stress peaks in salt layers should be mapped routinely during well planning, in addition to the traditional analysis of elastic stresses and safe mud-pressure windows for controlling wellbore stability.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-06-01
    Description: The First Eocene reservoir at the Wafra Field produces heavy oil from very porous dolomites at depths of similar to 1000 to 1300 ft (300 to 400 m) in the Paleocene-Eocene Umm Er Radhuma Formation. Porosity is commonly 30-50%, permeability is commonly 100-2000 md, and those reservoir characteristics were determined largely by diagenesis. Early diagenesis is dominated by dolomitization, dissolution associated with dolomitization, and precipitation of sulfates. Petrographic and stable isotopic characteristics support dolomitization and sulfate precipitation in evaporated (refluxing) seawater during shallow burial. The highest permeabilities occur in subtidal facies. Low-permeability tidal-flat facies stratify the reservoir. Heavy oil preferentially filled high-permeability dolomites; whereas, low-permeability tidal-flat facies are commonly filled with water because their pore throats are too small to allow migration of viscous oil into the rock. This reservoir's very high porosity is probably related to its shallow burial and early oil emplacement. Late-stage diagenesis is dominated by bacterial sulfate reduction (BSR) that caused dissolution of sulfate nodules, calcite cementation, sulfur precipitation, and oil biodegradation. The BSR is indicated by very low delta C-13 compositions of calcite cements (-17.1 to -34.9%0, Peedee Belemnite standard), which require an organic carbon source; probably oil. The oxygen isotopic compositions of the calcites support precipitation from formation waters similar to those in the reservoir now. The BSR probably started during initial oil emplacement and continues to the present. The BSR was heterogeneous resulting in produced oils with gravities of 14-21 degrees API. Even heavier oils are present that could not flow during primary production. Primary production was likely greatest in areas and intervals with lighter, less viscous oil.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-04-01
    Description: It is gratifying to receive a prompt discussion from Dunham and Saller (2014) on my article (Shanmugam, 2013a). Although the focus of my article was on internal waves and internal tides, the primary purpose of their discussion is to defend and reiterate their original interpretation of Miocene deep-water sands as turbidites in the Kutei Basin, Indonesia (Saller et al., 2006). Even if some of these issues were debated earlier (Saller et al., 2008a; Shanmugam, 2008a), I welcome this timely opportunity to address the lingering problems associated with deep-water processes and related facies models. ### Upward-Coarsening Trends In defending their turbidite interpretation and in expressing their resistance to alternative process interpretations, Dunham and Saller (2014, p. 856) state, “…Shanmugam states, ‘A key vertical trend of internal-tide deposits of submarine continental environments is the upward-coarsening trend with bidirectional cross-bedding.’ We generally do not see this in our deep-water Kutei Basin sands, and we document this with core photographs presented in Saller et al. (2006) and (2008b). Consequently, we do not see why Shanmugam would conclude that these sands were deposited by internal tides in the absence of any such evidence.” What is confusing is that Dunham and Saller have taken my statement totally out of context and have conveyed an entirely different meaning than I had intended. For clarity, here is the context in its entirety with my statement (Shanmugam, 2013a, p. 823): “The other problem is that a particular vertical trend can be present in more than one environment. For example, a key vertical trend of internal-tide deposits of submarine continental environments is the upward-coarsening trend with bidirectional cross-bedding (figure 15A). However, such trends are also common in deposits unrelated to internal waves and internal tides in channelized environments. For example, upward-coarsening trends with bidirectional cross-bedding have been documented in estuarine tidal sand …
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-03-01
    Description: The presence of hydrocarbon-bearing sandstones within the Eocene of the Forties area was first documented in 1985, when a Forties field (Paleocene) development well discovered the Brimmond field. Further hydrocarbons in the Eocene were discovered in the adjacent Maule field in 2009. Reservoir geometry derived from three-dimensional seismic data has provided evidence for both a depositional and a sand injectite origin for the Eocene sandstones. The Brimmond field is located in a deep-water channel complex that extends to the southeast, whereas the Maule field sandstones have the geometry of an injection sheet on the updip margin of the Brimmond channel system with a cone-shape feature emanating from the top of the Forties Sandstone Member (Paleocene). The geometry of the Eocene sandstones in the Maule field indicates that they are intrusive and originated by the fluidization and injection of sand during burial. From seismic and borehole data, it is unclear whether the sand that was injected to form the Maule reservoir was derived from depositional Eocene sandstones or from the underlying Forties Sandstone Member. These two alternatives are tested by comparing the heavy mineral and garnet geochemical characteristics of the injectite sandstones in the Maule field with the depositional sandstones of the Brimmond field and the Forties sandstones of the Forties field. The study revealed significant differences between the sandstones in the Forties field and those of the Maule and Brimmond fields), both in terms of heavy mineral and garnet geochemical data. The Brimmond-Maule and Forties sandstones therefore have different provenances and are genetically unrelated, indicating that the sandstones in the Maule field did not originate by the fluidization of Forties sandstones. By contrast, the provenance characteristics of the depositional Brimmond sandstones are closely comparable with sandstone intrusions in the Maule field. We conclude that the injectites in the Maule field formed by the fluidization of depositional Brimmond sandstones but do not exclude the important function of water from the huge underlying Forties Sandstone Member aquifer as the agent for developing the fluid supply and elevating pore pressure to fluidize and inject the Eocene sand. The study has demonstrated that heavy mineral provenance studies are an effective method of tracing the origin of injected sandstones, which are increasingly being recognized as an important hydrocarbon play.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-03-01
    Description: We use three-dimensional seismic reflection data and new map-based structural restoration methods to define the displacement history and characteristics of a series of tear faults in the deep-water Niger Delta. Deformation in the deep-water Niger Delta is focused mostly within two fold-and-thrust belts that accommodate downdip shortening produced by updip extension on the continental shelf. This shortening is accommodated by a series of thrust sheets that are locally cut by strike-slip faults. Through seismic mapping and interpretation, we resolve these strike-slip faults to be tear faults that share a common detachment level with the thrust faults. Acting in conjunction, these structures have accommodated a north–south gradient in westward-directed shortening. We apply a map-based restoration technique implemented in Gocad to restore an upper stratigraphic horizon of the late Oligocene and use this analysis to calculate slip profiles along the strike-slip faults. The slip magnitudes and directions change abruptly along the lengths of the tear faults as they interact with numerous thrust sheets. The discontinuous nature of these slip profiles reflects the manner in which they have accommodated differential movement between the footwall and hanging-wall blocks of the thrust sheets. In cases for which the relationship between a strike-slip fault and multiple thrust faults is unclear, the recognition of this type of slip profile may distinguish thin-skinned tear faults from more conventional deep-seated, throughgoing strike-slip faults.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-02-01
    Description: As the pace of drilling activity in the Marcellus Formation in the northern Appalachian Basin has increased, so has the number of alleged incidents of stray natural gas migration to shallow aquifer systems. For this study, more than 2300 gas and water samples were analyzed for molecular composition and stable isotope compositions of methane and ethane. The samples are from Neogene- to Middle Devonian-age strata in a five-county study area in northeastern Pennsylvania. Samples were collected from the vertical and lateral sections of 234 gas wells during mud gas logging (MGL) programs and 67 private groundwater-supply wells during baseline groundwater-quality testing programs. Evaluation of this geochemical database reveals that microbial, mixed microbial and thermogenic, and thermogenic gases of different thermal maturities occur in some shallow aquifer systems and throughout the stratigraphy above the Marcellus Formation. The gas occurrences predate Marcellus Formation drilling activity. Isotope data reveal that thermogenic gases are predominant in the regional Neogene and Upper Devonian rocks that comprise the potable aquifer system in the upper 305 m (1000 ft) (average δ13C1 = −43.53‰; average δ13C2 = −40.95‰; average δDC1 = −232.50‰) and typically are distinct from gases in the Middle Devonian Marcellus Formation (average δ13C1 = −32.37‰; average δ13C2 = −38.48‰; average δDC1 = −162.34‰ ). Additionally, isotope geochemistry at the site-specific level reveals a complex thermal and migration history with gas mixtures and partial isotope reversals (δ13C1 〉 δ13C2) in the units overlying the Marcellus Formation. Identifying a source for stray natural gas requires the synthesis of multiple data types at the site-specific level. Molecular and isotope geochemistry provide evidence of gas origin and secondary processes that may have affected the gases during migration. Such data provide focus for investigations where the potential sources for stray gas include multiple, naturally occurring, and anthropogenic gases.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-02-01
    Description: The influence of moisture, temperature, coal rank, and differential enthalpy on the methane (CH4) and carbon dioxide (CO2) sorption capacity of coals of different rank has been investigated by using high-pressure sorption isotherms at 303, 318, and 333 K (CH4) and 318, 333, and 348 K (CO2), respectively. The variation of sorption capacity was studied as a function of burial depth of coal seams using the corresponding Langmuir parameters in combination with a geothermal gradient of 0.03 K/m and a normal hydrostatic pressure gradient. Taking the gas content corresponding to 100% gas saturation at maximum burial depth as a reference value, the theoretical CH4 saturation after the uplift of the coal seam was computed as a function of depth. According to these calculations, the change in sorption capacity caused by changing pressure, temperature conditions during uplift will lead consistently to high saturation values. Therefore, the commonly observed undersaturation of coal seams is most likely related to dismigration (losses into adjacent formations and atmosphere). Finally, we attempt to identify sweet spots for CO2-enhanced coalbed methane (CO2-ECBM) production. The CO2-ECBM is expected to become less effective with increasing depth because the CO2-to-CH4 sorption capacity ratio decreases with increasing temperature and pressure. Furthermore, CO2-ECBM efficiency will decrease with increasing maturity because of the highest sorption capacity ratio and affinity difference between CO2 and CH4 for low mature coals.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-01-01
