ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: A new higher order theory has been proposed for the analysis of composite cylindrical shells. The formulation allows for arbitrary variation of inplane displacements. Governing equations are presented in the form of a hierarchy of sets of partial differential equations. Each set describes the shell behavior to a certain degree of approximation. The natural frequencies of simply-supported isotropic and laminated shells and stresses in a ring loaded composite shell have been determined to various orders of approximation and compared with three dimensional solutions. These numerical studies indicate the improvements achievable in estimating the natural frequencies and the interlaminar shear stresses in laminated composite cylinders.
    Keywords: STRUCTURAL MECHANICS
    Type: Aeronautical Society of India, Journal (ISSN 0001-9267); 38; 161-171
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-07
    Description: The combined effects of blade torsion and dynamic inflow on the aeroelastic stability of an elastic rotor blade in forward flight are studied. The governing sets of equations of motion (fully nonlinear, linearized, and multiblade equations) used in this study are derived symbolically using a program written in FORTRAN. Stability results are presented for different structural models with and without dynamic inflow. A combination of symbolic and numerical programs at the proper stage in the derivation process makes the obtainment of final stability results an efficient and straightforward procedure.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: Rotorcraft Dynamics 1984; p 221-240
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction of the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles, and the time history effects are accounted for through the Wagner function.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA, Lewis Research Center, Lewis Structures Technology, 1988. Volume 1: Structural Dynamics; p 405-419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The combined effects of blade torsion and dynamic inflow on the aeroelastic stability of an elastic rotor blade in forward flight are studied. The Helicopter Equations for Stability and Loads (HESL) program is extended to derive the governing equations of motion for the blade, and a Lagrangian formulation is used to obtain the equations in generalized coordinates. The program generates the steady-state and linearized perturbation equations in symbolic form and then codes them into FORTRAN subroutines. The coefficients for each equation and for each mode are identified through a numerical program; the latter can also be used to obtain the harmonic balance equations. The governing multiblade equations are derived explicitly using HESL. These equations can accommodate any number of elastic blade modes. Stability results are presented for several hingeless rotor blade structural models, and the influence of dynamic inflow in forward flight with an elastic hingeless rotor is investigated.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.
    Keywords: Structural Mechanics
    Type: NASA-CR-198521 , E-10402 , NAS 1.26:198521
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: This manual describes the input data required for using the second version of the ASTROP2 (Aeroelastic STability and Response Of Propulsion systems - 2 dimensional analysis) computer code. In ASTROP2, version 2.0, the program is divided into two modules: 2DSTRIP, which calculates the structural dynamic information; and 2DASTROP, which calculates the unsteady aerodynamic force coefficients from which the aeroelastic stability can be determined. In the original version of ASTROP2, these two aspects were performed in a single program. The improvements to version 2.0 include an option to account for counter rotation, improved numerical integration, accommodation for non-uniform inflow distribution, and an iterative scheme to flutter frequency convergence. ASTROP2 can be used for flutter analysis of multi-bladed structures such as those found in compressors, turbines, counter rotating propellers or propfans. The analysis combines a two-dimensional, unsteady cascade aerodynamics model and a three dimensional, normal mode structural model using strip theory. The flutter analysis is formulated in the frequency domain resulting in an eigenvalue determinant. The flutter frequency and damping can be inferred from the eigenvalues.
    Keywords: Structural Mechanics
    Type: NASA-TM-107195 , E-10174 , NAS 1.15:107195
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.
    Keywords: Structural Mechanics
    Type: NASA-CR-198471 , E-10191 , NAS 1.26:198471
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.
    Keywords: Aerodynamics
    Type: NASA-CR-202335 , NAS 1.26:202335 , E-10707
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: The aeroelastic stability of a two-dimensional cascade oscillating in supersonic axial flow is analyzed in the time domain. The aeroelastic model consists of a single degree of freedom typical section structural model for each blade of the cascade and an unsteady two-dimensional cascade aerodynamic model based on the Euler equations. The Euler equations are solved using a time accurate Alternating Direction Implicit (ADI) solution scheme. The aeroelastic equations are integrated in time. The effect of interblade phase angle is included in the aeroelastic analysis by an appropriate choice of initial and boundary conditions. Flutter predictions are obtained from the time response of a flat plate cascade in single degree of freedom pitching motion. The results correlate well with those obtained from a separate frequency domain flutter analysis for all values of interblade phase angles considered. Flutter results are then presented for cascades having airfoil sections representative of a supersonic throughflow fan. The validity of the time integration method for a cascade of airfoils at various interblade phase angles is demonstrated.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-105625 , E-6966 , NAS 1.15:105625
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TP-3406 , E-7535 , NAS 1.60:3406
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...