ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Propulsion and Power
  • 2010-2014  (250)
  • 1965-1969  (3)
  • 1950-1954  (38)
  • 1935-1939  (5)
  • 1
    Publication Date: 2018-06-06
    Description: One of the greatest challenges when developing propulsion systems is predicting the interacting effects between the fluid loads, thermal loads, and structural deflection. The interactions between technical disciplines often are not fully analyzed, and the analysis in one discipline often uses a simplified representation of other disciplines as an input or boundary condition. For example, the fluid forces in an engine generate static and dynamic rotor deflection, but the forces themselves are dependent on the rotor position and its orbit. It is important to consider the interaction between the physical phenomena where the outcome of each analysis is heavily dependent on the inputs (e.g., changes in flow due to deflection, changes in deflection due to fluid forces). A rigid design process also lacks the flexibility to employ multiple levels of fidelity in the analysis of each of the components. This project developed and validated an innovative design environment that has the flexibility to simultaneously analyze multiple disciplines and multiple components with multiple levels of model fidelity. Using NASA's open-source multidisciplinary design analysis and optimization (OpenMDAO) framework, this multifaceted system will provide substantially superior capabilities to current design tools.
    Keywords: Aircraft Propulsion and Power
    Type: An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies; 14; NASA/TM-2014-218497
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E51I05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TN-2227
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Tests of two propellers having two blades and differing only in the inboard pitch distribution were made in the Langley 8-foot highspeed tunnel to determine the effect of inboard pitch distribution on propeller performance. propeller was designed for operation in the reduced velocity region ahead of an NACA cowling; the inboard pitch distribution of the modified propeller was increased for operation at or near free-stream velocities, such as would be obtained in a pusher installation. conditions covering climb, cruise, and high-speed operation. Wake surveys were taken behind the propellers in order to determine the distribution of thrust along the blades and to aid in the analysis of the results. Test results showed that the modified propeller was about 2.5 percent less efficient for a typical climb condition at all altitudes, 2 percent more efficient for one cruise condition, and 5 percent more efficient for high-speed operation. speed condition, the modified propeller showed a 6-percent loss in efficiency due to compressibility; whereas the original propeller showed an 11-percent efficiency loss due to compressiblity. The lower compressibility loss for the modified propeller resulted from the fact that the inboard sections of this propeller could operate at increased thrust loading after compressibility losses had occurred at the outboard sections.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TN-2268
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-05-23
    Description: Pressure distribution prediction methods for low flow radial impellers
    Keywords: Aircraft Propulsion and Power
    Type: NASA-CR-62246 , PWA-FR-1276
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: As part of a general investigation of propellers at high forward speeds, tests of two 2-blade propellers having the NACA 4-(3)(8)-03 and NACA 4-(3)(8)-45 blade designs have been made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.725 to establish in detail the changes in propeller characteristics due to compressibility effects. These propellers differed primarily only in blade solidity, one propeller having 50 percent and more solidity than the other. Serious losses in propeller efficiency were found as the propeller tip Mach number exceeded 0.91, irrespective of forward speed or blade angle. The magnitude of the efficiency losses varied from 9 percent to 22 percent per 0.1 increase in tip Mach number above the critical value. The range of advance ratio for peak efficiency decreased markedly with increase of forward speed. The general form of the changes in thrust and power coefficients was found to be similar to the changes in airfoil lift coefficient with changes in Mach number. Efficiency losses due to compressibility effects decreased with increase of blade width. The results indicated that the high level of propeller efficiency obtained at low speeds could be maintained to forward sea-level speeds exceeding 500 miles per hour.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-974 , NACA-ACR-L6D02 , NACA-AR-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Description: Sound pressure levels, frequency spectrum, and jet velocity profiles are presented for an engine-afterburner combination at various values of afterburner fuel - air ratio. At the high fuel-air ratios, severe low-frequency resonance was encountered which represented more than half the total energy in the sound spectrum. At similar thrust conditions, lower sound pressure levels were obtained from a current fighter air craft with a different afterburner configuration. The lower sound pressure levels are attributed to resonance-free afterburner operation and thereby indicate the importance of acoustic considerations in afterburner design.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E54G07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-27
    Description: Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2011-217143 , AIAA Paper 2011-1568 , E-17880 , Infotech at Aerospace 2011 Conference; 29-31 Mr. 2011; St. Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-27
    Description: A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2010-216222 , IFASD-2009-101 , E-17203 , International Forum on Aeroelasticity and Structural Dynamics (IFASD 2009); 21?25 Jun. 2009; Seattle, WA
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: 1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and 2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about 3 for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel.
    Keywords: Aircraft Propulsion and Power
    Type: E-18953 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: This paper summarizes the procedures of inserting a thin-layer mesh to existing inviscid polyhedral mesh either with or without hanging-node elements as well as presents sample results from its applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).
