ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (22)
  • AGU
  • Institut für Meereskunde
  • American Meteorological Society
  • MDPI Publishing
  • 2020-2024  (9)
  • 2010-2014  (13)
Sammlung
Datenquelle
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2024-02-07
    Beschreibung: Dykes are magma-filled fractures propagating through the brittle crust. Understanding the physics of dyking process is essential to mitigate the volcanic hazard associated with the opening of new eruptive fissures at the surface. Often, physics-based models view either fracturing of the host rock or viscous flow of the magma as the dominating energy sink during dyke propagation. Here, we provide a numerical model that captures the coupling of fracturing at the crack tip and the transport of a viscous fluid. Built with the boundary element technique, our model allows for computation of the shape and velocity of a growing fluid-filled crack accounting for the viscosity of the fluid: The fluid flow induces a viscous pressure drop acting at the crack walls, and modifies the shape of the crack. The energy conservation equation provides the constraints to solve for the crack growth velocity, assuming that brittle fracturing and viscous flow are the main processes that dissipate energy. Using a parameter range that represents typical magmatic intrusions, we obtain crack shapes displaying some typical characteristics, including a tear-drop head and an open tail that depend on rock rigidity, magma viscosity and buoyancy. We show that viscous forces significantly contribute to the energy dissipated during the propagation of magmatic dykes. Applied to the 1998 intrusion at Piton de la Fournaise (La Réunion Island), we provide ranges of dyke lengths and openings by adjusting the numerical velocity to the one deduced from the migration of volcano-tectonic events. Key Points We present a new modeling scheme to compute the shape and velocity of a growing fluid-filled crack Our magmatic dykes show a tear drop head and open tail, on a wide range of propagation velocities We reproduce the velocity and fit important parameters for the 1998 Piton de la Fournaise intrusion
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-02-07
    Beschreibung: We deployed a dense geodetic and seismological network in the Atacama seismic gap in Chile. We derive a microseismicity catalog of 〉30,000 events, time series from 70 GNSS stations, and apply a transdimensional Bayesian inversion to estimate interplate locking degree. We identify two highly locked regions of different sizes whose geometries appear to control seismicity patterns. Interface seismicity concentrates beneath the coastline just downdip of the highest locking. A region of lower interplate locking around 27.5ºS coincides with higher seismicity levels, a high number of repeating earthquakes and events extending further towards the trench. Having shown numerous signs of aseismic deformation (slow-slip events and earthquake swarms), this area is situated where the Copiapó Ridge is subducted. While these findings suggest that the structure of the downgoing oceanic plate prescribes patterns of interplate locking and seismicity, we note that the Taltal Ridge further north lacks a similar signature.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: archive
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-02-07
    Beschreibung: Global geophysical observations show the presence of the enigmatic mid‐lithospheric discontinuity (MLD) at depths of ca. 80–150 km which may question the stability and internal structure of the continental lithosphere. While various mechanisms may explain the MLD, the dynamic processes leading to the seismic observations are unclear. Here we present a physical mechanism for the origin of MLD by channel flow in the cratonic mantle lithosphere, triggered by convective instabilities at cratonic margins in the Archean when the mantle was hot. Our numerical modeling shows that the top of the frozen‐in channel flow creates a shear zone at a depth comparable to the globally observed seismic MLD. Grain size reduction in the shear zone and accumulation of percolated melts or fluids along the channel top may reduce seismic wave speeds as observed below the MLD, while the channel flow itself may explain radial anisotropy of seismic wave speeds and change in direction of the seismic anisotropic fast axis. The proposed mechanism is valid for a broad range of physically realistic parameters and that MLD may have been preserved since its formation in the Archean. The intensity of the channel flow ceased with time due to secular cooling of the Earth's interior. The new mechanism may reshape our understanding of the evolution and stability of cratonic lithosphere.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-02-07