    Description: Data derived from core and well-logs are essentially one-dimensional and determining eolian system type and likely dimensions and orientation of architectural elements present in subsurface eolian reservoir successions is typically not possible from direct observation alone. This is problematic because accurate predictions of the three-dimensional distribution of interdune and dune-plinth elements that commonly form relatively low-permeability baffles to flow, of net:gross, and of the likely distribution of elements with common porosity-permeability properties at a variety of scales in eolian reservoirs is crucial for effective reservoir characterization. Direct measurement of a variety of parameters relating to aspects of the architecture of eolian elements preserved as ancient outcropping successions has enabled the establishment of a series of empirical relationships with which to make first-order predictions of a range of architectural parameters from subsurface successions that are not observable directly in core. In many preserved eolian dune successions, the distribution of primary lithofacies types tends to occur in a predictable manner for different types of dune sets, whereby the pattern of distribution of grain-flow, wind-ripple, and grain-fall strata can be related to set architecture, which itself can be related back to original bedform type. Detailed characterization of individual eolian dune sets and relationships between neighboring dune and interdune elements has been undertaken through outcrop studies of the Permian Cedar Mesa Sandstone and the Jurassic Navajo Sandstone in southern Utah. The style of transition between lithofacies types seen vertically in preserved sets, and therefore measurable in analogous core intervals, enables predictions to be made regarding the relationship between preserved set thickness, individual grain-flow thickness, original bedform dimensional properties (e.g., wavelength and height), the likely proportion of the original bedform that is preserved to form a set, the angle of climb of the system, and the likely along-crest variability of facies distributions in sets generated by the migration of sinuous-crested bedforms. A series of graphical models depict common facies arrangements in bedsets for a suite of dune types and these demonstrate inherent facies variability.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-01-01
    Description: Analog outcrops are commonly used to develop predictive reservoir models and provide quantitative parameters that describe the architecture and facies distribution of sedimentary deposits at a subseismic scale, all of which aids exploration and production strategies. The focus of this study is to create a detailed geological model that contains realistic reservoir parameters and to apply nonlinear acoustic full-waveform prestack seismic inversion to this model to investigate whether this information can be recovered and to examine which geological features can be resolved by this process. Outcrop data from the fluviodeltaic sequence of the Book Cliffs (Utah) are used for the geological and petrophysical two-dimensional model. Eight depositional environments are populated with average petrophysical reservoir properties adopted from a North Sea field. These units are termed lithotypes here. Synthetic acoustic prestack seismic data are then generated with the help of an algorithm that includes all internal multiples and transmission effects. A nonlinear acoustic full-waveform inversion is then applied to the synthetic data, and two media parameters, compressibility (inversely related to the square of the compressional wave velocity v P ) and bulk density, ρ , are recovered at a resolution higher than the shortest wavelength in the data. This is possible because the inversion exploits the nonlinear nature of the relationship between the recorded data and the medium contrast properties. In conventional linear inversion, these details remain masked by the noise caused by the nonlinear effects in the data. Random noise added to the data is rejected by the nonlinear inversion, contributing to improved spatial resolution. The results show that the eight lithotypes can be successfully recovered at a subseismic scale and with a low degree of processing artifacts. This technique can provide a useful basis for more accurate reservoir modeling and field development planning, allowing targeting of smaller reservoir units such as distributary channels and lower shoreface sands.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-01-01
    Description: In reservoir engineering, hydrodynamic properties can be estimated from downhole electrical data using heuristic models (e.g., Archie and Kozeny-Carman's equations) relating electrical conductivity to porosity and permeability. Although proven to be predictive for many sandstone reservoirs, the models mostly fail when applied to carbonate reservoirs that generally display extremely complex pore network structures. In this article, we investigate the control of the three-dimensional (3-D) geometry and morphology of the pore network on the electrical and flow properties, comparing core-scale laboratory measurements and 3-D x-ray microtomography image analysis of samples from a Miocene reefal carbonate platform located in Mallorca (Spain). The results show that micrometer- to centimeter-scale heterogeneities strongly influence the measured macroscopic physical parameters that are then used to evaluate the hydrodynamic properties of the rock, and therefore, existing models might not provide accurate descriptions because these heterogeneities occur at scales smaller than those of the integration volume of the borehole geophysical methods. However, associated with specific data processing, 3-D imagery techniques are a useful and probably unique mean to characterize the rock heterogeneity and, thus, the properties variability.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-02-01
    Description: This article describes a 250-m (820-ft)-thick upper Eocene deep-water clastic succession. This succession is divided into two reservoir zones: the lower sandstone zone (LSZ) and the upper sandstone zone, separated by a package of pelitic rocks with variable thickness on the order of tens of meters. The application of sequence-stratigraphic methodology allowed the subdivision of this stratigraphic section into third-order systems tracts. The LSZ is characterized by blocky and fining-upward beds on well logs, and includes interbedded shale layers of as much as 10 m (33 ft) thick. This zone reaches a maximum thickness of 150 m (492 ft) and fills a trough at least 4 km (2 mi) wide, underlain by an erosional surface. The lower part of this zone consists of coarse- to medium-grained sandstones with good vertical pressure communication. We interpret this unit as vertically and laterally amalgamated channel-fill deposits of high-density turbidity flows accumulated during late forced regression. The sandstones in the upper part of this trough are dominantly medium to fine grained and display an overall fining-upward trend. We interpret them as laterally amalgamated channel-fill deposits of lower density turbidity flows, relative to the ones in the lower part of the LSZ, accumulated during lowstand to early transgression. The pelitic rocks that separate the two sandstone zones display variable thickness, from 35 to more than 100 m (115–〉328 ft), indistinct seismic facies, and no internal markers on well logs, and consist of muddy diamictites with contorted shale rip-up clasts. This section is interpreted as cohesive debris flows and/or mass-transported slumps accumulated during late transgression. The upper sandstone zone displays a weakly defined blocky well-log signature, where the proportion of sand is higher than 80%, and a jagged well-log signature, where the sand proportion is lower than 60%. The high proportions of sand are associated with a channelized geometry that is well delineated on seismic amplitude maps. Several depositional elements are identified within this zone, including leveed channels, crevasse channels, and splays associated with turbidity flows. This package is interpreted as the product of increased terrigenous sediment supply during highstand normal regression.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-08-01
    Description: The Khufai Formation is the oldest carbonate platform of the Cryogenian to lowermost Cambrian Huqf Supergroup. A stratigraphic characterization of this unit includes detailed facies descriptions, a sequence-stratigraphic interpretation, and evaluation of lateral heterogeneity and overall ramp evolution. The Khufai Formation comprises one and one-half depositional sequences with a maximum flooding interval near the base of the formation and a sequence boundary within the upper peritidal facies. Most of the deposition occurred during highstand progradation of a carbonate ramp. Facies tracts include outer-ramp and midramp mudstones and wackestones, ramp-crest grainstone shoal deposits, and extensive inner-ramp, microbially dominated peritidal deposits. Outcrops in the Oman Mountains are deep-water deposits, including turbiditic grainstone and wackestone interbedded with siliciclastic-rich siltstone and crinkly laminite. Facies patterns and parasequence composition are variable both laterally across the outcrop area and vertically through time because of a combination of ramp morphology, siliciclastic supply, and possible syndepositional faulting. The lithostratigraphic boundary between the Khufai Formation and the overlying Shuram Formation is gradational and represents significant flooding of the carbonate platform. The stratigraphic characterization presented here along with the identification of key facies and diagenetic features will help further future exploration and production of hydrocarbons from the Khufai Formation.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-06-01
    Description: Forty-one crude oil samples from the North Slope of Alaska have variable diamondoid and biomarker concentrations, indicating different extents of oil cracking. Some of the samples are mixtures of high- and low-maturity components containing high concentrations of both diamondoids and biomarkers. Compound-specific isotope analysis of diamondoids (CSIAD) shows that the Shublik Formation accounts for the higher maturity component in several mixed oil samples, whereas biomarkers, especially those providing information on the age of the source rock, show either a Cretaceous Hue-gamma ray zone (GRZ) or Triassic Shublik source for the lower maturity component. Oil samples in this study mainly correlate to six source rocks based on their biomarker characteristics and CSIAD. Chemometrics of selected source-related biomarker and isotope ratios helps to classify the oil samples into different genetic families. The source rocks include carbonate and shale organofacies of the Triassic Shublik Formation, Jurassic Kingak Shale, Lower Cretaceous Pebble shale, Lower Cretaceous Hue-GRZ, and Cenozoic Canning Formation. Oil presumed to originate from a seventh source rock interval, the Carboniferous–Permian Lisburne Group, was not clearly differentiated from well-established Shublik oil by any geochemical age-related parameter or CSIAD, which suggests that the Lisburne is not an effective source rock for any of the studied oil samples. Four oil samples collected from wells located north of the Barrow arch show unique biomarker characteristics, but age-related biomarker parameters indicate likely Triassic source rock organofacies that is not represented by any of the samples from south of the arch. The source rock for these four oil samples appears to be a clay-rich equivalent of the calcareous Shublik Formation that occurs to the north of the Barrow arch.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-06-01