    Keywords: Aircraft Propulsion and Power
    Type: E-18839-1 , AIAA SciTech 2014; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN17532 , SAE 2014 Aerospace Systems and Technology Conference; Sep 23, 2014 - Sep 25, 2014; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Future civil transport designs may incorporate engine inlets integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlet ingests the lower momentum boundary layer flow. Previous studies have shown, however, that efficiency benefits of Boundary Layer Ingesting (BLI) ingestion are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This paper presents an effort to extend the modeling capabilities of an existing rotating turbomachinery unsteady analysis code to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations, such as the development of rotating stall and inlet distortion through compressor stages. This paper describes the first phase of an effort to extend the TURBO model to calculate the external and inlet flowfield upstream of fan so that accurate pressure distortions that result from BLI configurations can be computed and used to analyze fan aerodynamics and structural response. To validate the TURBO program modifications for the BLI flowfield, experimental test data obtained by NASA for a flushmounted S-duct with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Quantitative data is presented that indicates good predictive capability of the model in the upstream flow. A representative fan is attached to the inlet and results are presented for the coupled inlet/fan model. The impact on the total pressure distortion at the AIP after the fan is attached is examined.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN15952 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN16186 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: Boundary layer ingesting propulsion systems have the potential to significantly reduce fuel burn for future generations of commercial aircraft, but these systems must be designed to overcome the challenge of high dynamic stresses in fan blades due to forced response. High dynamic stresses can lead to high cycle fatigue failures. High-fidelity computational analysis of the fan aeromechanics is integral to an ongoing effort to design a boundary layer ingesting inlet and fan for a wind-tunnel test. An unsteady flow solution from a Reynoldsaveraged Navier Stokes analysis of a coupled inlet-fan system is used to calculate blade unsteady loading and assess forced response of the fan to distorted inflow. Conducted prior to the mechanical design of a fan, the initial forced response analyses performed in this study provide an early look at the levels of dynamic stresses that are likely to be encountered. For the boundary layer ingesting inlet, the distortion contains strong engine order excitations that act simultaneously. The combined effect of these harmonics was considered in the calculation of the forced response stresses. Together, static and dynamic stresses can provide the information necessary to evaluate whether the blades are likely to fail due to high cycle fatigue. Based on the analyses done, the overspeed condition is likely to result in the smallest stress margin in terms of the mean and alternating stresses. Additional work is ongoing to expand the analyses to off-design conditions, on-resonance conditions, and to include more detailed modeling of the blade structure.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN15948 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: This presentation contains Wind-US results presented at the 2nd Propulsion Aerodynamics Workshop. The workshop was organized by the American Institute of Aeronautics and Astronautics, Air Breathing Propulsion Systems Integration Technical Committee with the purpose of assessing the accuracy of computational fluid dynamics for air breathing propulsion applications. Attendees included representatives from government, industry, academia, and commercial software companies. Participants were encouraged to explore and discuss all aspects of the simulation process including the effects of mesh type and refinement, solver numerical schemes, and turbulence modeling. The first set of challenge cases involved computing the thrust and discharge coefficients for a 25deg conical nozzle for a range of nozzle pressure ratios between 1.4 and 7.0. Participants were also asked to simulate two cases in which the 25deg conical nozzle was bifurcated by a solid plate, resulting in vortex shedding (NPR=1.6) and shifted plume shock (NPR=4.0). A second set of nozzle cases involved computing the discharge and thrust coefficients for a convergent dual stream nozzle for a range of subsonic nozzle pressure ratios. The workshop committee also compared the plume mixing of these cases across various codes and models. The final test case was a serpentine inlet diffuser with an outlet to inlet area ratio of 1.52 and an offset of 1.34 times the inlet diameter. Boundary layer profiles, wall static pressure, and total pressure at downstream rake locations were examined.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN16809 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States|AIAA Propulsion Aerodynamics Workshop; Jul 31, 2014 - Aug 01, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN16658 , 50th Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN16221 , Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the lowboom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN16343 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN16304 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN16231 , Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: NASA's Rotary Wing Project is investigating technologies that will enable the development of revolutionary civil tilt rotor aircraft. Previous studies have shown that for large tilt rotor aircraft to be viable, the rotor speeds need to be slowed significantly during the cruise portion of the flight. This requirement to slow the rotors during cruise presents an interesting challenge to the propulsion system designer as efficient engine performance must be achieved at two drastically different operating conditions. One potential solution to this challenge is to use a transmission with multiple gear ratios and shift to the appropriate ratio during flight. This solution will require a large transmission that is likely to be maintenance intensive and will require a complex shifting procedure to maintain power to the rotors at all times. An alternative solution is to use a fixed gear ratio transmission and require the power turbine to operate efficiently over the entire speed range. This concept is referred to as a variable-speed power-turbine (VSPT) and is the focus of the current study. This paper explores the design of a variable speed power turbine for civil tilt rotor applications using design optimization techniques applied to NASA's new meanline tool, the Object-Oriented Turbomachinery Analysis Code (OTAC).
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN16310 , Propulsion and Energy 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: The Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3 of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN16276 , Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN12088 , Propulsion, Control, and Diagnostic Workshop; Dec 11, 2013 - Dec 12, 2013; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: A two-dimensional, computational fluid dynamic (CFD) simulation of a semi-idealized rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction yields rapidly converging, steady solutions. Results from the simulation are compared to those from a more complex and refined code, and found to be in reasonable agreement. The performance impacts of several RDE design parameters are then examined. Finally, for a particular RDE configuration, it is found that direct performance comparison can be made with a straight-tube pulse detonation engine (PDE). Results show that they are essentially equivalent.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2014-216634 , AIAA Paper 2014-0284 , E-18837 , GRC-E-DAA-TN12556 , Science and Technology Forum and Exposition (SciTech2014):; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and the status and results to date will be presented.
    Keywords: Aircraft Propulsion and Power
    Type: E-18625 , GRC-E-DAA-TN5670 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 29, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.
    Keywords: Aircraft Propulsion and Power
    Type: AFRC-E-DAA-TN15761 , AIAA Aviation Technology, Integration, and Operations Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The objective of this paper is to describe an accurate and efficient reduced order modeling method for aeroelastic (AE) analysis and for determining the flutter boundary. Without losing accuracy, we develop a reduced order model based on the Volterra series to achieve significant savings in computational cost. The aerodynamic force is provided by a high-fidelity solution from the Reynolds-averaged Navier-Stokes (RANS) equations; the structural mode shapes are determined from the finite element analysis. The fluid-structure coupling is then modeled by the state-space formulation with the structural displacement as input and the aerodynamic force as output, which in turn acts as an external force to the aeroelastic displacement equation for providing the structural deformation. NASA's rotor 67 blade is used to study its aeroelastic characteristics under the designated operating condition. First, the CFD results are validated against measured data available for the steady state condition. Then, the accuracy of the developed reduced order model is compared with the full-order solutions. Finally the aeroelastic solutions of the blade are computed and a flutter boundary is identified, suggesting that the rotor, with the material property chosen for the study, is structurally stable at the operating condition, free of encountering flutter.