    Beschreibung: The abundance and size distribution of marine particles control a range of biogeochemical and ecological processes in the ocean, including carbon sequestration. These quantities are the result of complex physical-biological interactions that are difficult to observe, and their spatial and temporal patterns remain uncertain. Here, we present a novel analysis of particle size distributions (PSDs) from a global compilation of in situ Underwater Vision Profiler 5 (UVP5) optical measurements. Using a machine learning algorithm, we extrapolate sparse UVP5 observations to the global ocean from well-sampled oceanographic variables. We reconstruct global maps of PSD parameters (biovolume [BV] and slope) for particles at the base of the euphotic zone. These reconstructions reveal consistent global patterns, with high chlorophyll regions generally characterized by high particle BV and flatter PSD slope, that is, a high relative abundance of large versus small particles. The resulting negative correlations between particle BV and slope further suggests synergistic effects on size-dependent processes such as sinking particle fluxes. Our approach and estimates provide a baseline for an improved understanding of particle cycles in the ocean, and pave the way to global, three-dimensional reconstructions of PSD and sinking particle fluxes from the growing body of UVP5 observations.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-02-07
    Beschreibung: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano-Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid-mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude. Key Points The steepening of the slab due to slab buckling hinders the trench retreating and explains the main pulsatile phases of the deformation during the last 25 Ma The absolute motion of the overriding plate controls the regime of subduction dynamics Flat slab and eclogitization are required to weaken and then shorten the overriding plate when the slab steepens and the trench is hindered
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-02-07
    Beschreibung: Ocean mesoscale eddies have been identified as drivers of localized extremely low dissolved oxygen concentration ([O2]) conditions in the subsurface. We employ a global physical-biogeochemical ocean model at eddy-permitting resolution to conduct a census of open-ocean eddies near Eastern Boundary Upwelling Systems adjacent to tropical Oxygen Minimum Zones (OMZs). We track cyclonic and anticyclonic eddies with a surface signature over the period 1992–2018 and isolate their subsurface oxygen characteristics. We identify strongly deoxygenating eddies and quantify their contribution to low [O2] extreme events. Our results show that model simulated low [O2] extreme event frequency is 2–7 times higher in eddies versus non-eddying locations, with regionally more than half of low [O2] extreme events outside of the permanent OMZs being associated with eddies. Our study highlights the need for further work to investigate the drivers, characteristics and potential ecosystem impacts of low [O2] extreme events.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2024-02-07
    Beschreibung: Intermediate nepheloid layers (INLs) form important pathways for the cross-slope transport and vertical export of particulate matter, including carbon. While intermediate maxima in particle settling fluxes have been reported in the Eurasian Basin of the Arctic Ocean, direct observations of turbid INLs above the continental slope are still lacking. In this study, we provide the first direct evidence of an INL, coinciding with enhanced mid-water turbulent dissipation rates, over the Laptev Sea continental slope in summer 2018. Current velocity data show a period of enhanced downslope flow with depressed isopcynals, suggesting that the enhanced turbulent dissipation is probably the consequence of the presence of an unsteady lee wave. Similar events occur mostly during ice free periods, suggesting an increasing frequency of episodic cross-slope particle transport in the future. The discovery of the INL and the episodic generation mechanism provide new insights into particle transport dynamics in this rapidly changing environment.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2023-02-08
    Beschreibung: We report on the geochemistry of hydrocarbons and pore waters down to 62.5 mbsf, collected by drilling with the MARUM‐MeBo70 and by gravity coring at the Lunde pockmark in the Vestnesa Ridge. Our data document the origin and transformations of volatiles feeding gas emissions previously documented in this region. Gas hydrates are present where a fracture network beneath the pockmark focusses migration of thermogenic hydrocarbons characterized by their C1/C2+ and stable isotopic compositions (δ2H‐CH4, δ13C‐CH4). Measured geothermal gradients (~80°C km‐1) and known formation temperatures (〉70°C) suggest that those hydrocarbons are formed at depths 〉800 mbsf. A combined analytical/modeling approach, including concentration and isotopic mass balances, reveals that pockmark sediments experience diffuse migration of thermogenic hydrocarbons. However, at sites without channeled flow this appears to be limited to depths 〉 ~50 mbsf. At all sites we document a contribution of microbial methanogenesis to the overall carbon cycle that includes a component of secondary carbonate reduction (CR) – i.e. reduction of dissolved inorganic carbon (DIC) generated by anaerobic oxidation of methane (AOM) in the uppermost methanogenic zone. AOM and CR rates are spatially variable within the pockmark and are highest at high‐flux sites. These reactions are revealed by δ13C‐DIC depletions at the sulfate‐methane interface at all sites. However, δ13C‐CH4 depletions are only observed at the low methane flux sites because changes in the isotopic composition of the overall methane pool are masked at high‐flux sites. 13C‐depletions of TOC suggest that at seeps sites, methane‐derived carbon is incorporated into de novo synthesized biomass.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2023-02-08