    Description: This paper describes reservoir properties in the Triassic Skagerrak Formation in the Central North Sea. This prolific sandstone reservoir often possesses anomalously high porosity for its depth of burial. Simple statistical analysis of wire-line-log-derived porosity data is used to derive empirical trends as a function of both depth and vertical effective stress that show variations between neighboring hydrocarbon fields and between different parts of the basin. Porosity data from the Josephine (J) Ridge (Quadrant 30 of the United Kingdom Continental Shelf [UKCS]) show a marked degradation with depth, but the porosities are significantly higher than in similarly deeply buried areas such as the Puffin high to the west (Quadrant 29) or the Forties–Montrose high to the north (Quadrant 22). To understand the porosity patterns better the data have been analyzed by plotting against vertical effective stress. This allows a better comparison to be made between fields and wells within the high-pressure–high-temperature (HPHT) realm. High pressure here refers to fluid pressures above 10,000 psi (703 kg∕cm), whereas high temperatures are above 300°F (149°C). Results show that porosity and fractional effective reservoir (the proportion of net sandstone with a porosity greater than a predetermined cutoff) decrease systematically with increasing vertical effective stress. Data from the different J Ridge fields fall on a common compaction trend even though they are derived from structures with marked variations in present-day depth of burial and static formation overpressure. Trends from the other areas of the Central Graben (the Puffin and Forties–Montrosehighs) indicate more indurate reservoir states. The observed porosity trends are independent of fluid type within the reservoir and the absolute magnitude of overpressure. The main observed hydrocarbon effect is the result of buoyancy forces. The analysis supports the contention that, after accounting for facies-related grain-size variations, compaction controls average reservoir properties. Differences in compaction state between areas are postulated to relate primarily to structurally controlled timing of overpressure development relative to burial, and how these affect the resultant vertical effective stress history. Both the Puffin and Forties–Montrose highs are directly attached to the basin margins across stepped faults. These marginal terraces were open to lateral fluid flow for longer probably because across-fault seals were only established late in the burial history when higher temperatures promoted cementation and the destruction of permeability within fault cores. As a result, they developed overpressures in the last 5–10 m.y. or so and are largely normally compacted. The J Ridge horst block is hydrologically more isolated within the basin center by across-fault juxtaposition seals. Here, overpressure development appears to have started earlier, possibly between 50 and 60 Ma, retarding compaction and allowing preservation of higher porosities. Compaction continues to present day driven by the large static vertical effective stress gradients in these deeply buried reservoirs. The observed empirical trends offer a means of predicting average reservoir properties in deep untested exploration targets.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-06-01
    Description: The Mississippian section of the United States mid-continent Anadarko Basin (Oklahoma and Kansas) has been a prolific hydrocarbon reservoir since the 1920s, yet large-scale regional correlations between individual stratigraphic units remain difficult because of the complex and heterogeneous nature of the carbonate facies. New sedimentologic and carbon isotopic data from a nearly continuous Mississippian core (Pan American 1 Albert Severin) from the Anadarko Basin, Oklahoma (Garfield County), United States, provides insight into the potential of carbon-isotope chemostratigraphy as a correlation tool in complex stratigraphic successions for which biostratigraphic data are not available. The carbon isotopic composition (δ13C) of whole-rock samples was analyzed to determine if stratigraphie trends reflect global changes in the carbon cycle. A large positive shift (+5.6%c) in the lower Tournaisian (Kinderhookian), consistent values (averaging +2.3‰) in the upper Tournaisian through middle Viséan (upper Kinderhookian-Meramecian), and a negative shift (-2.3‰) in the uppermost Viséan (lower Chesterian) correspond to trends in the carbon isotopic compositions (δ13C values) from other regional data sets, including the global type section at Arrow Canyon, Nevada. Further analysis of the data reveals that isotopic compositions are not facies dependent, suggesting that marine chemistry and depositional changes in the Anadarko Basin reflect global environmental changes during the Mississippian. These inferences demonstrate the potential of the Pan American 1 Albert Severin core to be a Mississippian-type section for the Anadarko Basin, and that stable-isotope chemostratigraphy can be used as a correlation tool to better understand the subsurface in complex successions, such as the Mississippian limestone of the United States mid-continent.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-06-01
    Description: Faults are important components of hydrocarbon and other reservoirs; they can affect trapping of fluids, flow pathways, compartmentalization, production rates, and through these, production strategies and economic outcomes. Displacement gradients on faults are associated with off-fault deformation, which can be manifest as faulting, extension fracturing, or folding. In this work, displacement gradients—both in the slip direction and laterally—on a well-exposed large-displacement (seismic-scale) normal fault within the Balcones fault system of south-central Texas are correlated with anomalous deformation patterns adjacent to the fault. This anomalous deformation consists of two superimposed small-displacement fault systems, including (1) an earlier set that formed in response to a displacement gradient in the slip direction, and (2) a later set of oblique faults that formed in a perturbed stress-and-strain field in response to a lateral displacement gradient on the fault. Bed dip, fault-cutoff relationships, and small-displacement fault patterns in the adjacent rock volume inform strain and paleostress estimates. Results indicate that seismically resolvable displacement gradients on and bed dips adjacent to the seismic-scale fault provide a means by which the smaller (subseismic-scale and off-fault) deformation features can be predicted both in terms of orientation and intensity. Specifically, lateral displacement gradients on a normal fault with dip-slip displacement will generate fault-strike-parallel extension, causing anomalously oriented (in the far-field stress context) deformation features adjacent to the fault. Displacement gradient analysis can be used to help predict the characteristics of subseismic-scale deformation within a reservoir adjacent to a seismic-scale normal fault.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-06-01
    Description: We present a detailed structural analysis of geometry and temporal development of the Cenozoic faults in the southwestern part of the Qaidam Basin—the largest petroliferous sedimentary basin and the only one producing oil and gas within the Tibetan Plateau, northwest China—based on three-dimensional (3D) seismic and well-log data. The Cenozoic faults are mostly steep (50–70°), basement-involved reverse faults trending primarily west-northwest and secondarily north–south. The two fault sets are commonly linked to each other by west-northwest-oriented faults bending either southward at their eastern tips or northward at the western tips, and originated possibly from inversion of pre-existing extensional faults in response to the far-field effect of the Cenozoic India–Eurasia collision. Faults or fault segments active during different time periods were identified from isopach maps and verified via seismic reflection profiles, showing that the faults became active as early as the Paleocene in the southern part of the southwest Qaidam Basin and propagated dominantly northward and subordinately eastward over time. Measurement of throws on major faults indicates that fault activity intensified over time and culminated since the mid-Miocene. These faults have been an important factor in forming the oil fields in the southwest Qaidam Basin by improving permeability, forming anticlinal traps, and acting as conduits for oil migrating from source rocks to the reservoirs.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-05-01
    Description: The dolomite-hosted, Lower Triassic Feixianguan Formation from the Northeast Sichuan Basin, China, is an economically important reservoir that contains sour natural gas. These reservoirs were initially filled with oil, later replaced by gas during burial to 7,000 m followed by uplift to about 4,000 m. We have studied the souring process (thermochemical sulfate reduction: TSR) and diagenetic evolution of the Feixianguan Formation using detailed petrology, fluid inclusion studies and stable isotope data from carbonate minerals. PreTSR diagenesis included (in time order), the eodiagenetic main stage of dolomitization by a reflux mechanism, fracture-related calcite cementation, barite, quartz, celestite, and fluorite mineralization and a dolomite recrystallization stage. TSR resulted in anhydrite replacement by calcite, petroleum destruction, formation of sulfur-rich pyrobitumen and elemental sulfur and generation of large volumes of H2S, CO2. Diagenesis during TSR can be subdivided into oil-stage TSR and gas-stage TSR with oil-stage TSR defined by the presence of primary oil and bitumen inclusions in the TSR calcite. Based on aqueous inclusion homogenization temperatures, oil-stage TSR commenced at a temperature of 116ºC with a mode between 130 and 140 ºC. Gas-stage TSR started at a temperature of 135ºC and continued to maximum burial temperatures of about 220ºC. Trace amounts of pyrite, barite, quartz and celestite grew during TSR. PostTSR diagenesis was dominated by fracture-related calcite precipitation as well as celestite and anhydrite crystallization. Formation water salinity increased from depositional values (3.5 wt%) up to 24 wt% during preTSR dolomite recrystallization, probably due to an influx of evaporite-associated water from the overlying Jialingjiang Formation, although preTSR barite, quartz, celestite, and fluorite mineralization was associated with a transient decrease in water salinity. During TSR, formation water salinity decreased from 26 wt% to as low as 4 wt% as a result of water being produced during TSR reactions.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-05-01