    Keywords: Aircraft Propulsion and Power
    Type: GT2014-25474 , GRC-E-DAA-TN13691 , ASME Turbo Expo 2014; Jun 16, 2014 - Jun 20, 2014; Dusseldorf; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: Centrifugal compressors are compatible with the low exit corrected flows found in the high pressure compressor of turboshaft engines and may play an increasing role in turbofan engines as engine overall pressure ratios increase. Centrifugal compressor stages are difficult to model accurately with RANS CFD solvers. A computational study of the CC3 centrifugal impeller in its vaneless diffuser configuration was undertaken as part of an effort to understand potential causes of RANS CFD mis-prediction in these types of geometries. Three steady, periodic cases of the impeller and diffuser were modeled using the TURBO Parallel Version 4 code: (1) a k- turbulence model computation on a 6.8 million point grid using wall functions, (2) a k- turbulence model computation on a 14 million point grid integrating to the wall, and (3) a k- turbulence model computation on the 14 million point grid integrating to the wall. It was found that all three cases compared favorably to data from inlet to impeller trailing edge, but the k- and k- computations had disparate results beyond the trailing edge and into the vaneless diffuser. A large region of reversed flow was observed in the k- computations which extended from 70 to 100 percent span at the exit rating plane, whereas the k- computation had reversed flow from 95 to 100 percent span. Compared to experimental data at near-peak-efficiency, the reversed flow region in the k- case resulted in an underprediction in adiabatic efficiency of 8.3 points, whereas the k- case was 1.2 points lower in efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2013-216566 , AIAA Paper 2013-3631 , E-18754 , GRC-E-DAA-TN9986 , Joint Propulsion Conference and Exhibit; Jul 14, 2013 - Jul 17, 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: Centrifugal compressors are compatible with the low exit corrected flows found in the high pressure compressor of turboshaft engines and may play an increasing role in turbofan engines as engine overall pressure ratios increase. Centrifugal compressor stages are difficult to model accurately with RANS CFD solvers. A computational study of the CC3 centrifugal impeller in its vaneless diffuser configuration was undertaken as part of an effort to understand potential causes of RANS CFD mis-prediction in these types of geometries. Three steady, periodic cases of the impeller and diffuser were modeled using the TURBO Parallel Version 4 code: 1) a k-epsilon turbulence model computation on a 6.8 million point grid using wall functions, 2) a k-epsilon turbulence model computation on a 14 million point grid integrating to the wall, and 3) a k-omega turbulence model computation on the 14 million point grid integrating to the wall. It was found that all three cases compared favorably to data from inlet to impeller trailing edge, but the k-epsilon and k-omega computations had disparate results beyond the trailing edge and into the vaneless diffuser. A large region of reversed flow was observed in the k-epsilon computations which extended from 70% to 100% span at the exit rating plane, whereas the k-omega computation had reversed flow from 95% to 100% span. Compared to experimental data at near-peak-efficiency, the reversed flow region in the k-epsilon case resulted in an under-prediction in adiabatic efficiency of 8.3 points, whereas the k-omega case was 1.2 points lower in efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2013-216566 , E-18754 , GRC-E-DAA-TN9986 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 15, 2013 - Jul 17, 2013; San Jose, CA; United States|International Energy Conversion Engineering Conference; Jul 15, 2013 - Jul 17, 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2013-216548 , E-18727 , GRC-E-DAA-TN10096 , International Energy Conversion Engineering Conference; Jul 15, 2013 - Jul 17, 2013; San Jose, CA; United States|AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 15, 2013 - Jul 17, 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN13570 , NASA Aeronautics Research Mission Directorate (ARMD) 2014 Seedling Fund technical Seminar; Feb 19, 2014 - Feb 27, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for use possible in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the experiments with the sub-scale turbine engine disks.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN13685 , SPIE Smart Structures/NDE 2014 Conference; Mar 09, 2014 - Mar 13, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: In response to growing aviation demands and concerns about the environment and energy usage, a team at NASA proposed and examined a revolutionary aeropropulsion concept, a turboelectric distributed propulsion system, which employs multiple electric motor-driven propulsors that are distributed on a large transport vehicle. The power to drive these electric propulsors is generated by separately located gas-turbine-driven electric generators on the airframe. This arrangement enables the use of many small-distributed propulsors, allowing a very high effective bypass ratio, while retaining the superior efficiency of large core engines, which are physically separated but connected to the propulsors through electric power lines. Because of the physical separation of propulsors from power generating devices, a new class of vehicles with unprecedented performance employing such revolutionary propulsion system is possible in vehicle design. One such vehicle currently being investigated by NASA is called the "N3-X" that uses a hybrid-wing-body for an airframe and superconducting generators, motors, and transmission lines for its propulsion system. On the N3-X these new degrees of design freedom are used (1) to place two large turboshaft engines driving generators in freestream conditions to minimize total pressure losses and (2) to embed a broad continuous array of 14 motor-driven fans on the upper surface of the aircraft near the trailing edge of the hybrid-wing-body airframe to maximize propulsive efficiency by ingesting thick airframe boundary layer flow. Through a system analysis in engine cycle and weight estimation, it was determined that the N3-X would be able to achieve a reduction of 70% or 72% (depending on the cooling system) in energy usage relative to the reference aircraft, a Boeing 777-200LR. Since the high-power electric system is used in its propulsion system, a study of the electric power distribution system was performed to identify critical dynamic and safety issues. This paper presents some of the features and issues associated with the turboelectric distributed propulsion system and summarizes the recent study results, including the high electric power distribution, in the analysis of the N3-X vehicle.