    Beschreibung: A 15-year (2004–2018) record of mooring observations from the upper 50 m of the ocean in the eastern Eurasian Basin reveals increased current speeds and vertical shear, associated with an increasing coupling between wind, ice, and the upper ocean over 2004–2018, particularly in summer. Substantial increases in current speeds and shears in the upper 50 m are dominated by a two times amplification of currents in the semidiurnal band, which includes tides and wind-forced near-inertial oscillations. For the first time the strengthened upper ocean currents and shear are observed to coincide with weakening stratification. This coupling links the Atlantic Water heat to the sea ice, a consequence of which would be reducing regional sea ice volume. These results point to a new positive feedback mechanism in which reduced sea ice extent facilitates more energetic inertial oscillations and associated upper-ocean shear, thus leading to enhanced ventilation of the Atlantic Water.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    AGU
    In:  Journal of Geophysical Research: Solid Earth, 119 (4). pp. 3601-3626.
    Publikationsdatum: 2020-07-23
    Beschreibung: The dynamics of accretionary convergent margins are severely influenced by intense deformation and fluid expulsion. To quantify the fluid pressure and fluid flow velocities in the Hellenic subduction system, we set up 2-D hydrogeological numerical models following two seismic reflection lines across the Mediterranean Ridge. These profiles bracket the along-strike variation in wedge geometry: moderate compression and a 〉4 km thick underthrust sequence in the west versus enhanced compression and 〈1 km of downgoing sediment in the center. Input parameters were obtained from preexisting geophysical data, drill cores, and new geotechnical laboratory experiments. A permeability-porosity relationship was determined by a sensitivity analysis, indicating that porosity and intrinsic permeability are small. This hampers the expulsion of fluids and leads to the build up of fluid overpressure in the deeper portion of the wedge and in the underthrust sediment. The loci of maximum fluid pressure are mainly controlled by the compactional fluid source, which generally decreases toward the backstop. However, pore pressure is still high at the decollement level at distances 〈100 km from the deformation front, either by the incorporation of low permeability evaporites or additional compaction of the wedge sediments in the two profiles. In the west, however, formation of a wide accretionary complex is facilitated by high pore pressure zones. When compared to other large accretionary complexes such as Nankai or Barbados, our results not only show broad similarities but also that near-lithostatic pore pressures may be easier to maintain in the Hellenic Arc because of accentuated collision, some underthrust evaporates, and a thicker underthrust sequence.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2020-07-23
    Beschreibung: This study presents aspects of the spatial and temporal variability of abyssal water masses in the Ionian Sea, as derived from recent temperature, salinity, dissolved oxygen and velocity observations and from comparisons between these and former observations. Previous studies showed how in the Southern Adriatic Sea the Adriatic Deep Water (AdDW) became fresher (ΔS ≈ −0.08) and colder (ΔT ≈ −0.1°C) after experiencing warming and salinification between 2003 and 2007. Our data, collected from October 2009 to July 2010 from two bottom moorings, one within the Strait of Otranto and the other in the northern Ionian, confirm this tendency: a bottom vein of southward-flowing AdDW, whose temperature and salinity continuously decreased during the observation time, was detected there. Typically, the vein travel time between the two stations ranged between 45 and 50 days. This gave us a temporal estimate for AdDW anomaly propagation towards the Ionian abyss from their Adriatic generation region. The density excess of the observed vein was always enough to enable its existence as a bottom-arrested current. This evidence confirms that, at that time (2009 and 2010), the Adriatic Sea was greatly contributing to the formation of Eastern Mediterranean Deep Water (EMDW), the bottom water of the Eastern Mediterranean. Hence, based on these results and on the evidence that, from 2003 to 2009, abyssal Ionian waters became saltier and warmer under the time-lagged influence of AdDW, possible future changes in the EMDW characteristics, as a response to Adriatic variability, are discussed.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    facet.materialart.