    Description: Predicting long-term production from gas shale reservoirs has been a major challenge for the petroleum industry. To better understand how production profiles are likely to evolve with time, we have conducted laboratory experiments examining the effects of confining stress and pore pressure on permeability. Experiments were conducted on intact core samples from the Barnett, Eagle Ford, Marcellus, and Montney shale reservoirs. The methodology used to measure permeability allows us to separate the reduction of permeability with depletion (because of the resultant increase in effective confining stress) and the increase in permeability associated with Knudsen diffusion and molecular slippage (also known as Klinkenberg) effects at very low pore pressure. By separating these effects, we are able to estimate the relative contribution of both Darcy and diffusive fluxes to total flow in depleted reservoirs. Our data show that the effective permeability of the rock is significantly enhanced at very low pore pressures (〈1000 psi [〈6.9 MPa]) because of the slippage effects. We use the magnitude of the Klinkenberg effect to estimate the effective aperture of the flow paths within the samples and compare these estimates to scanning electron microscopy image observations. Our results suggest effective flow paths to be on the order from tens of nanometers in most samples to 100-200 nm, in a relatively high-permeability Eagle Ford sample. Finally, to gain insight on the scale dependence of permeability measurements, the same core plugs were crushed, and permeability was again measured at the particle scale using the so-called Gas Research Institute method. The results show much lower permeability than the intact core samples, with very little correlation to the measurements on the larger scale cores.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-04-01
    Description: In his article, “Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands” (Shanmugam, 2013), Shanmugam provides a very detailed account of processes involved in oceanic currents. He stresses that he has done this because he is concerned that the misinterpretation of baroclinic sands caused by turbidite deposits could have economic risks for the petroleum industry. As an example of one such possible misinterpretation, he refers to deep-water sands in the Kutei Basin in Indonesia that were described as turbidites by Saller et al. (2006). This is the second time that Shanmugam has questioned our interpretation published in the AAPG Bulletin (Saller et al., 2006). In his 2008 discussion (Shanmugam, 2008) and in his current 2013 article, he asserts that the Kutei deep-water sands might not be turbidites but instead might have been deposited by deep-marine tidal bottom currents. Shanmugam is well known for his decades of opposition to the turbidity-current model for deep-water sand deposition; those interested in this history can find pertinent references under the name Shanmugam in the reference lists of Shanmugam (2008, 2013). Of course, we replied to Shanmugam’s 2008 discussion (Saller et al., 2008a), where we noted that the purpose of our 2006 article was to document the presence of source rock–quality terrestrial organic matter within deep-water sands. Associated shales did not have high organic content. Cores from our deep-water discovery wells contained fining-upward sand layers with abundant fossil terrestrial-plant leaves. The total organic carbon content within some of these sand layers exceeded 5%, and the analysis of oil, gas, and condensate from our deep-water Kutei Basin discoveries indicated a land-plant source for the hydrocarbons, consistent with fossil leaves. We were pleased to present this information to the scientific community, in the hope that it might …
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-04-01
    Description: The Ardath Shale and Scripps Formation exposed along Black’s Beach north of La Jolla, California, record a deep-water channelized slope system of an Eocene forearc basin. The outcrop exposure, which is approximately 100 m (330 ft) high by 1.7 km (~1 mi) long, offers insight into reservoir distribution and connectivity within coarse-grained, confined, deep-water channel systems. To use this outcrop as a quantitative subsurface analog, a detailed two-dimensional lithologic model was constructed from measured sections and interpreted photopanels. Elastic rock properties, including compressional-wave velocity, shear-wave velocity, and density typical of shallow offshore west African reservoirs were used to construct an impedance model. This model was convolved with 15-, 25-, and 50-Hz quadrature-phase Ricker wavelets to generate near- and far-angle stack one-dimensional and two-dimensional synthetic seismic reflection models. Because deep-water lithofacies have distinct amplitude-variation-with-offset behaviors and the interpretation of surfaces is intimately coupled with predicting lithofacies, simple bed interface models of conglomerate, sandstone, interbedded sandstone and mudstone, and muddy sandy debrite were used to build a template for successful interpretation. Interpretation of these forward seismic models demonstrates (1) the limits of and uncertainty associated with the interpretation of seismic data at different frequencies commonly encountered in the exploration, development, and production of deep-water reservoirs; and (2) how the combination of near- and far-angle seismic data can be used to interpret channel-fill lithofacies and improve seismic interpretation. Large-scale channel complex set surfaces with significant impedance contrast (e.g., conglomerate overlying interbedded sandstone and mudstone) are readily interpretable at all frequencies with an increasing vertical error of 5 to 30 m (16 to 98 ft) from 50 to 15 Hz, respectively. Channel and channel complex surfaces can only be accurately mapped on the 50-Hz data, albeit with significant uncertainty. Near- to far-angle stack changes enable the identification of upward-fining, amalgamated, and fine-grained channel-fill lithofacies. Far-angle seismic reflections can provide a more detailed image of boundaries defining channel architecture and reservoir facies distribution.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-02-01
    Description: The Molasse Basin represents the northern foreland basin of the Alps. After decades of exploration, it is considered to be mature in terms of hydrocarbon exploration. However, geological evolution and hydrocarbon potential of its imbricated southernmost part (Molasse fold and thrust belt) are still poorly understood. In this study, structural and petroleum systems models are integrated to explore the hydrocarbon potential of the Perwang imbricates in the western part of the Austrian Molasse Basin. The structural model shows that total tectonic shortening in the modeled north–south section is at least 32.3 km (20.1 mi) and provides a realistic input for the petroleum systems model. Formation temperatures show present-day heat flows decreasing toward the south from 60 to 41 mW/m2. Maturity data indicate very low paleoheat flows decreasing southward from 43 to 28 mW/m2. The higher present-day heat flow probably indicates an increase in heat flow during the Pliocene and Pleistocene. Apart from oil generated below the imbricated zone and captured in autochthonous Molasse rocks in the foreland area, oil stains in the Perwang imbricates and oil-source rock correlations argue for a second migration system based on hydrocarbon generation inside the imbricates. This assumption is supported by the models presented in this study. However, the model-derived low transformation ratios (〈20%) indicate a charge risk. In addition, the success for future exploration strongly depends on the existence of migration conduits along the thrust planes during charge and on potential traps retaining their integrity during recent basin uplift.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-02-01
    Description: Predicting the presence and connectivity of reservoir-quality facies in otherwise mud-prone fluvial overbank successions is important because such sand bodies can potentially provide connectivity between larger neighboring sand bodies. This article addresses minor channelized fluvial elements (crevasse-splay and distributary channels) and attempts to predict the connectivity between such sand bodies in two interseam packages of the Upper Permian Rangal Coal Measures of northeastern Australia. Channel-body percent as measured in well logs was 2% in the upper (Aries-Castor) interseam and 17% in the lower (Castor-Pollux) interseam. Well spacing were too great to allow accurate correlation of channel bodies. The Ob River, Siberia, was used as a modern analog to supply planform geometric measurements of splay and distributary channels so that stochastic modeling of channel bodies was possible. The resulting models demonstrated that (1) channel-body connectivity is more uniform between minor distributary channels than between crevasse-splay channels; (2) relatively good connectivity is seen in proximal positions in splays but decreases distally from the source as channel elements diverge; and (3) connectivity tends to be greater down the axis of splays, with more isolated channel bodies occurring at the margins.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-11-01
    Description: Shale is one of the most common rock types, with a rich and complex variety of failure structures in the Earth’s continental crust. In this paper, a synopsis of these structures including joints, pressure-solution seams and cleavages, faults, and shear bands is presented. First, two main categories, sharp and diffuse structures, each of which has subclasses based on its displacement discontinuity type including shear, compaction, and dilation are defined. Then, natural field examples are provided for each class as well as complex structural assemblages that include more than one type of failure-mode structures. Finally, the significances of these assemblages in terms of how older structures may influence later natural and man-made fractures and how they may interact in terms of fluid and gas flow are briefly discussed.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-12-01
    Description: With increasing exploration maturity, reserve growth is becoming an increasingly important component of petroleum resources worldwide. The U.S. Geological Survey has studied reserve-growth models for United States and foreign petroliferous basins for nearly two decades and has developed several reserve-growth forecast methodologies. However, no reserve-growth research has been carried out on Chinese basins, and it is not clear how much reserve growth contributes to the total petroleum resources of China. This paper uses the Bohai Bay basin, the largest petroleum basin in China, as a case study of reserve growth for Chinese basins. Of the 278 oil fields in the basin, 168 fields are chosen to develop the model using the modified Arrington method, and 121 fields are selected to build the model using the group-growth method. The results show that the cumulative growth factors (CGFs) calculated by these two methods are 2.41 and 2.44, respectively, in the 37-yr period after the first significant reserve-reporting year in the Bohai Bay basin. Reserve growth for global basins could be classified into four models, that is, the lowest growth (CGF 〈 1.5), low-growth (CGF 1.5–2.5), medium-growth (CGF 2.5–4.5) and high-growth (CGF 〉 4.5) models in light of their CGFs. The low-growth model fits for the oil fields in the Bohai Bay basin.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-11-01
