ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (37)
  • Articles (OceanRep)  (37)
  • Inter Research
  • Institut für Polarökologie Kiel
  • American Meteorological Society
  • Springer Nature
  • 2015-2019  (37)
Collection
  • Other Sources  (37)
Source
  • Articles (OceanRep)  (37)
Years
Year
  • 1
    Publication Date: 2020-06-24
    Description: Nitrogen fixation — the reduction of dinitrogen (N2) gas to biologically available nitrogen (N) — is an important source of N for terrestrial and aquatic ecosystems. In terrestrial environments, N2-fixing symbioses involve multicellular plants, but in the marine environment these symbioses occur with unicellular planktonic algae. An unusual symbiosis between an uncultivated unicellular cyanobacterium (UCYN-A) and a haptophyte picoplankton alga was recently discovered in oligotrophic oceans. UCYN-A has a highly reduced genome, and exchanges fixed N for fixed carbon with its host. This symbiosis bears some resemblance to symbioses found in freshwater ecosystems. UCYN-A shares many core genes with the 'spheroid bodies' of Epithemia turgida and the endosymbionts of the amoeba Paulinella chromatophora. UCYN-A is widely distributed, and has diversified into a number of sublineages that could be ecotypes. Many questions remain regarding the physical and genetic mechanisms of the association, but UCYN-A is an intriguing model for contemplating the evolution of N2-fixing organelles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Coccolithophores, a globally distributed group of marine phytoplankton, showed diverse responses to ocean acidification (OA) and to combinations of OA with other environmental factors. While their growth can be enhanced and calcification be hindered by OA under constant indoor light, fluctuation of solar radiation with ultraviolet irradiances might offset such effects. In this study, when a calcifying and a non-calcifying strain of Emiliania huxleyi were grown at 2 CO2 concentrations (low CO2 [LC]: 395 µatm; high CO2 [HC]: 1000 µatm) under different levels of incident solar radiation in the presence of ultraviolet radiation (UVR), HC and increased levels of solar radiation acted synergistically to enhance the growth in the calcifying strain but not in the non-calcifying strain. HC enhanced the particulate organic carbon (POC) and nitrogen (PON) productions in both strains, and this effect was more obvious at high levels of solar radiation. While HC decreased calcification at low solar radiation levels, it did not cause a significant effect at high levels of solar radiation, implying that a sufficient supply of light energy can offset the impact of OA on the calcifying strain. Our data suggest that increased light exposure, which is predicted to happen with shoaling of the upper mixing layer due to progressive warming, could counteract the impact of OA on coccolithophores distributed within this layer.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: In the 1930s the wasting disease pathogen Labyrinthula zosterae is believed to have killed 90% of the temperate seagrass Zostera marina in the Atlantic Ocean. Despite the devastating impact of this disease the host–pathogen interaction is still poorly understood, and few field studies have investigated factors correlating with the prevalence and abundance of L. zosterae. This study measures wasting disease in natural populations of Z. marina, showing a strong correlation between the disease and both salinity and water depth. No infection was detected in Z. marina shoots from low salinity (13–25 PSU) meadows, whereas most shoots carried the disease in high salinity (25–29 PSU). Shallow (1 m) living Z. marina shoots were also more infected compared to shoots in deeper (5 m) meadows. In addition, infection and transplantation experiments showed that Z. marina shoots from low salinity meadows with low pathogen pressure were more susceptible to L. zosterae infection. The higher susceptibility could not be explained by lower content of inhibitory defense compounds in the shoots. Instead, extracts from all Z. marina shoots significantly reduced pathogen growth, suggesting that Z. marina contains inhibitory compounds that function as a constitutive defense. Overall, the results show that seagrass wasting disease is common in natural Z. marina populations in the study area and that it increases with salinity and decreases with depth. Our findings also suggest that low salinity areas can act as a refuge against seagrass wasting disease.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: The high biodiversity of coral reefs results in complex trophic webs where energy and nutrients are transferred between species through a multitude of pathways. Here, we hypothesize that reef sponges convert the dissolved organic matter released by benthic primary producers (e.g. corals) into particulate detritus that is transferred to sponge-associated detritivores via the sponge loop pathway. To test this hypothesis, we conducted stable isotope (13C and15N) tracer experiments to investigate the uptake and transfer of coral-derived organic matter from the sponges Mycale fistulifera and Negombata magnifica to 2 types of detritivores commonly associated with sponges: ophiuroids (Ophiothrix savignyi and Ophiocoma scolopendrina) and polychaetes (Polydorella smurovi). Findings revealed that the organic matter naturally released by the corals was indeed readily assimilated by both sponges and rapidly released again as sponge detritus. This detritus was subsequently consumed by the detritivores, demonstrating transfer of coral-derived organic matter from sponges to their associated fauna and confirming all steps of the sponge loop. Thus, sponges provide a trophic link between corals and higher trophic levels, thereby acting as key players within reef food webs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-25