    Unbekannt
    American Meteorological Society
    In:  Journal of Climate, 26 (16). pp. 5965-5980.
    Publikationsdatum: 2020-07-24
    Beschreibung: El Niño–Southern Oscillation (ENSO) in the Pacific and the analogous Atlantic Niño mode are generated by processes involving coupled ocean–atmosphere interactions known as the Bjerknes feedback. It has been argued that the Atlantic Niño mode is more strongly damped than ENSO, which is presumed to be closer to neutrally stable. In this study the stability of ENSO and the Atlantic Niño mode is compared via an analysis of the Bjerknes stability index. This index is based on recharge oscillator theory and can be interpreted as the growth rate for coupled modes of ocean–atmosphere variability. Using observational data, an ocean reanalysis product, and output from an ocean general circulation model, the individual terms of the Bjerknes index are calculated for the first time for the Atlantic and then compared to results for the Pacific. Positive thermocline feedbacks in response to wind stress forcing favor anomaly growth in both basins, but they are twice as large in the Pacific compared to the Atlantic. Thermocline feedback is related to the fetch of the zonal winds, which is much greater in the equatorial Pacific than in the equatorial Atlantic due to larger basin size. Negative feedbacks are dominated by thermal damping of sea surface temperature anomalies in both basins. Overall, it is found that both ENSO and the Atlantic Niño mode are damped oscillators, but the Atlantic is more strongly damped than the Pacific primarily because of the weaker thermocline feedback.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    AGU
    In:  Journal of Geophysical Research: Oceans, 118 (4). pp. 1658-1672.
    Publikationsdatum: 2020-07-23
    Beschreibung: A monthly, isopycnal/mixed-layer ocean climatology (MIMOC), global from 0 to 1950 dbar, is compared with other monthly ocean climatologies. All available quality-controlled profiles of temperature (T) and salinity (S) versus pressure (P) collected by conductivity-temperature-depth (CTD) instruments from the Argo Program, Ice-Tethered Profilers, and archived in the World Ocean Database are used. MIMOC provides maps of mixed layer properties (conservative temperature, Θ, absolute salinity, SA, and maximum P) as well as maps of interior ocean properties (Θ, SA, and P) to 1950 dbar on isopycnal surfaces. A third product merges the two onto a pressure grid spanning the upper 1950 dbar, adding more familiar potential temperature (θ) and practical salinity (S) maps. All maps are at monthly 0.5° × 0.5° resolution, spanning from 80°S to 90°N. Objective mapping routines used and described here incorporate an isobath-following component using a “Fast Marching” algorithm, as well as front-sharpening components in both the mixed layer and on interior isopycnals. Recent data are emphasized in the mapping. The goal is to compute a climatology that looks as much as possible like synoptic surveys sampled circa 2007–2011 during all phases of the seasonal cycle, minimizing transient eddy and wave signatures. MIMOC preserves a surface mixed layer, minimizes both diapycnal and isopycnal smoothing of θ-S, as well as preserves density structure in the vertical (pycnoclines and pycnostads) and the horizontal (fronts and their associated currents). It is statically stable and resolves water mass features, fronts, and currents with a high level of detail and fidelity.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    facet.materialart.
    Unbekannt
    AGU
    In:  Journal of Geophysical Research: Solid Earth, 91 (B12). pp. 12711-12721.
    Publikationsdatum: 2020-07-23
    Beschreibung: Four major NE trending postglacial volcanic and tectonic fissure swarms (volcanic systems) occur on the Reykjanes Peninsula, and the westernmost three are the main subject of this paper. Two main types of basaltic volcanoes are associated with these systems: shields of picrite and olivine tholeiite and tholeiite fissures. The average volume of 26 shields is 1.11 km3, and the total production is 29 km3, whereas the corresponding figures for lavas from 101 volcanic fissures are 0.11 km3 and 11 km3. The tectonic fractures are either tension fractures or normal faults of widths up to 20 m, throws up to 10 m, and lengths up to several kilometers. The volcanism and tectonics can be explained by magmatic pressure changes in ellipsoidal magma reservoirs located beneath the fissure swarms. A magmatic pressure increase of the order of 10 MPa is found to be sufficient for an excess uplift of the order of several meters, which is all that is needed to account for the fractures and measured dilation in the fissure swarms. It is concluded that most shield volcanoes, in particular the picrite shields and the large olivine tholeiite shields, formed during the early postglacial period and that their formation was facilitated by the stress field generated as a result of rapid uplift and bending of the crust above the reservoirs. Since that time the reservoirs have become independent systems, the volcanism has been confined to fissures, and the production rate has decreased significantly. During typical fissure eruptions (0.015 km3), only the uppermost several hundred meters of the source reservoir, depending on its magma content, supply magma to the eruption.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    AGU
    In:  Journal of Geophysical Research: Oceans, 117 (C12). C12003.
