ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (12,882)
  • Cell & Developmental Biology  (1,105)
  • Aircraft Propulsion and Power  (164)
  • Aircraft Stability and Control  (111)
  • Fluid Mechanics and Thermodynamics  (74)
  • 1950-1954  (9,979)
  • 1945-1949  (4,357)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2018-06-05
    Description: Charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of the pressure losses in the inlet duct and combustion chamber, the variation in the physical properties of the gas as it passes through the cycle, and the change in mass flow by the addition of fuel are included. The principle performance charts show the effects of the primary variables and correction charts provide the effects of the secondary variables.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: During the flight program on the Bell X-5 airplane with 59 deg sweepback to determine the practical Mach number and normal-force coefficient limits of this configuration, a reduction in static longitudinal stability was encountered in maneuvering flight. A determination of the boundary for reduction of longitudinal stability extending to a Mach number of 0.98 is presented in this paper. A reduction of static longitudinal stability existed for all elevator and all stabilizer-executed maneuvers. The reduction of stability existed for maneuvers executed with elevator near a normal-force coefficient of 0.6 for a Mach number range of about 0.31 to 0.76. Above a Mach number of 0.76 the normal-force coefficient for reduction of stability gradually decreased to a value of 0.2 at a Mach number of 0.98. For stabilizer-executed maneuvers the stability boundary was the same as for elevator maneuvers up to a Mach number of 0.88. Above this Mach number the reduction of stability occurred at slightly higher normal-force coefficients decreasing from about 0.51 at a Mach number of 0.92 to a value of 0.311 at a Mach number of 0.97. The airplane has been flown to a Mach number of 1.04 at a normal-force coefficient of about 0.15 without encountering any reduction of stability. The pilot did not consider the reduction of stability to be dangerous at altitudes above 30,000 feet; however, precise flight was impossible. At angles of attack above that at which the reduction of longitudinal stability occurred, directional instability and aileron control overbalance were encountered.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L53A09b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52K18b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Flight measurements of the stability characteristics of the Bell X-5 research airplane at 59 deg sweepback were made in steady sideslips at Mach numbers from 0.62 to 0.97 at altitudes ranging between 35,000 and 40,000 feet. The results showed that the apparent directional stability was positive and increased at Mach numbers above 0.90. The apparent effective dihedral was positive and high, increasing at Mach numbers above 0.75. The cross-wind force coefficient per degree of sideslip was positive and increased rapidly at Mach numbers above 0.94.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52K13b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E51I05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E51F22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The performance of hypothetical turbojet systems, without thrust augmentation, as power plants for supersonic airplanes has been calculated. The thrust, thrust power, air-fuel ratio, 1 specific fuel consumption, cross-sectional area, and thrust coefficient are shown for free-stream Mach numbers from 1.2 to 3. For comparison, the performance of ram-jet systems over the same Mach number range has also been calculated. For Mach numbers between 1.2 and 2 the calculated thrust coefficient of the turbojet system was found to be larger than the estimated drag coefficient, and the specific fuel consumption was calculated to be considerably less than the specific fuel consumption of the ram-jet system. The turbojet system therefore appears to merit consideration as a propulsion method for free-stream Mach numbers between approximately 1.2 and 2.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-L7H05a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: An experimental investigation was made of a preloaded spring-tab flutter model to determine the effects on flutter speed of aspect ratio, tab frequency, and preloaded spring constant. The rudder was mass-balanced, and the flutter mode studied was essentially one of three degrees of freedom (fin bending coupled with rudder and tab oscillations). Inasmuch as the spring was preloaded, the tab-spring system was a nonlinear one. Frequency of the tab was the most significant parameter in this study, and an increase in flutter speed with increasing frequency is indicated. At a given frequency, the tab of high aspect ratio is shown to have a slightly lower flutter speed than the one of low aspect ratio. Because the frequency of the preloaded spring tab was found to vary radically with amplitude, the flutter speed decreased with increase in initial displacement of the tab.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7G18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Low-speed tests of a pilotless aircraft were conducted in the Langley propeller-research tunnel to provide information for the estimation of the longitudinal stability and. control, to measure the aileron effectiveness, and to calibrate the radome and the Machmeter pitot-static orifices. It was found that the model possessed a stEb.le variation of elevator angle required for trim throughout the speed range at the design angle of attack. A comparison of the airplane with and without JATO units and with an alternate rocket booster showed that a large loss in longitudinal stability and control resulting from the addition of the rocket booster to the aircraft was sufficient to make the rocket-booster assembly unsatisfactory as an alternate for the JATO units. Reversal of the aileron effectiveness was evident at positive deflections of the vertical wing flap indicating that the roll-stabilization system would produce roiling moments in a tight right turn contrary to its design purpose. Vertical-wing-flap deflections caused large errors in the static-pressure reading obtained by the original static-tube installation. A practical installation point on the fuselage was located which should yield reliable measurement of the free-stream static pressure.