    Description: As the importance of self-sourcing reservoirs continues to increase, it is more important than ever to evaluate rock properties that contribute to productive wells. It has become increasingly evident that in order to maximize potential returns, an integrated approach to shale play characterization is necessary to identify productive areas. Numerous criteria exist to characterize ultra-low permeability shale reservoirs and their associated resource potential; these include measures of organic richness, thermal maturity, lithologic heterogeneity, and formation brittleness. The latter, a descriptor of the geomechanical rock properties, can play a significant role in overall well performance and is commonly a key productivity driver. Thus, an understanding of the mechanical properties of the target section is fundamental for high-grading prospective areas, well placement design, and hydraulic stimulation effectiveness. Observation of geomechanical attributes extracted from seismic data in the Eagle Ford Shale captures changing mechanical properties indicative of strike-oriented lithologic facies changes. Using acoustic logs, core, and three-dimensional seismic data, we assess the mechanical contrast between Eagle Ford facies units and their effect on well performance. We use three-dimensional seismic data to map the structure and facies distribution in an area where identification of reservoir facies is a major challenge to development drilling. In this study, we demonstrate how Young’s modulus and density, inverted from three-dimensional seismic data, prove as effective discriminators for the purpose of identifying and mapping facies changes and establishing the hydraulically fracturable limits in areas where effective stimulation and proppant embedment in the formation during pressure drawdown is a concern. The result is an interpretation that identifies and uses the mechanical changes from three-dimensional seismic data attributes associated with the brittle carbonate-rich Eagle Ford facies to predict both the reservoirs hydraulically fracturable limits as well as the variability in well performance associated with proppant embedment. The changes in mechanical properties of the Eagle Ford facies are important in high-grading productive intervals in these ultra-low permeability rocks. We believe we can apply this method to other shale reservoirs where rock mechanics may play an important role.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-11-01
    Description: Faults and fractures within the well-exposed Lower Jurassic Cleveland Ironstone and Whitby Mudstone Formations may provide insights into the tectonic history of gas-prospective, Mississippian shale in northern England. Subvertical opening mode fractures occur throughout the Cleveland Basin. Bed-parallel fractures, some of which contain blocky calcite fills, occur preferentially within well-bedded, clay-rich mudstones of the Cleveland Ironstone and Whitby Mudstone Formations at Jet Wyke and Port Mulgrave. Subvertical fractures display abutting or curving-parallel relationships with under- and overlying bed-parallel fractures. Together, these observations suggest that bed-parallel fractures, at times, acted as free surfaces. Some bed-parallel fractures curve toward and branch from calcite-filled fault slip surfaces, indicating that bed-parallel fracturing and normal faulting were synchronous, occurring within a regional stress field with vertical maximum principal stress. This apparent paradox can be explained by normal compaction, followed by cementation and coupling between pore pressure and minimum horizontal stress driven by poroelastic deformation or incipient slip along critically stressed normal faults, causing elevation of horizontal stress in excess of the vertical stress within clay-rich units. Propagation of bed-parallel fractures was enhanced by dilatational strains adjacent to normal fault planes. Bed-parallel fractures have not been observed within more Formula -rich units at the top of the Whitby Mudstone Formation at Whitby East Cliff, or within well-bedded, clay-rich shale at Saltwick Nab. This observation is consistent with the lack of normal faulting at Saltwick Nab, and the Whitby Mudstone Formation having been drained by structural and/or stratigraphical juxtaposition against permeable Middle Jurassic sandstones at both these localities.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-06-01
    Description: The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOC0). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is composition-ally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to illite. As a result, illitization only reaches 35% to 40% at 310°C for 72 hr and remains unchanged to 365°C for 72 hr. Bitumen generation before or during early illitization in these experiments emphasizes the importance of knowing when and to what degree illitization occurs in natural maturation of a smectite-rich source rock to determine its expulsion efficiency. Complete illitization prior to bitumen generation is common for Paleozoic source rocks (e.g., Woodford Shale and Retort Phosphatic Shale Member of the Phosphoria Formation), and expulsion efficiencies can be determined on immature samples by hydrous pyrolysis. Conversely, smectite is more common in Cenozoic source rocks like the Kreyenhagen Shale, and expulsion efficiencies determined by hydrous pyrolysis need to be made on samples that reflect the level of illitization at or near bitumen generation in the subsurface.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-07-01
    Description: Deposits of wave-dominated shorelines are typically considered to act as relatively simple hydrocarbon reservoirs and are commonly modeled as “tanks of sand.” However, important heterogeneities that can act as barriers to fluid flow occur at the parasequence, bedset, and bed scales, especially in viscous oil or low-permeability oil fields. Heterogeneities at the parasequence and bedset scales have been well studied, but discontinuous mudstone beds occurring within the shoreface have received little attention. The Book Cliffs and Wasatch Plateau are among the best-exposed and best-studied deposits of wave-dominated shallow-marine systems in the world. Two parasequences within these outcrops have been studied in detail to investigate the distributions of intrashoreface shales and to propose models for the controls on their distribution. A data set consisting of 30 km (18.6 mi) of virtual outcrops derived from oblique helicopter-mounted light detection and ranging (LIDAR) scanning with supporting stratigraphic sections makes it possible to collect a large quantity of accurate geometric data of depositional elements from inaccessible cliffs. Nine-hundred and twenty-one discontinuous mudstone beds were measured. These occur as ellipses with long axes oriented normal to the paleoshoreline. Lengths and widths of these mudstone beds exhibit a lognormal distribution, with means of 21.9 and 13.8 m (71.9 and 45.3 ft), respectively. Within the shoreface succession, the number of mudstone beds increases downward whereas size does not vary significantly with stratigraphic height. An average of 100 m (328 ft) cumulative length of shale exists per 100 m (328 ft) of horizontal outcrop; this increases threefold near both wave-dominated deltas and bedset boundaries that reflect minor sea-level fluctuations during progradation.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-07-01
    Description: This paper presents a novel graphical enhancement technique that can be easily practiced to interpret reservoir fluid gradients with formation pressure-test data. The method has various applications including mapping reservoir fluid nature and trends, identifying formation pressure changes because of facies changes, or the presence of baffles or barriers, and compartmentalization; diagnosing fluid-contact levels and transition-zone intervals; quality control of data; and judging the reliability of gradient interpretation. The scatter-plotting technique is very useful, not only for real-time decision making at the well site during both wireline- and drillpipe-conveyed formation-tester operations, but also in routine data interpretation and reservoir studies with petrophysical logs, pressure, and fluid data.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-05-01
    Description: Sequence-stratigraphic concepts and nomenclature are predicated on the assumption that at any time, accommodation conditions are in phase across a depositional basin. In certain situations, however, such as in evolving retroarc foreland basins, the sense of accommodation may be spatially variable because of the growth of intrabasinal structures. Herein, we present evidence for the accumulation of a fluvially dominated deltaic sandstone under strong forcing from spatially and temporally variable low accommodation within the Cretaceous western Cordilleran foreland basin of North America. The Peay Sandstone Member is a coarsening-upward sandstone body (〈60 m [〈197 ft] thick) that is extensive across much of the eastern half of the present-day Bighorn Basin of Wyoming. It is remarkable for its elongate plan-form geometry, extending many tens of kilometers across the basin, and for distal thickening patterns that are, at face value, difficult to reconcile with conventional facies models for deltaic systems. The sandstone shows some of the characteristics of falling-stage and lowstand deltas (extending far into the basin from the contemporary shoreline to the west, tack of a preserved delta-plain topset) but is not incised into its substrate and does not show a descending regressive trajectory with respect to underlying strata. We submit that the Peay Sandstone Member was formed under a regime of both temporally and spatially variable accommodation forced by the heterogeneous growth of the fore-bulge within the western Cordilleran foreland basin and suggest that the origin of some other apparently isolated sandstone bodies in this and other basins might also be explained in a similar manner.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-05-01
    Description: Drilling of horizontal wells in the Cardium Formation in the Pembina field has abruptly increased since the successful completion of Bonterra Nexstar 4-25-47-03 W5 (surface-hole location) 1-25-47-03 W5 (bottom-hole location) in 2008. New Cardium Formation wells are targeting thinner lower quality reservoir intervals while implementing a variety of new completion techniques to improve hydrocarbon production. The purpose of this study is to compare reservoir quality, net-pay mapping, and completion techniques to production data to evaluate the successes and failures of geologic characterization and completion strategies. Well logs and routine core-analyses data were used to evaluate reservoir properties and map net-pay thicknesses. Subsequently, production data from 125 horizontal wells were compared based on the following criteria: presence of conglomerate, sandstone density porosity net-pay thickness, wellbore orientation, number of fractured stages, fracture spacing, lateral well length, base fracturing fluid, and average metric tons of proppant per stage. In the unconventional parts of the Pembina field, well-production–based evaluation of net-pay maps and reservoir characterization requires completion techniques to be considered. Conversely, reservoir thickness and quality must be considered to accurately assess the success of different completion techniques. The use of a 6% sandstone density porosity net-pay cutoff can only be shown to be effective in identifying the most productive wells if well completions are considered. Our analyses indicate that wellbore orientation has a limited impact on well performance, whereas decreasing fracture spacings and increasing lateral well length have the most significant impact on well performance.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-04-01