    Keywords: Aircraft Propulsion and Power
    Type: ISABEý-2013-1719 , E-18689 , 2013 International Society for Air Breathing Engines; Sep 09, 2013 - Sep 13, 2013; Busan; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2013-217883 , E-18694 , ASME Turbo Expo 2013; Jun 03, 2013 - Jun 07, 2013; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN9702 , Pacific Rim Conference on Ceramic and Glass; Jun 02, 2013 - Jun 07, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: Luminescence-based surface temperature measurements from an ultra-bright Cr-doped GdAlO3 perovskite (GAP:Cr) coating were successfully conducted on an air-film-cooled stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing at UTSI was to demonstrate that reliable thermal barrier coating (TBC) surface temperatures based on luminescence decay of a thermographic phosphor could be obtained from the surface of an actual engine component in an aggressive afterburner flame environment and to address the challenges of a highly radiant background and high velocity gases. A high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine was coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick GAP:Cr thermographic phosphor layer was deposited by EB-PVD. The ultra-bright broadband luminescence from the GAP:Cr thermographic phosphor is shown to offer the advantage of over an order-of-magnitude greater emission intensity compared to rare-earth-doped phosphors in the engine test environment. This higher emission intensity was shown to be very desirable for overcoming the necessarily restricted probe light collection solid angle and for achieving high signal-to-background levels. Luminescence-decay-based surface temperature measurements varied from 500 to over 1000C depending on engine operating conditions and level of air film cooling.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN8877 , 59th International Instrumentation Symposium; May 13, 2013 - May 17, 2013; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8 percent of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2013-216525 , E-18686 , GT2013-95049 , GRC-E-DAA-TN7849 , ASME Turbo Expo 2013; Jun 03, 2013 - Jun 07, 2013; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: A "seeded fault test" in support of a rotorcraft condition based maintenance program (CBM), is an experiment in which a component is tested with a known fault while health monitoring data is collected. These tests are performed at operating conditions comparable to operating conditions the component would be exposed to while installed on the aircraft. Performance of seeded fault tests is one method used to provide evidence that a Health Usage Monitoring System (HUMS) can replace current maintenance practices required for aircraft airworthiness. Actual in-service experience of the HUMS detecting a component fault is another validation method. This paper will discuss a hybrid validation approach that combines in service-data with seeded fault tests. For this approach, existing in-service HUMS flight data from a naturally occurring component fault will be used to define a component seeded fault test. An example, using spiral bevel gears as the targeted component, will be presented. Since the U.S. Army has begun to develop standards for using seeded fault tests for HUMS validation, the hybrid approach will be mapped to the steps defined within their Aeronautical Design Standard Handbook for CBM. This paper will step through their defined processes, and identify additional steps that may be required when using component test rig fault tests to demonstrate helicopter CI performance. The discussion within this paper will provide the reader with a better appreciation for the challenges faced when defining a seeded fault test for HUMS validation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM2013-217872 , E-18669 , Joint Machinery Failure Prevention Technology (MFPT) 2013; May 13, 2013 - May 17, 2013; Cleveland, OH; United States|59th International Instrumentation Symposium (IIS); May 13, 2013 - May 17, 2013; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: A research team of U.S. Government agencies and engine manufacturers are designing an experiment to test volcanic-ash ingestion by a NASA owned F117 engine that was donated by the U.S. Air Force. The experiment is being conducted under the auspices of NASA s Vehicle Integrated Propulsion Research (VIPR) Program and will take place in early 2014 at Edwards AFB in California as an on-ground, on-wing test. The primary objectives are to determine the effect on the engine of several hours of exposure to low to moderate ash concentrations, currently proposed at 1 and 10 mg/m3 and to evaluate the capability of engine health management technologies for detecting these effects. A natural volcanic ash will be used that is representative of distal ash clouds many 100's to approximately 1000 km from a volcanic source i.e., the ash should be composed of fresh glassy particles a few tens of microns in size. The glassy ash particles are expected to soften and become less viscous when exposed to the high temperatures of the combustion chamber, then stick to the nozzle guide vanes of the high-pressure turbine. Numerous observations and measurements of the engine s performance and degradation will be made during the course of the experiment, including borescope and tear-down inspections. While not intended to be sufficient for rigorous certification of engine performance when ash is ingested, the experiment should provide useful information to aircraft manufacturers, airline operators, and military and civil regulators in their efforts to evaluate the range of risks that ash hazards pose to aviation.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN8284 , 6th International Workshop on Volcanic Ash; Mar 11, 2013 - Mar 15, 2013; Citeko; Indonesia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Six gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.
    Keywords: Aircraft Propulsion and Power
    Type: E-18665 , American Helicopter Society 69th Annual Forum; May 21, 2013 - May 23, 2013; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction/torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 F) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.
    Keywords: Aircraft Propulsion and Power
    Type: E-18652 , American Helicopter Society 69th Annual Forum; May 21, 2013 - May 23, 2013; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: This report highlights one of the many successful projects at the NASA Dryden Flight Research Center that was approved for FY12 funding under the Center Innovation Fund. This project was focused on advancing the technology readiness level of one specific type of altitude-compensating nozzle: the dual-bell rocket nozzle. When considering a rocket's performance over its entire integrated trajectory, the dual-bell nozzle has been predicted to achieve a higher total impulse over the conventional bell nozzle, which is expected to result in a greater capability of payload mass to low-Earth orbit. Although the dual-bell rocket nozzle has been thoroughly studied for several decades, this nozzle has still not been adequately tested in a relevant flight-like environment. This report provides highlights and top-level details on the FY12 feasibility effort to advance this promising technology through flight test, a collaborative effort which leverages NASA Marshall's dual-bell nozzle research and development with Dryden's expertise in propulsion-focused flight testing. To accomplish this goal, the NASA F-15B is proposed as the testbed for the initial flight-test campaign to advance this greatly needed capability.
    Keywords: Aircraft Propulsion and Power
    Type: DFRC-E-DAA-TN5973
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10-foot by 10-foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.
    Keywords: Aircraft Propulsion and Power
    Type: E-18419-1 , 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 30, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217698 , AIAA Paper 2012-2604 , E-18385 , AIAA Infotech@Aerospace Conference; Jun 19, 2012 - Jun 21, 2012; Garden Grove, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217714 , AIAA Paper 2012-4149 , E-18419 , 48th Joint Propulsion Conference and Exhibit; Jul 30, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217622 , E-18210 , SMART Structures and Materials and Nondestructive Evaluation and Health Monitoring 2012; Mar 11, 2012 - Mar 15, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: A sub-model is developed to account for the drag and heat transfer enhancement resulting from deflagration-to-detonation (DDT) inducing obstacles commonly used in pulse detonation engines (PDE). The sub-model is incorporated as a source term in a time-accurate, quasi-onedimensional, CFD-based PDE simulation. The simulation and sub-model are then validated through comparison with a particular experiment in which limited DDT obstacle parameters were varied. The simulation is then used to examine the relative contributions from drag and heat transfer to the reduced thrust which is observed. It is found that heat transfer is far more significant than aerodynamic drag in this particular experiment.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217629 , AIAA Paper 2009-502 , E-18219 , 47th Aerospace Sciences Meeting; Jan 07, 2009 - Jan 11, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Experiments are performed in a 24.4 mm diameter choked circular hot and cold jets issuing from a sharp-edged orifice at a fully expanded jet Mach number of 1.85. The stagnation temperature of the hot and the cold jets are 319 K and 299 K respectively. The results suggest that temperature effects on the screech amplitude and frequency are manifested for the fundamental, with a reduced amplitude and increased frequency for hot jet relative to the cold jet. Temperature effects on the second harmonic are also observed.
    Keywords: Aircraft Propulsion and Power
    Type: KSC-2012-103 , KSC-2012-103R , 23rd International Congress of Theoretical and Applied Mechanics; Aug 19, 2012 - Aug 24, 2012; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.