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The presence of radomes and instruments that are sensitive to water films or ice formations in the nose section of all-weather aircraft and missiles necessitates a knowledge of the droplet impingement characteristics of bodies of revolution. Because it is possible to approximate many of these bodies with an ellipsoid of revolution, droplet trajectories about an ellipsoid of revolution with a fineness ratio of 10 were computed for incompressible axisymmetric air flow. From the computed droplet trajectories, the following impingement characteristics of the ellipsoid surface were obtained and are presented in terms of dimensionless parameters: (1) total rate of water impingement, (2) extent of droplet impingement zone, and (3) local rate of water impingement. These impingement characteristics are compared briefly with those previously reported for an ellipsoid of revolution with a fineness ratio of 5.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-3147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: A wind-tunnel investigation has been made to determine the effects of unsymmetrical horizontal-tail arrangements on the power-on static longitudinal stability of a single-engine single-rotation airplane model. Although the tests and analyses showed that extreme asymmetry in the horizontal tail indicated a reduction in power effects on longitudinal stability for single-engine single-rotation airplanes, the particular "practical" arrangement tested did not show marked improvement. Differences in average downwash between the normal tail arrangement and various other tail arrangements estimated from computed values of propeller-slipstream rotation agreed with values estimated from pitching-moment test data for the flaps-up condition (low thrust and torque) and disagreed for the flaps-down condition (high thrust and torque). This disagreement indicated the necessity for continued research to determine the characteristics of the slip-stream behind various propeller-fuselage-wing combinations. Out-of-trim lateral forces and moments of the unsymmetrical tail arrangements that were best from consideration of longitudinal stability were no greater than those of the normal tail arrangement.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1474 , AD-A801528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-E-241 , NACA-ARR-E6E14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: An investigation at a free-stream Mach number of 2.02 was made to determine the effects of a propulsive jet on a wing surface located in the vicinity of a choked convergent nozzle. Static-pressure surveys were made on a flat surface that was located in the vicinity of the propulsive jet. The nozzle was operated over a range of exit pressure ratios at different fixed vertical distances from the flat surface. Within the scope of this investigation, it was found that shock waves, formed in the external flow because of the presence of the propulsive jet, impinged on the flat surface and greatly altered the pressure distribution. An integration of this pressure distribution, with the location of the propulsive jet exit varied from 1.450 propulsive-jet exit diameters to 3.392 propulsive-jet exit diameters below the wing, resulted in an incremental lift for all jet locations that was equal to the gross thrust at an exit pressure ratio of 2.86. This incremental lift increased with increase in exit pressure ratio, but not so rapidly as the thrust increased, and was approximately constant at any given exit pressure ratio.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L54E05a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined, from two-dimensional windtunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NPiCA 6-series airfoils. The experimental results confirm the design expectations in demonstrating for the NACA S-series airfoils either no variation, or an Increase from the low-speed design value, In the lift coefficient at a constant angle of attack with increasing Mach number above the critical. It was not found possible to improve the variation with Mach number of the slope of the lift curve for these airfoils above that for the NACA 6-series airfoils. The drag characteristics of the new airfoils are somewhat inferior to those of the NACA 6- series with respect to divergence with Mach number, but the pitching-moment characteristics are more favorable for the thinner new sections In demonstrating somewhat smaller variations of moment coefficient with both angle of attack and Mach number. The effect on the aero&ynamic characteristics at high Mach numbers of removing the cusp from the trailing-edge regions of two 10-percent-chord-thick NACA 6-series airfoils is determined to be negligible.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1771
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: Numerical solutions of the differential equation obtained from the momentum theorem for the development of a turbulent boundary layer along a thermally insulated surface in two-dimensional and in radial shock-free flow are presented in tabular form for a range of Mach numbers from 0.100 to 10. The solution can be used in a step-wise procedure with any given distribution of favorable pressure gradients and for zero pressure gradients. Solutions are also given for use with moderate adverse pressure gradients. The mean velocity in the boundary layer is approximated by a power-law profile. In view of the stepwise integration methods to be used, the exponent designated the profile shape can be varied along the surface between the integral fraction limits 1/5 and 1/11 through interpolation. Agreement obtained between theoretical and experimental boundary-layer development in a supersonic nozzle at a nominal Mach number of 2 indicates the general validity of the approximations used in the analysis - in particular, the method of extrapolating low-speed skin-friction relations to high Mach number flows. The extrapolation method used assumes that the skin-friction coefficient depend primarily on Reynolds number, provided that the density and the kinematic viscosity are evaluated at surface conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2045