    Description: The estimated ultimate recovery (EUR) is one of the most significant properties of tight-gas sandstone reservoirs, but it remains difficult to predict. Estimated ultimate recovery is dependent on the success of stimulation by hydraulic fracturing, the existence and connectivity of natural fractures, and as illustrated in this article, the pore structure of the matrix. Here, we analyze the lab measurements that are indicative of the pore structure, and then we predict the effect of pore structure on producibility. We develop a relationship between the EUR of tight-gas sandstones and their petrophysical properties measured by drainage and imbibition tests (mercury intrusion, withdrawal, and porous plate) and by resistivity analyses. We use the ratio of residual mercury saturation after mercury withdrawal ( S gr) to initial mercury saturation ( S gi), which is the saturation at the start of withdrawal, as a measure of gas likely to be trapped in the matrix during production and, hence, a proxy for EUR. A multitype pore space model is required to explain mercury intrusion capillary pressures in these rocks. Implications of this model are supported by other available laboratory measurements. The model comprises a conventional network model and a treelike pore structure (an acyclic network) that mimic the intergranular and intragranular void spaces, respectively. The notion of the treelike pore structure is introduced here for the first time in the context of tight-gas sandstones. Applying the multitype model to porous plate data, we classify the pore spaces of rocks into intergranular dominant, intermediate, and intragranular dominant. This pore space classification is topological and is not based on scale or size. These classes have progressively less drainage and imbibition hysteresis, which leads to the prediction that significantly more hydrocarbon is recoverable from intragranular porosity than intergranular porosity. Available field data (production logs) corroborate the higher producibility of intervals with intragranular porosity, although the data are not sufficient to eliminate the possible contribution of other factors such as size and shape of the volume contacted by hydraulic fractures or the presence and attributes of natural fractures. The superior recovery of hydrocarbon from intragranular-dominant pore structures is despite its inferior initial production rate.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-04-01
    Description: Multiple techniques are available to construct three-dimensional reservoir models. This study uses comparative analysis to test the impact of applying four commonly used stochastic modeling techniques to capture geologic heterogeneity and fluid-flow behavior in fluvial-dominated deltaic reservoirs of complex facies architecture: (1) sequential indicator simulation; (2) object-based modeling; (3) multiple-point statistics (MPS); and (4) spectral component geologic modeling. A reference for comparison is provided by a high-resolution model of an outcrop analog that captures facies architecture at the scale of parasequences, delta lobes, and facies-association belts. A sparse, pseudosubsurface data set extracted from the reference model is used to condition models constructed using each stochastic reservoir modeling technique. Models constructed using all four algorithms fail to match the facies-association proportions of the reference model because they are conditioned to well data that sample a small, unrepresentative volume of the reservoir. Simulated sweep efficiency is determined by the degree to which the modeling algorithms reproduce two aspects of facies architecture that control sand-body connectivity: (1) the abundance, continuity, and orientation of channelized fluvial sand bodies; and (2) the lateral continuity of barriers to vertical flow associated with flooding surfaces. The MPS algorithm performs best in this regard. However, the static and dynamic performance of the models (as measured against facies-association proportions, facies architecture, and recovery factor of the reference model) is more dependent on the quality and quantity of conditioning data and on the interpreted geologic scenario(s) implicit in the models than on the choice of modeling technique.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-04-01
    Description: Numerous oil and gas accumulations exist in the Brooks Range foothills of the National Petroleum Reserve in Alaska (NPRA). We use cores and well logs from 12 abandoned legacy wells at Umiat field, near the southeastern boundary of the NPRA, to characterize the sedimentology and stratigraphy of unconventional shallow frozen reservoirs in sandstones of the Cretaceous (Albian–Cenomanian) Nanushuk Formation. The Nanushuk Formation at Umiat has five facies associations: offshore and prodelta, lower shoreface, upper shoreface, delta front, and delta plain. Three stratigraphically distinct, regionally extensive Nanushuk Formation depositional systems at Umiat contain several potential petroleum reservoirs. The lower Nanushuk Formation, including a reservoir interval known informally as the lower Grandstand, primarily consists of marine mudstone and shoreface sandstones. The middle Nanushuk Formation is dominantly deltaic and contains a second major reservoir interval in the informal upper Grandstand sandstone. Both the upper Grandstand and lower Grandstand are regressive. The transgressive upper Nanushuk Formation contains an additional potential reservoir interval in shoreface sandstones of the informal Ninuluk interval. The primary reservoir intervals at Umiat field are upper shoreface and delta-front sandstones in the upper Grandstand and lower Grandstand, where increased sorting and decreased bioturbation in high-energy depositional environments affect overall permeability and permeability anisotropy.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-04-01
    Description: Three-dimensional (3-D) seismic volumes from southeast Brazil, southeast Japan, and borehole data from the Ocean Drilling and Integrated Ocean Drilling Programs are used to demonstrate a new method to distinguish mass-transport deposits (MTDs) from confining hemipelagites, quantify MTDs internal architecture, and assess their reservoir potential or seal competence—the contrast, directionality, energy (CDE) method. The CDE values extracted from 3-D seismic data can be tied to any ground-truthed property of strata regardless of their depositional history, age, and lithology. The application of the CDE method is, however, dependent on seismic-data acquisition parameters and selected processing sequences and should be independently applied to different seismic volumes. Borehole data indicate contrast (C) to reflect MTDs lithological heterogeneity and degree of disaggregation, which increase proportionally to the absolute value of C. More uniform values of P-wave velocity ( V p) and peak shear strength are recorded in strata with lower contrast. Directionality (D) relates to the existence of syn- or postdepositional fabric such as compressional ridges, imbricated strata or faults. Energy (E) relates to the acoustic impedance of strata, with high-amplitude reflections correlating with strata with higher shear strength, i.e., high V p and shear-wave velocity ( V s) values, or with abrupt contrasts in density (bright spots). This work shows that distinct values of C, D, and E reflect variable degrees of vertical and horizontal connectivity in strata and, consequently, their seal and reservoir potential. The CDE values are thus subdivided in nine classes, which are represented in ternary plots to cover the full spectrum of MTDs and any confining strata. As a result, the data in this article confirm that lower seal competence, and higher reservoir potential, is recorded in strata with large D or moderate CDE values.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-03-01
    Description: Diagenesis significantly impacts mudstone lithofacies. Processes operating to control diagenetic pathways in mudstones are poorly known compared to analogous processes occurring in other sedimentary rocks. Selected organic-carbon-rich mudstones, from the Kimmeridge Clay and Monterey Formations, have been investigated to determine how varying starting compositions influence diagenesis. The sampled Kimmeridge Clay Formation mudstones are organized into thin homogenous beds, composed mainly of siliciclastic detritus, with some constituents derived from water-column production (e.g., coccoliths, S-depleted type-II kerogen, as much as 52.6% total organic carbon [TOC]) and others from diagenesis (e.g., pyrite, carbonate, and kaolinite). The sampled Monterey Formation mudstones are organized into thin beds that exhibit pelleted wavy lamination, and are predominantly composed of production-derived components including diatoms, coccoliths, and foraminifera, in addition to type-IIS kerogen (as much as 16.5% TOC), and apatite and silica cements. During early burial of the studied Kimmeridge Clay Formation mudstones, the availability of detrital Fe(III) and reactive clay minerals caused carbonate- and silicate-buffering reactions to operate effectively and the pore waters to be Fe(II) rich. These conditions led to pyrite, iron-poor carbonates, and kaolinite cements precipitating, preserved organic carbon being S-depleted, and sweet hydrocarbons being generated. In contrast, during the diagenesis of the sampled Monterey Formation mudstones, sulfide oxidation, coupled with opal dissolution and the reduced availability of both Fe(III) and reactive siliciclastic detritus, meant that the pore waters were poorly buffered and locally acidic. These conditions resulted in local carbonate dissolution, apatite and silica cements precipitation, natural kerogen sulfurization, and sour hydrocarbons generation. Differences in mud composition at deposition significantly influence subsequent diagenesis. These differences impact their source rock attributes and mechanical properties.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-03-01
    Description: Offshore sequences of volcaniclastic rocks (such as hyaloclastite deposits) are poorly understood in terms of their rock properties and their response to compaction and burial. As petroleum exploration targets offshore volcanic rifted margins worldwide, understanding of volcanic rock properties becomes important both in terms of drilling and how the rocks may behave as seals, reservoirs, or permeability pathways. The Hawaiian Scientific Drilling Project phase II in 2001 obtained a 3 km-(2-mi)-long core of volcanic and volcaniclastic rocks that records the emergence of the largest of the Hawaiian islands. Core recovery of 2945 m (9662 ft) resulted in an unparalleled data set of volcanic and volcaniclastic rocks. Detailed logging, optical petrology, and major element analysis of two sections at depths 1831–1870 and 2530–2597 m (6007–6135 and 8300–8520 ft) are compared to recovered petrophysical logs (gamma ray, resistivity, and P-wave velocity). This study concludes deviation in petrophysical properties does not seem to correlate to changes in grain size or clast sorting, but instead correlates with alteration type (zeolite component) and bulk mineralogy (total olivine phenocryst percentage component). These data sets are important in helping to calibrate well-log responses through hyaloclastite intervals in areas of active petroleum exploration such as the North Atlantic (e.g., Faroe-Shetland Basin, United Kingdom, and Faroe Islands, the Norwegian margin and South Atlantic margins bordering Brazil and Angola).