    Description: Recognition that evolution operates on the same timescale as ecological processes has motivated growing interest in eco-evolutionary dynamics. Nonetheless, generating sufficient data to test predictions about eco-evolutionary dynamics has proved challenging, particularly in natural contexts. Here we argue that genomic data can be integrated into the study of eco-evolutionary dynamics in ways that deepen our understanding of the interplay between ecology and evolution. Specifically, we outline five major questions in the study of eco-evolutionary dynamics for which genomic data may provide answers. Although genomic data alone will not be sufficient to resolve these challenges, integrating genomic data can provide a more mechanistic understanding of the causes of phenotypic change, help elucidate the mechanisms driving eco-evolutionary dynamics, and lead to more accurate evolutionary predictions of eco-evolutionary dynamics in nature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-06-25
    Description: Although nearly all 2 °C scenarios use negative CO2 emission technologies, only relatively small investments are being made in them, and concerns are being raised regarding their large-scale use. If no explicit policy decisions are taken soon, however, their use will simply be forced on us to meet the Paris climate targets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: Nitrogen fixation is a key source of nitrogen in the Baltic Sea which counteracts nitrogen loss processes in the deep anoxic basins. Laboratory and field studies have indicated that single-strain nitrogen-fixing (diazotrophic) cyanobacteria from the Baltic Sea are sensitive to ocean acidification and warming, two drivers of marked future change in the marine environment. Here, we enclosed a natural plankton community in twelve indoor mesocosms (volume ~1400 L) and manipulated pCO2 to yield six CO2 treatments with two different temperature treatments (16.6°C and 22.4°C, pCO2 range = 360 – 2030 μatm). We followed the filamentous, heterocystous diazotrophic cyanobacteria community (Nostocales, primarily Nodularia spumigena) over four weeks. Our results indicate that heterocystous diazotrophic cyanobacteria may become less competitive in natural plankton communities under ocean acidification. Elevated CO2 had a negative impact on Nodularia sp. biomass, which was exacerbated by warming. Our results imply that Nodularia sp. may contribute less to new nitrogen inputs in the Baltic Sea in future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer Nature
    In:  Nature Ecology & Evolution, 1 (Article number: 0116).
    Publication Date: 2020-06-25
    Description: Marine microscopic plastic (microplastic) debris is a modern societal issue, illustrating the challenge of balancing the convenience of plastic in daily life with the prospect of causing ecological harm by careless disposal. Here we develop the concept of microplastic as a complex, dynamic mixture of polymers and additives, to which organic material and contaminants can successively bind to form an ‘ecocorona’, increasing the density and surface charge of particles and changing their bioavailability and toxicity. Chronic exposure to microplastic is rarely lethal, but can adversely affect individual animals, reducing feeding and depleting energy stores, with knock-on effects for fecundity and growth. We explore the extent to which ecological processes could be impacted, including altered behaviours, bioturbation and impacts on carbon flux to the deep ocean. We discuss how microplastic compares with other anthropogenic pollutants in terms of ecological risk, and consider the role of science and society in tackling this global issue in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer Nature
    In:  Nature Reviews Cancer, 17 (9). pp. 528-542.
    Publication Date: 2020-06-24
    Description: Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: Nitrification, the step-wise oxidation of ammonium to nitrite and nitrate, is important in the marine environment because it produces nitrate, the most abundant marine dissolved inorganic nitrogen (DIN) component and N-source for phytoplankton and microbes. This study focused on the second step of nitrification, which is carried out by a distinct group of organisms, nitrite-oxidizing bacteria (NOB). The growth of NOB is characterized by nitrite oxidation kinetics, which we investigated for 4 pure cultures of marine NOB (Nitrospina watsonii 347, Nitrospira sp. Ecomares 2.1, Nitrococcus mobilis 231, and Nitrobacter sp. 311). We further compared the kinetics to those of non-marine species because substrate concentrations in marine environments are comparatively low, which likely influences kinetics and highlights the importance of this study. We also determined the isotope effect during nitrite oxidation of a pure culture of Nitrospina (Nitrospina watsonii 347) belonging to one of the most abundant marine NOB genera, and for a Nitrospira strain (Nitrospira sp. Ecomares 2.1). The enzyme kinetics of nitrite oxidation, described by Michaelis-Menten kinetics, of 4 marine genera are rather narrow and fall in the low end of half-saturation constant (Km) values reported so far, which span over 3 orders of magnitude between 9 and 〉1000 µM NO2-. Nitrospina has the lowest Km (19 µM NO2-), followed by Nitrobacter (28 µM NO2-), Nitrospira (54 µM NO2-), and Nitrococcus (120 µM NO2-). The isotope effects during nitrite oxidation by Nitrospina watsonii 347 and Nitrospira sp. Ecomares 2.1 were 9.7 ± 0.8 and 10.2 ± 0.9‰, respectively. This confirms the inverse isotope effect of NOB described in other studies; however, it is at the lower end of reported isotope effects. We speculate that differences in isotope effects reflect distinct nitrite oxidoreductase (NXR) enzyme orientations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...