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-06-28
    Description: The condensation pressure of air was determined over the range of temperature from 60 to 85 K. The experimental results were slightly higher than the calculated values based on the ideal solution law. Heat of vaporization of oxygen was determined at four temperatures ranging from about 68 to 91 K and of nitrogen similarly at four temperatures ranging from 62 to 78 K.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2969
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-06-28
    Description: A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TN-2227
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-06-28
    Description: Tests of two propellers having two blades and differing only in the inboard pitch distribution were made in the Langley 8-foot highspeed tunnel to determine the effect of inboard pitch distribution on propeller performance. propeller was designed for operation in the reduced velocity region ahead of an NACA cowling; the inboard pitch distribution of the modified propeller was increased for operation at or near free-stream velocities, such as would be obtained in a pusher installation. conditions covering climb, cruise, and high-speed operation. Wake surveys were taken behind the propellers in order to determine the distribution of thrust along the blades and to aid in the analysis of the results. Test results showed that the modified propeller was about 2.5 percent less efficient for a typical climb condition at all altitudes, 2 percent more efficient for one cruise condition, and 5 percent more efficient for high-speed operation. speed condition, the modified propeller showed a 6-percent loss in efficiency due to compressibility; whereas the original propeller showed an 11-percent efficiency loss due to compressiblity. The lower compressibility loss for the modified propeller resulted from the fact that the inboard sections of this propeller could operate at increased thrust loading after compressibility losses had occurred at the outboard sections.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TN-2268
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-06-28
    Description: Tests of a partial-span model of a large bomber-type air1ane were conducted to determine the. aerodynamic characteristics of the wing equipped with full-span flaps and a retractable spoiler end aileron lateral control system. The arrangement consisted of (1) a double slotted flap extending over aproximate1y 86 percent of the wing semispan, (2) a 20-percent constant-percentage-chord aileron extending from the outboard end of the flap to the wing tip, and (3) a retractable spoiler, located at the 65-percent wing-chord station and extending from approximately 63 percent of the wing semispan to the wing tip. In addition, tests were made of a wing vent (of 1 and 2 percent of the wing chord located directly behind the spoiler), perforations in the spoiler, a blot or cut-out along the lower edge of the spoiler and spoilers of various spans. With full-span flaps deflected and with the 2-percent vent open or closed the initial stalling of the wing occurred at the tips, but with the vents closed there probably would be no appreciable loss in lateral control until maximum lift was reached. The l-percent vent increased the rolling effectiveness of the spoiler at small spoi1er deflections, particularly at high angles of attack with flaps deflected. With flaps deflected the 2-percent vent caused a large reduction in both the wing lift and rolling effectiveness of the spoiler at large angles of attack. However, at small angle of attack the 2-percent vent increased the rolling effectiveness of the spoiler at small spoiler deflections. The simultaneous operation of the spoiler and vent (in contrast to a vent fixed in the wing) would result in a large increase in the effectiveness of the spoiler and would avoid any loss in wing lift as in a fixed vent arrangement. The tests of the spoiler modifications revealed that (1) the spoiler perforations reduced the rolling-moment and yawing-moment coefficients but caused the spoiler hinge-moment coefficients to become more positive; (2) the spoiler slot had no notable effect on the rolling-moment and yawing-moment characteristics but produced a positive increase in the spoiler hinge-moment coefficients at large spoiler deflections; (3) the effects produced by the individual modifications were additive when the various modifications were combined. In general, progressively decreasing the spoiler span by removing the segments from the inboard end of the spoiler caused a decrease in rolling effectiveness approximately proportional to the span of the segment.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1409
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-06-28
    Description: The heat requirements for the icing protection of two radome configurations have been studied over a range of design icing conditions. Both the protection limits of a typical thermal protection system and the relative effects of the various icing variables have been determined. For full evaporation of all impinging water, an effective heat density of 14 watts per square inch was required. When a combination of the evaporation and running wet surface systems was employed, a heat requirement of 5 watts per square inch provided protection at severe icing and operating conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E53A22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-06-28
    Description: Variable charge-air flow, cooling-air pressure drop, and fuel-air ration investigations were conducted to determine the cooling characteristics of a full-scale air-cooled single cylinder on a CUE setup. The data are compared with similar data that were available for the same model multicylinder engine tested in flight in a four-engine airplane. The cylinder-head cooling correlations were the same for both the single-cylinder and the flight engine. The cooling correlations for the barrels differed slightly in that the barrel of the single-cylinder engine runs cooler than the barrel of te flight engine for the same head temperatures and engine conditions.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-E-271 , NACA-MR-E5J04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-06-28