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-04-01
    Description: The style of faulting in offshore Louisiana, Gulf of Mexico, is characterized by short, arcuate regional and counterregional growth faults, which commonly form complex transfer zones above shallow, Miocene level salt bodies. South Timbalier Block 54 (ST54) constitutes one such area where a basinward-dipping regional and a landward-dipping counterregional growth fault form a convergent transfer zone. Structural interpretation using three-dimensional (3-D) seismic and well data reveals that the eastern and western flanks of the structure contain salt in the footwalls of the main regional and counterregional faults. The salt rises to a much shallower stratigraphic level in the central part of the transfer zone, forming a symmetric salt diapir. Secondary antithetic and synthetic faults adjacent to the two main faults and extending into the transfer zone accommodate slip between the main faults. Kinematic restoration of a series of north–south-trending cross sections across the structure show that upslope evacuation of salt is the result of sediment loading and growth fault movement, and the location of the transfer zone is possibly controlled by the allochthonous salt. The entire area is characterized by down-to-basin movement, with the major regional and counterregional faults displaying footwall and hanging-wall fixed deformation, respectively. The presence of the crestal graben above the salt high and the timing of maximum salt evacuation from the flanks suggest that active or reactive diapirism occurred during part of the deformation history. A 3-D structural model using depth-converted horizons, balanced cross sections, and well tops accurately portrays the subsurface structure. Understanding the evolution of the structure in ST54 provides insight on similar structures in other areas in offshore Louisiana and the relationship between salt evacuation and transfer zone development.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-01-01
    Description: Criteria for recognizing stratigraphic sequences are well established on continental margins but more challenging to apply in basinal settings. We report an investigation of the Upper Devonian Woodford Shale, Permian Basin, west Texas based on a set of four long cores, identifying sea level cycles and stratigraphic sequences in an organic-rich shale. The Woodford Shale is dominated by organic-rich mudstone, sharply overlain by a bioturbated organic-poor mudstone that is consistent with a second-order eustatic sea level fall. Interbedded with the organic-rich mudstone are carbonate beds, chert beds, and radiolarian laminae, all interpreted as sediment gravity-flow deposits. Bundles of interbedded mudstone and carbonate beds alternate with intervals of organic-rich mudstone and thin radiolaria-rich laminae, defining a 5–10 m (16–33 ft)-thick third-order cyclicity. The former are interpreted to represent highstand systems tracts, whereas the latter are interpreted as representing falling stage, lowstand, and transgressive systems tracts. Carbonate beds predominate in the lower Woodford section, associated with highstand shedding at a second-order scale; chert beds predominate in the upper Woodford section, responding to the second-order lowstand. Additional variability is introduced by geographic position. Wells nearest the western margin of the basin have the greatest concentration of carbonate beds caused by proximity to a carbonate platform. A well near the southern margin has the greatest concentration of chert beds, resulting from shedding of biogenic silica from a southern source. A well in the basin center has little chert and carbonate; here, third-order sea level cycles were primarily reflected in the stratigraphic distribution of radiolarian-rich laminae.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-09-01
    Description: The presence of hydrocarbon seeps at the surface is indirect evidence of the presence of mature source rocks within a geological system at depth. Chemical changes in the environment of sur- face rocks caused by hydrocarbon seeps cause mineralogical alterations. To determine the nature of the alterations and the influences of lithology and type of seep, rock samples were collected from altered and unaltered evaporite and marly limestone formations in the Dezful embayment, southwest Iran. Reflectance spectroscopy, bulk rock/wet chemical analyses, and sulfur, carbon, and oxygen isotopic analyses were used to delineate surficial alterations and relate alterations to hydrocarbons seeping from underlying reservoirs. In addition, the boosted regression trees (BRT) method was used to predict the presence of alterations from spectral indices. Comparisons of geochemical data and spectral data of altered evaporites and altered marly limestones showed that the minerals within alteration facies have distinctive spectral, chemical, and isotopic signatures. Gas-induced alterations were characterized by the formation of gypsum and native sulfur and depletion in 34S. The released H2S in natural gas reacted with gypsum in the evaporite sediments and calcite in the marly limestone formations, which led to precipitation of secondary gypsum and native sulfur. Oil-induced alterations were characterized by formation of secondary calcite and depletion in 13C. The oxidation of seeping oil and reactions between this oil and host rocks caused precipitation of secondary calcite within both formations. The combination of fieldwork data and spectral-geochemical data showed a connection exists between surficial alterations and underlying petroleum reservoirs, which can be used in exploration campaigns.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-09-01
    Description: This paper, the first of a two-part series, provides a sound background of the volumetric response of sorptive porous media to gas depletion under in situ boundary conditions in producing reservoirs. As a first step, the overall rock matrix deformation is split into two separate components, elastic deformation caused by mechanical decompression and the nonelastic swelling or shrinkage strain induced by adsorption or desorption of gas. The shrinkage or swelling compressibility is estimated by the first derivative of pure adsorption or desorption strain with variations of gas pressure. The pore volume, or fracture, compressibility is then estimated by application of a semi-empirical model under uniaxial strain conditions. Based on the proposed model, both shrinkage or swelling and pore volume compressibilities show strong pressure dependence for sorbing gases and are thus variables for which gas production is controlled by desorption of gas. In Part 2, the experimental work under best-replicated in situ conditions is described in detail along with the results obtained and application of the theory presented in this paper.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-09-01
    Description: Predicting spatial distribution, dimension, and geometry of diagenetic geobodies, as well as heterogeneities within these bodies, is challenging in subsurface applications, and can impact the results of reservoir modeling. In this outcrop–based study, we generated a data set of the dimensions of fracture–related dolomite geobodies hosted in Ediacaran (Khufai Formation) limestones of the Oman Mountains that are up to several hundreds of meters long and a few tens of meters wide. The dolomite formed under burial conditions by fluids that interacted with siliciclastic layers, as demonstrated by the enriched Fe (up to 4.4%) and Mn (up to 0.8%) contents and 87Sr/86Sr (~0.710) signatures. Dolomitization probably occurred during the Hercynian Orogeny (or pre-Permian) because dolomitization predates some folding and pre-Permian rocks have seen intense deformation related to the Carboniferous Hercynian Orogeny. Moreover, dolomitization occurred between the onset and termination of bedding-parallel stylolitization and thus most likely before deep burial related to the Alpine Orogeny. Hence, dolomitization most likely occurred before deep burial related to the Alpine Orogeny and during or following the intense deformation related to the Carboniferous Hercynian Orogeny had affected pre–Permian rocks. The clumped–isotope signature yields a temperature of approximately 260°C (500°F), interpreted as the apparent equilibrium temperature obtained during uplift after deepest burial during the Late Cretaceous. Lateral transects across the dolomite bodies show that zebra dolomite textures are common throughout the body and that vugs are more common at the rim than the center of the bodies. Moreover, a weak geochemical trend exists with more depleted 18O, Fe, and Mn concentrations in the core than at the rim of the dolomite bodies. These results show that minor heterogeneities exist within the dolomite bodies investigated. These data contrast with previous studies, in which more significant variation is reported in width of the dolomitization halo and texture for larger dolomite bodies that formed in host rocks more permeable than the examples from the Oman Mountains.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-08-01
    Description: This study examines the geochemical record of diagenesis in the Middle Permian Yates shelf, exposed in Slaughter Canyon, New Mexico. This diagenetic history significantly modified lithologies, depositional fabrics, and pore systems. Early diagenesis was dominated during sea level highstands by marine cementation and reflux dolomitization, and during sea level lowstands by meteoric cementation and stabilization-the focus of this study. This early diagenesis variably overprinted primary marine isotopic signatures, potentially leading to erroneous chemostratigraphic correlations or paleoclimate reconstructions. Four correlative sections through one m-scale cycle were analyzed for their delta C-13 and delta O-18 values. They show significant (2-4 parts per thousand) delta C-13 and delta O-18 variability in coeval, texturally well-preserved calcites. The delta C-13 and delta O-18 values of marine cements, brachiopods, bulk carbonate, micritic matrix, and the first generation of meteoric spar (from high to low values) delineate an "inverted J curve," indicating the variable alteration of components by diagenetic fluids. Numerical models indicate that the observed stable isotope trend is most consistent with diagenetic alteration in a partially closed system by meteoric fluids mixed with a progressively diminishing contribution of recycled marine waters. In the Yates shelf, marine cements provide a more robust primary isotopic record than micritic matrix; however, neither preserves primary seawater isotopic values. Furthermore, common criteria used to diagenetically screen samples proved inadequate (e.g., textural preservation, staining, luminescence, depletion near sequence boundaries). Instead, diagenetic resetting is resolved by analyzing multiple, closely spaced, independently correlated sections, and by delineating trends between primary and later diagenetic components in populations of isotopic data.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-08-01
    Description: This study presents a lithology-based sequence-stratigraphic framework and depositional model for Lower Cretaceous, mixed siliciclastic-carbonate sediments of the Mid-Atlantic coastal plain (eastern United States). Lithologic data from cores and cuttings were integrated with wireline logs and two-dimensional seismic data to document lithofacies variability and stacking patterns across the Albemarle Basin of eastern North Carolina. Ten facies associations are defined, which are variably present within siliciclastic- and carbonate-dominated depositional profiles interpreted to extend from onshore lowland coastal plain to deep-shelf depositional environments. Three depositional sequences (0, 1, 2) were identified, each with component upward-shoaling parasequences. Seismic reflectors typically coincided with key sequence-stratigraphic surfaces, which guided correlations between wells. Parasequences are grouped into parasequence sets with progressive progradational or retrogradational (highstand and transgressive systems tracts, respectively) stacking patterns. Transgressive parasequences are thinner, uniform in thickness, and tend to be more dominated by molluskan carbonate facies. Highstand parasequences have more variable thickness, are siliciclastic dominated, and tend to be progradational on seismic data. Late highstand deposits of sequence 1 are dominated by restricted carbonate facies that likely reflect increased aridity. Lowstand deposits were not recognized from onshore well and seismic data. The sequence-stratigraphic framework developed documents the complex spatial and temporal facies relationships within a wave-dominated, mixed carbonate-siliciclastic passive-margin succession. The strata studied document the complex interplay of lithofacies within a transition zone between near-shore carbonate-dominated strata to the south (Southeast Georgia Embayment) and siliciclastic-dominated marginal-marine successions to the north (Baltimore Canyon Trough). It also provides a useful stratigraphic calibration set for coeval offshore sediments that have been identified as potential areas for hydrocarbon exploration.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-09-01
    Description: In this work, an unsteady-state diffusion model was developed to describe gas transport in coal structures for horizontal well production. The model assumes unsteady-state diffusion of gas through the matrix according to Fick’s law, Darcy flow through the cleat network (natural fractures), and that gas adsorption can be described by the Langmuir equation. Then the model using Laplace integral transformation was solved. Using the new model, dimensionless-type curves for pressure-transient and rate-decline analyses were used to analyze transient transport characteristics. The differences for unsteady-state diffusion between horizontal and vertical well models and the differences for horizontal well production between unsteady-state diffusion and pseudosteady-state diffusion were specifically analyzed. Several scenarios confronting real coal beds were studied and discussed fully through simulating well production under different conditions. The research results showed that the unsteady-state diffusion model would be another choice with which to analyze well tests.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-09-01