    Keywords: Aircraft Propulsion and Power
    Type: E-18116 , AHS International 68th Annual Forum and Technology Display; May 01, 2012 - May 03, 2012; Fort Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217273 , E-18029 , 47th Joint Propulsion Conference and Exhibit; Jul 31, 2011 - Aug 03, 2011; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: NASA's Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft (Refs. 1 and 2). The open rotor concept (also referred to as the Unducted Fan or advanced turboprop) may allow the achievement of this objective by reducing engine emissions and fuel consumption. To evaluate its potential impact, an open rotor cycle modeling capability is needed. This paper presents the initial development of an open rotor cycle model in the Numerical Propulsion System Simulation (NPSS) computer program which can then be used to evaluate the potential benefit of this engine. The development of this open rotor model necessitated addressing two modeling needs within NPSS. First, a method for evaluating the performance of counter-rotating propellers was needed. Therefore, a new counter-rotating propeller NPSS component was created. This component uses propeller performance maps developed from historic counter-rotating propeller experiments to determine the thrust delivered and power required. Second, several methods for modeling a counter-rotating power turbine within NPSS were explored. These techniques used several combinations of turbine components within NPSS to provide the necessary power to the propellers. Ultimately, a single turbine component with a conventional turbine map was selected. Using these modeling enhancements, an open rotor cycle model was developed in NPSS using a multi-design point approach. The multi-design point (MDP) approach improves the engine cycle analysis process by making it easier to properly size the engine to meet a variety of thrust targets throughout the flight envelope. A number of design points are considered including an aerodynamic design point, sea-level static, takeoff and top of climb. The development of this MDP model was also enabled by the selection of a simple power management scheme which schedules propeller blade angles with the freestream Mach number. Finally, sample open rotor performance results and areas for further model improvements are presented.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2011-217225 , GT2011-46694 , E-17908 , Turbo Expo 2011; Jun 06, 2011 - Jun 10, 2011; Vancouver, BC; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.
    Keywords: Aircraft Propulsion and Power
    Type: E-17851 , Journal of the Acoustical Society of America (ISSN 0001-4966); 129; 5; 3068-3081
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The paper presents the results from a validation study undertaken as a part of the NASA s fundamental aeronautics initiative on high altitude emissions in order to assess the accuracy of several atomization models used in both non-superheat and superheat spray calculations. As a part of this investigation we have undertaken the validation based on four different cases to investigate the spray characteristics of (1) a flashing jet generated by the sudden release of pressurized R134A from cylindrical nozzle, (2) a liquid jet atomizing in a subsonic cross flow, (3) a Parker-Hannifin pressure swirl atomizer, and (4) a single-element Lean Direct Injector (LDI) combustor experiment. These cases were chosen because of their importance in some aerospace applications. The validation is based on some 3D and axisymmetric calculations involving both reacting and non-reacting sprays. In general, the predicted results provide reasonable agreement for both mean droplet sizes (D32) and average droplet velocities but mostly underestimate the droplets sizes in the inner radial region of a cylindrical jet.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2011-217029 , E-17694 , International Conference on Computational and Experimental Engineering and Sciences (ICCES 2011); Apr 18, 2011 - Apr 21, 2011; Nanjing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN3214 , 8th International Planetary Probe Workshop (IPPW-8); Jun 06, 2011 - Jun 10, 2011; Portsmouth, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: Pressure gain combustion (PGC) has been the object of scientific study for over a century due to its promise of improved thermodynamic efficiency. In many recent application concepts PGC is utilized as a component in an otherwise continuous, normally steady flow system, such as a gas turbine or ram jet engine. However, PGC is inherently unsteady. Failure to account for the effects of this periodic unsteadiness can lead to misunderstanding and errors in performance calculations. This paper seeks to provide some clarity by presenting a consistent method of thermodynamic cycle analysis for a device utilizing PGC technology. The incorporation of the unsteady PGC process into the conservation equations for a continuous flow device is presented. Most importantly, the appropriate method for computing the conservation of momentum is presented. It will be shown that proper, consistent analysis of cyclic conservation principles produces representative performance predictions.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2013-217831 , AIAA Paper 2013-0280 , E-18582 , 51st Aerospace Science Conference; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: This paper presents measurements of temperature and relative species concentrations in the combustion flowfield of a 9-point swirl venturi lean direct injector fueled with JP-8. The temperature and relative species concentrations of the flame produced by the injector were measured using spontaneous Raman scattering (SRS). Results of measurements taken at four flame conditions are presented. The species concentrations reported are measured relative to nitrogen and include oxygen, carbon dioxide, and water.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2013-217830 , AIAA Paper 2013-0562 , E-18581 , 51st Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217806 , E-18541 , 2012 Annual Conference Prognostics and Health; Dec 23, 2012 - Dec 27, 2012; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217814 , GT2012-70017 , E-18550 , Turbo Expo 2012; Jun 11, 2012 - Jun 15, 2012; COpenhagen; Denmark
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the Langley Research Center s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body (HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to provide a database for shielding code validation. A range of frequencies, and a parametric study of modes were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the nacelle (in its 0 orientation) and three planes parallel were acquired from the array sweep. In each plane the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal structure.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217685 , AIAA Paper-2012-2076 , E-18638 , 2012 Aeroacoustic Conference; Jun 04, 2012 - Jun 06, 2012; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.