    Publikationsdatum: 2020-07-23
    Beschreibung: The Denmark Strait overflow provides about half of the total dense water overflow from the Nordic Seas into the North Atlantic Ocean. The velocity of the overflow has been monitored in the Strait with two moored Acoustic Doppler Current Profilers since 1996 with several interruptions due to mooring losses or instrument failure. So far, overflow transports were only calculated when data from both moorings were available. In this work, we introduce a linear model to fill gaps in the time series when data from only one instrument is available. The mean overflow transport is 3.4 Sv and exhibits a variance of 2.0 Sv2. No significant trend was detected in the time series. The highest variability in the transport is associated with the passage of mesoscale eddies with time scales of 2–10 days (associated with a variance of 1.5 Sv2). Seasonal variability is weak and explains less than 5% of the variance in all time series, which is in contrast to the strong seasonal cycle found in high resolution model simulations. Interannual variability is on the order of 10% of the mean. A relation to atmospheric forcing such as the local wind stress curl, as well as to larger scale phenomena, e.g. the North Atlantic Oscillation, is not detected. Since 2005 data from moored temperature, conductivity and pressure recorders have been available as well, monitoring the hydrographic variability at the bottom of Denmark Strait. In recent years the temperature time series of the Denmark Strait overflow revealed a cooling, while the salinity stayed nearly constant.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    facet.materialart.
    Unbekannt
    AGU
    In:  Journal of Geophysical Research: Oceans, 117 (C8).
    Publikationsdatum: 2020-07-23
    Beschreibung: Large-scale budget calculations and numerical model process studies suggest that lateral eddy heat fluxes have an important cooling effect on the Norwegian Atlantic Current (NwAC) as it flows through the Nordic Seas. But observational estimates of such fluxes have been lacking. Here, wintertime surface eddy heat fluxes in the eastern Nordic Seas are estimated from surface drifter data, satellite data and an eddy-permitting numerical model. Maps of the eddy heat flux divergence suggest advective cooling along the path of the NwAC. Integrating the flux divergence over temperature classes yields consistent estimates for the three data sets; the waters warmer than about 6°C are cooled while the cooler waters are warmed. Similar integrations over bottom depth classes show that regions shallower than about 2000 m are cooled while deeper regions are warmed. Finally, integrating the flux divergence along the core of the NwAC suggests that the highest eddy-induced heat loss at the surface is along the steepest part of the continental slope, east of the Lofoten Basin. The model fields indicate that cooling of the current by lateral eddy fluxes is comparable to or larger than the local heat loss to the atmosphere.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2020-07-23
    Beschreibung: On 12 September 2007, an Mw8.4 earthquake occurred within the southern section of the Mentawai segment of the Sumatra subduction zone, where the subduction thrust had previously ruptured in 1833 and 1797. Traveltime data obtained from a temporary local seismic network, deployed between December 2007 and October 2008 to record the aftershocks of the 2007 event, was used to determine two-dimensional (2-D) and three-dimensional (3-D) velocity models of the Mentawai segment. The seismicity distribution reveals significant activity along the subduction interface and within two clusters in the overriding plate either side of the forearc basin. The downgoing slab is clearly distinguished by a dipping region of highVp (8.0 km/s), which can be a traced to ∼50 km depth, with an increased Vp/Vs ratio (1.75 to 1.90) beneath the islands and the western side of the forearc basin, suggesting hydrated oceanic crust. Above the slab, a shallow continental Moho of less than 30 km depth can be inferred, suggesting that the intersection of the continental mantle with the subducting slab is much shallower than the downdip limit of the seismogenic zone despite localized serpentinization being present at the toe of the mantle wedge. The outer arc islands are characterized by low Vp (4.5–5.8 km/s) and high Vp/Vs (greater than 2.0), suggesting that they consist of fluid saturated sediments. The very low rigidity of the outer forearc contributed to the slow rupture of the Mw 7.7 Mentawai tsunami earthquake on 25 October 2010.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    facet.materialart.