    Description: Triassic mudstones in the Junggar Basin of northwest China, especially those of the Upper Triassic Baijiantan Formation, which formed during a lake-flooding event, are the most important set of cap rocks in the basin. These mudstones presumably have hydrocarbon generation potential, although this potential has not been documented. Here, we provide new organic geochemical and geological background data on these mudstones, and discuss their hydrocarbon generation potential. Geochemical analyses were performed on available samples collected from more marginal shallow-lake facies in the central basin area. These analyses indicated that these rocks contain about 1.0% total organic carbon (TOC). The organic matter type is predominantly type III kerogen derived mainly from terrestrial higher plants. The organic matter underwent maturation in uplifted areas and reached higher maturity levels in depressions within the basin. Thus, the Triassic mudstones may have a potential for hydrocarbon generation during the lake-flooding period, especially for gas, and hence deserve attention in future exploration. More research needs to be conducted on the generation potential of these units (including oil besides gas), as few deep-lake facies samples from depressions in the basin are currently available for investigation.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-09-01
    Description: Understanding and predicting reservoir presence and characteristics at regional to basin scales is important for evaluating risk and uncertainty in hydrocarbon exploration. Simulating reservoir distribution within a basin by a stratigraphic forward model enables the integration of available prior information with fundamental geologic processes embedded in the numerical model. Stratigraphic forward model predictions can be significantly improved by calibrating the models to independent constraints, such as thicknesses from seismic or well data. A three-dimensional basin-scale stratigraphic forward-modeling tool is coupled with an inversion algorithm. The inversion algorithm is a modification of the neighborhood algorithm (a type of genetic algorithm), which is designed to sample complex multimodal objective functions and is parallelized on computer clusters to accelerate convergence. The process generates a set of representative geological models that are consistent with prior ranges for uncertain parameters, calibration constraints, and associated tolerance thresholds. The workflow is first demonstrated on two data sets: a synthetic example based on a clastic passive margin and a real hydrocarbon exploration example for slope and basin-floor stratigraphic traps in the Neocomian (Lower Cretaceous) of the West Siberian Basin. The analysis of calibrated models provides constraints on stratigraphic controls, and allows prediction of locations with higher potential to develop stratigraphic traps. These locations are related to complex interactions between paleobathymetry, subsidence, eustatic fluctuations, characteristics of sediment-input sources, and sediment-transport parameters. Results show the potential of stratigraphic forward modeling combined with inverse methods as an additional tool to support conventional play-based exploration and reservoir-presence prediction.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-07-01
    Description: Reservoir management studies of California’s Kern River field rely on a full-field 155-million cell three-dimensional (3D) earth model. This full-field model provides input for reserves estimation as well as the identification, targeting, and ranking of remaining opportunities. The earth model is regarded as “fit for purpose” in that characteristics of the model are aligned with specific needs for reservoir management. Normalized resistivity logs from more than 12,000 wells are used to establish lithology and reservoir architecture. Temperature, steam, gas, and oil saturation logs from over 650 boreholes provide regular periodic surveillance for identifying changes in fluids and temperature. Changes in fluid contacts and saturations are integrated with reservoir architecture three times each year. These model updates are important to the development teams for staying current on changes in their project area. The integration of these data provides the basis for linked reserves and resource estimation and the identification and development of remaining opportunities. Kern River reserves and resources are estimated from the model for over 130 internal reporting entities. For asset reservoir management purposes, reserves are updated for over 160,000 entities (based on patterns, zones, and reserves) across the 12-sq-mi (31-sq-km) field. The updated reserves supply input to reserves distribution maps and spreadsheets used for evaluating workover and new development opportunities. Some of these opportunities represent heat mining of untapped hot oil zones whereas other opportunities are cold and require the introduction of steam to mobilize the oil. Using multiple reservoir property characteristics as filter criteria for identifying remaining opportunities is an important tool used at Kern River. Reservoir volumes containing hot moveable oil below steam zones in non-producing areas can be quickly and efficiently identified and prioritized with this method. This has helped lead to the success of our current field-wide horizontal infill drilling program that identifies geobodies based on these filtering criteria.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-06-01
    Description: Production from ubiquitous oil and gas fields in coastal Louisiana and consequent reservoir compaction has been proposed as an important process contributing to coastal subsidence and land loss in this region. As revealed by three consecutive leveling surveys (in 1965, 1982, and 1993), an unexpected aspect of the subsidence is that the rate of subsidence actually increased after the cessation of production. To explain the accelerated postdepletion subsidence, we propose a mechanism involving time-dependent drainage and compaction in the overlying and underlying shales after depletion. We show that the shale compaction is induced by slow drainage of pore fluid from the shale to the depleted reservoir. We estimate the significance of postdepletion compaction in the bounding shale using a relatively simple analytic model in which time-dependent shale compaction is driven by pore pressure diffusion with two sets of rheological constitutive equations: one accounting for poroelastic effects and one accounting for viscoplastic deformation of the shale matrix. Our modeling shows that despite its very low permeability, after about 10 years, vertical compaction due to pressure drainage in the shale exceeds that due to depletion and compaction of the sand reservoir. Consequently, the calculated subsidence rate due to the shale compaction is higher than the subsidence induced by reservoir depletion, thus demonstrating that postdepletion compaction in the reservoir-surrounding shale may explain the observed acceleration of subsidence after depletion.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-07-01
    Description: Conventional basin and petroleum systems modeling uses the vertical backstripping approach to describe the structural evolution of a basin. In structurally complex regions, this is not sufficient. If lateral rock movement and faulting are inputs, the basin and petroleum systems modeling should be performed using structurally restored models. This requires a specific methodology to simulate rock stress, pore pressure, and compaction, followed by the modeling of the thermal history and the petroleum systems. We demonstrate the strength of this approach in a case study from the Monagas fold and thrust belt (Eastern Venezuela Basin). The different petroleum systems have been evaluated through geologic time within a pressure and temperature framework. Particular emphasis has been given to investigating structural dependencies of the petroleum systems such as the relationship between thrusting and hydrocarbon generation, dynamic structure-related migration pathways, and the general impact of deformation. We also focus on seal integrity through geologic time by using two independent methods: forward rock stress simulation and fault activity analysis. We describe the uncertainty that is introduced by replacing backstripped paleogeometry with structural restoration, and discuss decompaction adequacy. We have built two end-member scenarios using structural restoration, one assuming hydrostatic decompaction, and one neglecting it. We have quantified the impact through geologic time of both scenarios by analyzing important parameters such as rock matrix mass balance, source rock burial depth, temperature, and transformation ratio.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-03-01
    Description: Umiat field in northern Alaska is a shallow, light-oil accumulation with an estimated original oil in place of more than 1.5 billion bbl and 99 bcf associated gas. The field, discovered in 1946, was never considered viable because it is shallow, in permafrost, and far from any infrastructure. Modern drilling and production techniques now make Umiat a more attractive target if the behavior of a rock, ice, and light oil system at low pressure can be understood and simulated. The Umiat reservoir consists of shoreface and deltaic sandstones of the Cretaceous Nanushuk Formation deformed by a thrust-related anticline. Depositional environment imparts a strong vertical and horizontal permeability anisotropy to the reservoir that may be further complicated by diagenesis and open natural fractures. Experimental and theoretical studies indicate that there is a significant reduction in the relative permeability of oil in the presence of ice, with a maximum reduction when connate water is fresh and less reduction when water is saline. A representative Umiat oil sample was reconstituted by comparing the composition of a severely weathered Umiat fluid to a theoretical Umiat fluid composition derived using the Pedersen method. This sample was then used to determine fluid properties at reservoir conditions such as bubble point pressure, viscosity, and density. These geologic and engineering data were integrated into a simulation model that indicate recoveries of 12%–15% can be achieved over a 50-yr production period using cold gas injection from five well pads with a wagon-wheel configuration of multilateral wells.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-03-01
    Description: The petroleum trap for the Athabasca oil sands has remained elusive because it was destroyed by flexural loading of the Western Canada Sedimentary Basin during the Late Cretaceous and Paleocene. The original trap extent is preserved because the oil was biodegraded to immobile bitumen as the trap was being charged during the Late Cretaceous. Using well and outcrop data, it is possible to reconstruct the Cretaceous overburden horizons beyond the limit of present-day erosion. Sequential restoration of the reconstructed horizons reveals a megatrap at the top of the Wabiskaw-McMurray reservoir in the Athabasca area at 84 Ma (late Santonian). The megatrap is a four-way anticline with dimensions 285 × 125 km (177 × 78 mi) and maximum amplitude of 60 m (197 ft). The southeastern margin of the anticline shows good conformance to the bitumen edge for 140 km (87 mi). To the northeast of the anticline, bitumen is present in a shallower trap domain in what is interpreted to be an onlap trap onto the Canadian Shield; leakage along the onlap edge is indicated by tarry bitumen outliers preserved in basement rocks farther to the northeast. Peripheral trap domains that lie below the paleospillpoint, in northern, southern, and southwestern Athabasca, and Wabasca, are interpreted to represent a late charge of oil that was trapped by bitumen already emplaced in the anticline and the northeastern onlap trap. This is consistent with kimberlite intrusions containing live bitumen, which indicate that the northern trap domain was charged not before 78 Ma. The trap restoration has been tested using bitumen-water contact well picks. The restored picks fall into groups that are consistent both with the trap domains determined from the top reservoir restoration and the conceptual charge model in which the four-way anticline was filled first, followed by the northeastern onlap trap, and then the peripheral trap domains.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-03-01
    Description: Organic-carbon–rich shales of the lower Marcellus Formation were deposited at the toe and basinward of a prograding clinothem associated with a Mahantango Formation delta complex centered near Harrisburg, Pennsylvania. Distribution of these organic-carbon–rich shales was influenced by shifts in the delta complex driven by changes in rates of accommodation creation and by a topographically high carbonate bank that formed along the Findlay-Algonquin arch during deposition of the Onondaga Formation. Specifically, we interpret the Union Springs member (Shamokin Member of the Marcellus Formation) and the Onondaga Formation as comprising a single third-order depositional sequence. The Onondaga Formation was deposited in the lowstand to transgressive systems tract, and the Union Springs member was deposited in the transgressive, highstand, and falling-stage systems tract. The regional extent of parasequences, systems tracts, and the interpreted depositional sequence suggest that base-level fluctuations were primarily caused by allogenic forcing—eustasy, climate, or regional thermal uplift or subsidence—instead of basement fault reactivation as argued by previous workers. Paleowater depths in the region of Marcellus Formation black mudrock accumulation were at least 330 ft (100 m) as estimated by differences in strata thickness between the northwestern carbonate bank and basinal facies to the southeast. Geochemical analysis indicates anoxic to euxinic bottom-water conditions. These conditions were supported by a deep, stratified basin with a lack of circulation.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...