    Keywords: Aircraft Propulsion and Power
    Type: E-18461 , Fundamental Aeronautics Program Annual Meeting; Mar 13, 2012 - Mar 15, 2012; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217742 , AIAA Paper 2012-4649 , E-18487 , Atmospheric Flight Mechanics Conference; Aug 13, 2012 - Aug 16, 2012; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217713 , AIAA Paper 2012-4039 , E-18418 , 48th Joint Propulsion Conference and Exhibit; Jul 30, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. CDB conducts propulsion control and diagnostics research in support of various programs and projects under the NASA Aeronautics Research Mission Directorate and the Human Exploration and Operations Mission Directorate. The paper first provides an overview of the various research tasks in CDB relative to the NASA programs and projects, and briefly describes the progress being made on each of these tasks. The discussion here is at a high level providing the objectives of the tasks, the technical challenges in meeting the objectives and most recent accomplishments. References are provided for each of the technical tasks for the reader to familiarize themselves with the details.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217718 , AIAA Paper 2012-4255 , E-18429 , 48th Joint Propulsion Conference and Exhibit; Jul 30, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The objective of this paper is to set propulsion system targets for an all-electric manned helicopter of ultra-light utility class to achieve performance comparable to combustion engines. The approach is to begin with a current two-seat helicopter (Robinson R 22 Beta II-like), design an all-electric power plant as replacement for its existing piston engine, and study performance of the new all-electric aircraft. The new power plant consists of high-pressure Proton Exchange Membrane fuel cells, hydrogen stored in 700 bar type-4 tanks, lithium-ion batteries, and an AC synchronous permanent magnet motor. The aircraft and the transmission are assumed to remain the same. The paper surveys the state of the art in each of these areas, synthesizes a power plant using best available technologies in each, examines the performance achievable by such a power plant, identifies key barriers, and sets future technology targets to achieve performance at par with current internal combustion engines.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN5817 , 12th AIAA Aviation Technology, Integration, and Operations; Sep 16, 2012; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217295 , E-18044 , 48th Joint Propulsion Conference and Exhibit; Jul 30, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: A methodology is described whereby the work extracted by a turbine exposed to the fundamentally nonuniform flowfield from a representative pressure gain combustor (PGC) may be assessed. The method uses an idealized constant volume cycle, often referred to as an Atkinson or Humphrey cycle, to model the PGC. Output from this model is used as input to a scalable turbine efficiency function (i.e., a map), which in turn allows for the calculation of useful work throughout the cycle. Integration over the entire cycle yields mass-averaged work extraction. The unsteady turbine work extraction is compared to steady work extraction calculations based on various averaging techniques for characterizing the combustor exit pressure and temperature. It is found that averages associated with momentum flux (as opposed to entropy or kinetic energy) provide the best match. This result suggests that momentum-based averaging is the most appropriate figure-of-merit to use as a PGC performance metric. Using the mass-averaged work extraction methodology, it is also found that the design turbine pressure ratio for maximum work extraction is significantly higher than that for a turbine fed by a constant pressure combustor with similar inlet conditions and equivalence ratio. Limited results are presented whereby the constant volume cycle is replaced by output from a detonation-based PGC simulation. The results in terms of averaging techniques and design pressure ratio are similar.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217443 , AIAA Paper 2012-770 , E-18174 , 50th Aerospace Science Conference; Jan 09, 2012 - Jan 12, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217279 , AIAA Paper-2011-5859 , E-18034 , 47th Joint Propulsion Conference and Exhibit; Jul 31, 2011 - Aug 03, 2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217278 , GT2011-46408 , E-18033 , Turbo Expo 2011; Jun 06, 2011 - Jun 10, 2011; Vancouver, BC; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217261 , AIAA Paper 2011-5972 , E-18017 , 47th Joint Propulsion Conference and Exhibit; Jul 31, 2011 - Aug 03, 2011; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: Ice buildup in the compressor section of a commercial aircraft gas turbine engine can cause a number of engine failures. One of these failure modes is known as engine rollback: an uncommanded decrease in thrust accompanied by a decrease in fan speed and an increase in turbine temperature. This paper describes the development of a model which simulates the system level impact of engine icing using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). When an ice blockage is added to C-MAPSS40k, the control system responds in a manner similar to that of an actual engine, and, in cases with severe blockage, an engine rollback is observed. Using this capability to simulate engine rollback, a proof-of-concept detection scheme is developed and tested using only typical engine sensors. This paper concludes that the engine control system s limit protection is the proximate cause of iced engine rollback and that the controller can detect the buildup of ice particles in the compressor section. This work serves as a feasibility study for continued research into the detection and mitigation of engine rollback using the propulsion control system.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2011-217200 , 11ICE-0081/2011-38-0026 , E-17885 , International Conference on Aircraft and Engine Icing and Ground Deicing; Jun 13, 2011 - Jun 17, 2011; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: This paper describes particle evolution measurements taken in the Particulate Aerosol Laboratory (PAL). The PAL consists of a burner capable of burning jet fuel that exhausts into an altitude chamber that can simulate temperature and pressure conditions up to 13,700 m. After presenting results from initial temperature distributions inside the chamber, particle count data measured in the altitude chamber are shown. Initial particle count data show that the sampling system can have a significant effect on the measured particle distribution: both the value of particle number concentration and the shape of the radial distribution of the particle number concentration depend on whether the measurement probe is heated or unheated.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217257 , GT2010-23689 , E-18012 , ASME Turbo Expo 2010; Jun 14, 2010 - Jun 18, 2010; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-ft Supersonic Wind Tunnel at the NASA Glenn Research Center to validate the computational study. Results demonstrated how the nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion, causing a favorable change in the observed pressure signature. Experimental results were presented for comparison to the CFD results. The strong nozzle lip shock at high values of NPR intersected the nozzle boat-tail expansion and suppressed the expansion wave. Based on these results, it may be feasible to reduce the boat-tail expansion for a future supersonic aircraft with under-expanded nozzle exhaust flow by modifying nozzle pressure or nozzle divergent section geometry.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2011-217137 , AIAA Paper 2010-4936 , E-17430 , 28th Applied Aerodynamics Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: Existing NASA/Honeywell EVNERT full-scale static engine test data is analyzed by using source-separation techniques in order to determine the turbine transfer of the currently sub-dominant combustor noise. The results are used to assess the combustor-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). Time-series data from three sensors internal to the Honeywell TECH977 research engine is used in the analysis. The true combustor-noise turbine-transfer function is educed by utilizing a new three-signal approach. The resulting narrowband gain factors are compared with the corresponding constant values obtained from two empirical acoustic-turbine-loss formulas. It is found that a simplified Pratt & Whitney formula agrees better with the experimental results for frequencies of practical importance. The 130 deg downstream-direction far-field 1/3-octave sound-pressure levels (SPL) results of Hultgren & Miles are reexamined using a post-correction of their ANOPP predictions for both the total noise signature and the combustion-noise component. It is found that replacing the standard ANOPP turbine-attenuation function for combustion noise with the simplified Pratt & Whitney formula clearly improves the predictions. It is recommended that the GECOR combustion-noise module in ANOPP be updated to allow for a user-selectable switch between the current transmission-loss model and the simplified Pratt & Whitney formula. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper-2011-2912 , E-18007-1 , 17th AIAA/CEAS Aeroacoustics Conferences; Jun 05, 2011 - Jun 08, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2011-217210 , AIAA Paper-2011-2230 , E-17889 , 17th AIAA International Space Planes and Hypersonics Systems Conference; Apr 11, 2011 - Apr 14, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2011-214039 , 141-ISROMAC-11 , E-15396-2 , 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery; Feb 26, 2006 - Mar 02, 2006; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Sealing interface materials and coatings are sacrificial, giving up their integrity for the benefit of the component. Seals that are compliant while still controlling leakage, dynamics, and coolant flows are sought to enhance turbomachine performance. Herein we investigate the leaf-seal configuration. While the leaf seal is classified as contacting, a ready modification using the leaf-housing arrangement in conjunction with an interface film rider (a bore seal, for example) provides for a film-riding noncontact seal. The leaf housing and leaf elements can be made from a variety of materials from plastic to ceramic. Four simplistic models are used to identify the physics essential to controlling leakage. Corroborated by CFD, these results provide design parameters for applications to within reasonable engineering certainty. Some potential improvements are proposed.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2011-214040 , 54-ISROMAC-11 , E-15397-2 , 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery; Feb 26, 2006 - Mar 02, 2006; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: The NASA Environmentally Responsible Aviation (ERA) Project and Fundamental Aeronautics Projects are supporting compressor and turbine research with the goal of reducing aircraft engine fuel burn and greenhouse gas emissions. The primary goals of this work are to increase aircraft propulsion system fuel efficiency for a given mission by increasing the overall pressure ratio (OPR) of the engine while maintaining or improving aerodynamic efficiency of these components. An additional area of work involves reducing the amount of cooling air required to cool the turbine blades while increasing the turbine inlet temperature. This is complicated by the fact that the cooling air is becoming hotter due to the increases in OPR. Various methods are being investigated to achieve these goals, ranging from improved compressor three-dimensional blade designs to improved turbine cooling hole shapes and methods. Finally, a complementary effort in improving the accuracy, range, and speed of computational fluid mechanics (CFD) methods is proceeding to better capture the physical mechanisms underlying all these problems, for the purpose of improving understanding and future designs.