    Unbekannt
    AGU
    In:  Journal of Geophysical Research: Oceans, 99 (B12). pp. 24323-24339.
    Publikationsdatum: 2020-07-23
    Beschreibung: The spatial distribution of some major and trace element and isotopic characteristics of backarc Plio-Quaternary basaltic to high-Mg andesitic (51% to 58% SiO2) lavas in the southern Puna (24°S to 27°S) of the Central Andean Volcanic Zone (CVZ) reflect varying continental lithospheric thickness and the thermal state of the underlying mantle wedge and subducting plate. These lavas erupted from small cones and fissures associated with faults related to a change in the regional stress system in the southern Puna at ≈ 2 to 3 Ma. Three geochemical groups are recognized: (1) a relatively high volume intraplate group (high K; La/Ta ratio 〈25) that occurs over a thin continental lithosphere above a gap in the modern seismic zone and represents the highest percentage of mantle partial melt, (2) an intermediate volume, high-K calc-alkaline group ( La/Ta ratio 〉25) that occurs over intermediate thickness lithosphere on the margins of the seismic gap and behind the main CVZ and represents an intermediate percentage of mantle partial melt, and (3) a small-volume shoshonitic group (very high K) that occurs over relatively thick continental lithosphere in the northeast Puna and Altiplano and represents a very small percentage of mantle partial melt. Mantle-generated characteristics of these lavas are partially overprinted by mixing with melts of the overlying thickened crust as shown by the presence of quartz and feldspar xenocrysts, negative Eu anomalies (Eu/Eu 〈 0.90; most 〈 0.80), and radiogenic Sr (〉 0.7055) and Pb and nonradiogenic Nd ( εNd 〈 −0.4) isotopic ratios. Mixing calculations show that the lavas generally contain more than 20% to 25% crustal melt. The eruption of the intraplate group mafic lavas, the change in regional stress orientation, and the high elevation of the southern Puna are suggested to be the result of the late Pliocene mechanical delamination of a block (or blocks) of continental lithosphere (mantle and possibly lowermost crust). The loss of this lithosphere resulted in an influx of asthenosphere that caused heating of the subducting slab and yielded intraplate basic magmas that produced extensive melting at the base of the thickened crust. Heating of the subducting slab led to formation of the seismic gap and trenchward depletion of the slab component. Backarc calc-alkaline group lavas erupted on the margins of this delaminated block, whereas shoshonitic group lavas erupted over a zone of relatively thick nondelaminated lithosphere to the north.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    facet.materialart.
    Unbekannt
    AGU
    In:  Journal of Geophysical Research: Solid Earth, 86 (B11). pp. 10734-10752.
    Publikationsdatum: 2020-07-23
    Beschreibung: New charts of bathymetry, acoustic character, and sediment distribution describe the Hess Rise, a large oceanic plateau in the central north Pacific. Discrete physiographic provinces on the Hess Rise are the High Plateau, shallower than 3900 m, trending N30°W; the Northeastern Flank, a smooth, gentle slope gradually increasing in depth to the northeast; the Woollard Abyssal Plain, extending farther to the northeast; the Volcanic Province with its high peaks and ridges along the southern margin of the Hess Rise; the Mendocino Fracture Zone to the south, expressed by broad, planar seafloor regions bordered by ridges and scarps; the Western Steps, formed by structural benches on the western side of the Rise; and the Emperor Deep, between the rise and the Emperor Seamounts. Five types of acoustic units have been mapped and interpreted: a transparent layer, predominantly of biosiliceous pelagic clay; a stratified layer, predominantly of nannofossil ooze; a diffuse layer of debris flows that seem to have originated mostly in the Volcanic Province; an opaque horizon commonly formed of volcaniclastic sediments that are usually found on the seafloor of the Mendocino Fracture Zone; and a hyperbolic horizon, indicating outcrops of igneous rock. The pronounced effect of bottom currents on the present-day environment of deposition in the Hess Rise is evidenced by the presence of the opaque horizon, which is interpreted as an erosion surface, and by current moating, abrupt thinning of surface layers and truncation of subbottom reflectors. The widespread erosion on the seafloor of the Mendocino Fracture Zone is attributed to the flow of Antarctic bottom water.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    facet.materialart.