    Keywords: Aircraft Propulsion and Power
    Type: E-17721 , 49th AIAA Aero Sciences Meeting; Jan 04, 2011 - Jan 07, 2011; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: CMC technology development in the Ceramics Branch at NASA Glenn Research Center addresses Aeronautics propulsion goals across subsonic, supersonic and hypersonic flight regimes. Combustor, turbine and exhaust nozzle applications of CMC materials will enable NASA to demonstrate reduced fuel consumption, emissions, and noise in advanced gas turbine engines. Applications ranging from basic Fundamental Aeronautics research activities to technology demonstrations in the new Integrated Systems Research Program will be discussed.
    Keywords: Aircraft Propulsion and Power
    Type: E-17719 , 35th Annual Conference on Composites, Materials and Structures; Jan 24, 2011 - Jan 27, 2011; Cape Canaveral, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: Mr. Follen has been invited talk on subject of Greening of Aerospace and Aviation Canada-Ohio Aerospace Summit 2013, February 25-26, 2013. This two-day, bi-national aerospace and aviation conference will focus on identifying business and research opportunities providing meaningful industry updates with ample opportunity to network and scheduled business-to-business and researcher-to-researcher meetings.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN8074 , Canada-Ohio Aerospace Summit 2013; Feb 25, 2013 - Feb 26, 2013; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2013-217846 , AIAA Paper 2013-1075 , E-18622 , 51st Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: NASA is focused on technologies for combined cycle, air-breathing propulsion systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments along with improved safety. Among the most critical TBCC enabling technologies are: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development and 3) innovative turbine based combined cycle integration. To address these challenges, NASA initiated an experimental mode transition task including analytical methods to assess the state-of-the-art of propulsion system performance and design codes. One effort has been the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE-LIMX) which is a fully integrated TBCC propulsion system with flowpath sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment was tested in the NASA GRC 10 by 10-Foot Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle engine issues including: (1) dual integrated inlet operability and performance issues-unstart constraints, distortion constraints, bleed requirements, and controls, (2) mode-transition sequence elements caused by switching between the turbine and the ramjet/scramjet flowpaths (imposed variable geometry requirements), and (3) turbine engine transients (and associated time scales) during transition. Testing of the initial inlet and dynamic characterization phases were completed and smooth mode transition was demonstrated. A database focused on a Mach 4 transition speed with limited off-design elements was developed and will serve to guide future TBCC system studies and to validate higher level analyses.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217724 , E-18435 , 48th Joint Propulsion Conference and Exhibit; Jul 30, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: There are many technologies under development that have the potential to enable large fuel burn reductions in the 2025 timeframe for subsonic transport aircraft relative to the current fleet. This paper identifies a potential technology suite and analyzes the fuel burn reduction potential of these technologies when integrated into advanced subsonic transport concepts. Advanced tube-and-wing concepts are developed in the single aisle and large twin aisle class, and a hybrid-wing-body concept is developed for the large twin aisle class. The resulting fuel burn reductions for the advanced tube-and-wing concepts range from a 42% reduction relative to the 777-200 to a 44% reduction relative to the 737-800. In addition, the hybrid-wingbody design resulted in a 47% fuel burn reduction relative to the 777-200. Of course, to achieve these fuel burn reduction levels, a significant amount of technology and concept maturation is required between now and 2025. A methodology for capturing and tracking concept maturity is also developed and presented in this paper.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-15121 , NATO AVT-209 Workshop on Energy Efficient Technologies; Oct 22, 2012 - Oct 24, 2012; Lisbon; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Vehicle Sketch Pad (VSP) is an easy-to-use modeler used to generate aircraft geometries for use in conceptual design and analysis. It has been used in the past to generate metageometries for aerodynamic analyses ranging from handbook methods to Navier-Stokes computational fluid dynamics (CFD). As desirable as it is to bring high order analyses, such as CFD, into the conceptual design process, this has been difficult and time consuming in practice due to the manual nature of both surface and volume grid generation. Over the last couple of years, VSP has had a major upgrade of its surface triangulation and export capability. This has enhanced its ability to work with Cart3D, an inviscid, three dimensional fluid flow toolset. The combination of VSP and Cart3D allows performing inviscid CFD on complex geometries with relatively high productivity. This paper will illustrate the use of VSP with Cart3D through an example case of a complex propulsion-airframe integration (PAI) of an over-wing nacelle (OWN) airliner configuration.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2012-0547 , NF1676L-14003 , 50th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2012 - Jan 12, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary layer ingestion (BLI) to reduce inlet drag on the propulsion system, and reduces the wake drag of the vehicle.
    Keywords: Aircraft Propulsion and Power
    Type: ISABE-2011-1340 , E-18064 , 20th International Society for Airbreathing Engines (ISABE 2011); Sep 12, 2011 - Sep 16, 2011; Gothenburg; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: A review of the current research being conducted under the Environmentally Responsible Aviation (ERA) Ultra High Bypass (UHB) Testing subelement is presented. The four exiting tasks under the subelement, a description of each task, and the current status of each are given. The four tasks are: 1. Collaborate with P&W to design, fabricate and test a second generation of Geared Turbofan 2. Design, fabricate and test advanced Over the Rotor acoustic treatment and acoustically treated Soft Vanes 3. Develop a Shape Memory Alloy Variable Area Nozzle concept and demonstrate prototype 4. Refurbish and update the GRC Ultra High Bypass Drive Rig Following the current task updates, an overview of three proposed additional tasks to support the existing tasks is presented. The additional tasks would allow noise reduction and noise diagnostic testing technologies to be demonstrated at TRL 4 as part of existing planned fan model testing in the NASA Glenn 9 x15 Low Speed Wind Tunnel under the ERA UHB Testing subelement.
    Keywords: Aircraft Propulsion and Power
    Type: E-17844 , Acoustics Technical Working Group Meeting; Apr 21, 2011 - Apr 22, 2011; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.
    Keywords: Aircraft Propulsion and Power
    Type: E-17833 , A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture; Apr 18, 2011; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: This presentation provides a summary of primarily laser-based measurement techniques we use at NASA Glenn Research Center to characterize fuel injection, fuel/air mixing, and combustion. The report highlights using Planar Laser-Induced Fluorescence, Particle Image Velocimetry, and Phase Doppler Interferometry to obtain fuel injector patternation, fuel and air velocities, and fuel drop sizes and turbulence intensities during combustion. We also present a brief comparison between combustors burning standard JP-8 Jet fuel and an alternative fuels. For this comparison, we used flame chemiluminescence and high speed imaging.
    Keywords: Aircraft Propulsion and Power
    Type: E-17841 , NASA Fundamental Aeronautics Program 2011 Technical Conference; Mar 15, 2011 - Mar 17, 2011; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2011-217038 , AIAA Paper 2011-1590 , E-17744 , Infotech@Aerospace 2011 Conference; Mar 29, 2011 - Mar 31, 2011; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.
    Keywords: Aircraft Propulsion and Power
    Type: DFRC-E-DAA-TN3255 , DFRC-E-DAA-TN3352 , DFRC-E-DAA-TN3351 , 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference; Apr 11, 2011 - Apr 14, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-11227 , 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Sep 13, 2010 - Sep 15, 2010; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: This report presents results of the work completed in Phase 2 of the Engine Validation of Noise Reduction Concepts (EVNRC) contract. The purpose of the program is to validate, through engine testing, advanced noise reduction concepts aimed at reducing engine noise up to 6 EPNdB and improving nacelle suppression by 50 percent relative to 1992 technology. Phase 1 of the program is completed and is summarized in NASA/CR-2014-218088.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2014-218089 , E-18784 , E-18794
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2012-217655 , E-18232
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: This report is Part I of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. The period of performance was January 1, 2007 to December 31, 2010. This report includes the project summary, a list of publications and reprints of the publications that appeared in archival journals. Part II of the final report includes a Ph.D. dissertation and is published separately as NASA/CR-2012-2172655. The research performed under this project was focused on the operation of surface dielectric barrier discharge (DBD) devices driven by high voltage, nanosecond scale pulses plus constant or time varying bias voltages. The main interest was in momentum production and the range of voltages applied eliminated significant heating effects. The approach was experimental supplemented by computational modeling. All the experiments were conducted at Princeton University. The project provided comprehensive understanding of the associated physical phenomena. Limitations on the performance of the devices for the generation of high velocity surface jets were established and various means for overcoming those limitations were proposed and tested. The major limitations included the maximum velocity limit of the jet due to electrical breakdown in air and across the dielectric, the occurrence of backward breakdown during the short pulse causing reverse thrust, the buildup of surface charge in the dielectric offsetting the forward driving potential of the bias voltage, and the interaction of the surface jet with the surface through viscous losses. It was also noted that the best performance occurred when the nanosecond pulse and the bias voltage were of opposite sign. Solutions include the development of partially conducting surface coatings, the development of a semiconductor diode inlaid surface material to suppress the backward breakdown. Extension to long discharge channels was studied and a new ozone imaging method developed for more quantitative determination of surface jet properties.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR2012-217654 , E-18231
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: This work represents an initial attempt to determine what, if any, issues arise from scaling demonstration supersonic combustion scramjets to a flight scale making the engine a viable candidate for both military weapon and civilian access to space applications. The original vehicle sizes tested and flown to date, were designed to prove a concept. With the proven designs, use of the technology for applications as weapon systems or space flight are only possible at six to ten times the original scale. To determine effects of scaling, computations were performed with hypersonic inlets designed to operate a nominal Mach 4 and Mach 5 conditions that are possible within the eight foot high temperature tunnel at NASA Langley Research Center. The total pressure recovery for these inlets is about 70%, while maintaining self start conditions, and providing operable inflow to combustors. Based on this study, the primary scaling effect detected is the strength of a vortex created along the cowl edge causing adverse boundary layer growth in the inlet.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217761 , L-20092 , NF1676L-13714
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: Foil gas bearings are a key technology in many commercial and emerging oilfree turbomachinery systems. These bearings are nonlinear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness, and damping. Previous investigations led to an empirically derived method to estimate load capacity. This method has been a valuable tool in system development. The current work extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced oil-free machines operating on foil gas bearings.
    Keywords: Aircraft Propulsion and Power
    Type: LEW-18755-1 , NASA Tech Briefs, June 2012; 32-33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: ASTM D3241/Jet Fuel Thermal Oxidation Tester (JFTOT) procedure, the standard method for testing thermal stability of conventional aviation turbine fuels is inherently limited due to the subjectivity in the color standard for tube deposit rating. Quantitative assessment of the physical characteristics of oxidative fuel deposits provides a more powerful method for comparing the thermal oxidation stability characteristics of fuels, especially in a research setting. We propose employing a Spectroscopic Ellipsometer to determine the film thickness and profile of oxidative fuel deposits on JFTOT heater tubes. Using JP-8 aviation fuel and following a modified ASTM D3241 testing procedure, the capabilities of the Ellipsometer will be demonstrated by measuring oxidative fuel deposit profiles for a range of different deposit characteristics. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217404 , E-18051
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2012-217294 , E-18043
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: This report is a Users Guide for version 2 of the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS v.2 has some enhancements over the original, including three actuators rather than one, the addition of actuator and sensor dynamics, and an improved controller, while retaining or improving on the convenience and user-friendliness of the original. C-MAPSS v.2 provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217432 , E-18125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...