    Unbekannt
    AGU
    In:  Journal of Geophysical Research: Solid Earth, 100 (B5). pp. 8115-8131.
    Publikationsdatum: 2020-07-23
    Beschreibung: We present a conceptual model of fluid circulation in a ridge flank hydrothermal system, the Mariana Mounds. The model is based on chemical data from pore waters extracted from piston cores and from push cores collected by deep‐sea research vessel Alvin in small, meter‐sized mounds situated on a local topographic high. These mounds are located within a region of heat flow exceeding that calculated from a conductive model and are zones of strong pore water upflow. We have interpreted the chemical data with time‐dependent transport‐reaction models to estimate pore water velocities. In the mounds themselves pore water velocities reach several meters per year to kilometers per year. Within about 100 m from these zones of focused upflow velocities decrease to several centimeters per year up to tens of centimeters per year. A larger area of low heat flow surrounds these heat flow and topographic highs, with upwelling pore water velocities less than 2 cm/yr. In some nearby cores, downwelling of bottom seawater is evident but at speeds less than 2 cm/yr. Downwelling through the sediments appears to be a minor source of seawater recharge to the basaltic basement. We conclude that the principal source of seawater recharge to basement is where basement outcrops exist, most likely a scarp about 2–4 km to the east and southeast of the study area.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2020-06-03
    Beschreibung: Precipitation downscaling improves the coarse resolution and poor representation of precipitation in global climate models and helps end users to assess the likely hydrological impacts of climate change. This paper integrates perspectives from meteorologists, climatologists, statisticians, and hydrologists to identify generic end user (in particular, impact modeler) needs and to discuss downscaling capabilities and gaps. End users need a reliable representation of precipitation intensities and temporal and spatial variability, as well as physical consistency, independent of region and season. In addition to presenting dynamical downscaling, we review perfect prognosis statistical downscaling, model output statistics, and weather generators, focusing on recent developments to improve the representation of space-time variability. Furthermore, evaluation techniques to assess downscaling skill are presented. Downscaling adds considerable value to projections from global climate models. Remaining gaps are uncertainties arising from sparse data; representation of extreme summer precipitation, subdaily precipitation, and full precipitation fields on fine scales; capturing changes in small-scale processes and their feedback on large scales; and errors inherited from the driving global climate model.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2020-07-23
    Beschreibung: Retrievals of aerosol optical depth (AOD) from MODIS, and of sea surface temperature (SST) from TMI are analyzed jointly with the output of a numerical model for the period 2000-2006 to determine the impact of Saharan dust on the eastern subtropical North Atlantic SST. Simultaneously with, or shortly after strong dust outbreaks, a decrease in SST of 0.2 degrees to 0.4 degrees C can be observed in the microwave SST data set, which is consistent with an independent estimate of SST decrease simulated here by a local mixed layer model. However, low wind conditions and a shallow mixed layer are required to reach this response, and it is therefore unlikely that a clear response of SST to dust lasting more than a few days can be seen in the microwave SST observations. An inspection of microwave SST observations suggests that about 30% of SST variance could be explained by dust-induced cooling in our study region that is not represented in existing AVHRR SST fields nor represented in reanalysis centers-provided surface heat fluxes. On longer time scales, a comparison between observed SST fields and simulated SST, using an eddy-permitting model of the North Atlantic, suggests a cooling of about 0.5 degrees C on the local SST on sub-seasonal to interannual time scales which is significantly correlated and consistent with a dust-induced cooling. However, while supportive of the hypothesis that Saharan dust lead to a reduction in SST, the eddy-resolving model results are not by themselves conclusive. Moreover, the effects of dust-induced cooling on simulations of the ocean circulation, on atmospheric forecasts and on climate simulations remains to be investigated in future studies.
    Materialart: Article , PeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...