    Description: Tests were conducted in the Langley 24-inch highspeed tunnel to ascertain the static-pressure and total-pressure losses through screens ranging in mesh from 3 to 12 wires per inch and in wire diameter from 0.023 to 0.041 inch. Data were obtained from a Mach number of approximately 0.20 up to the maximum (choking) Mach number obtainable for each screen. The results of this investigation indicate that the pressure losses increase with increasing Mach number until the choking Mach number, which can be computed, is reached. Since choking imposes a restriction on the mass rate of flow and maximum losses are incurred at this condition, great care must be taken in selecting the screen mesh and wire dimmeter for an installation so that the choking Mach number is
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-L-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-06-28
    Description: Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-E-234 , NACA-ARR-E5K06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-06-28
    Description: A continuous 50-hour test was conducted to determine the effect of maximum cruise-power operation at ultra-lean fuel-air mixture and increased spark advance on the mechanical conditions of cylinder components. The test was conducted on a nine-cylinder air-cooled radial engine at the following conditions:brake horsepower, 750; engine speed, 1900 rpm; brake mean effective pressure, 172 pounds per square inch; fuel-air ratio, 0.052; spark advance, 30 deg B.T.C.; and maximum rear-spark-plug-bushing temperature, 400 F. In addition to the data on corrosion and wear, data are presented and briefly discussed on the effect of engine operation at the conditions of this test on economy, knock, preignition, and mixture distribution. Cylinder, piston, and piston-ring wear was small and all cylinder component were in good condition at the conclusion of the 50-hour test except that all exhaust-valve guides were bellmouthed beyond the Army's specified limit and one exhaust-valve face was lightly burned. It is improbable that the light burning in one spot of the valve face would have progressed further because the burn was filled with a hard deposit so that the valve face formed an unbroken seal and the mating seat showed no evidence of burning. The bellmouthing of the exhaust-valve guides is believed to have been a result of the heavy carbon and lead-oxide deposits, which were present on the head end of the guided length of the exhaust-valve stem. Engine operational the conditions of this test was shown to result In a fuel saving of 16.8 percent on a cooled-power basis as compared with operation at the conditions recommended for this engine by the Army Air Forces for the same power.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-E-268 , NACA-MR-5I27a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-06-28
    Description: A method is developed of easily determining the performance of a compressor system relative to that of the power section for a given altitude. Because compressors, reciprocating engines, and turbines are essentially flow devices, the performance of each of these power-plant components is presented in terms of similar dimensionless ratios. The pressure and temperature changes resulting from restrictions of the charge-air flow and from heat transfer in the ducts connecting the components of the power plant are also expressed by the same dimensionless ratios and the losses are included in the performance of the compressor. The performance of a mechanically driven, single-stage compressor in relation to the performance of a conventional air-cooled engine operating at sea-level conditions is presented as an example of the application of the method.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TR-1067
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: A comparison has been made in flight of the antiknock characteristics of 33-R fuel with that of 28-R and a triptane blent. The knock-limited performance of the three fuels - 33-R, a blend of 80 percent 28-R plus 20 percent triptane (leaded to 4.5 ml TEL/gal), and 28-R - was investigated in two modified 14-cylinder double-row radial air-cooled engines. Tests were conducted on the engines as installed in the left inboard nacelle of an airplane. A carburetor-air temperature of approximately 85 deg F was maintained. The conditions covered at an engine speed of 2250 rpm were high and low blower ratios and spark advances of 25 deg and 32 deg B.T.C. For an engine speed of 1800 rpm only the high-blower condition was investigated for both 25 deg and 32 deg spark advances. For the conditions investigated the difference between 33-R and the triptane blend was found to be slight; the performance of 33-R fuel, however, was slightly higher than that of the triptane blend in the lean region. The knock-limited power obtained with the 33-R fuel was from 14 to 28 percent higher than that of the 28-R fuel for the entire range of test conditions; the greatest improvement was shown in the lean region.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-E-263 , NACA-MR-E5H08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-L-5 , NACA-ARR-L5H27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-L-101 , NACA-ARR-L5F25b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-28
    Description: Efficiency tests have been conducted on a single-stage impulse engine having an 11-inch pitch-line diameter wheel with inserted buckets and a fabricated nozzle diaphragm. The tests were made to determine the effect of inlet pressure, Inlet temperature, speed, and pressure ratio on the turbine efficiency. An analysis is presented that relates the effect of inlet pressure and temperature to the Reynolds number of the flow. The agreement between the analysis and the experimental data indicates that the changes in turbine efficiency with Inlet pressure and temperature may be principally a Reynolds number effect.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-E-218 , NACA-ACR-E5E19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-28
    Description: The results of a theoretical analysis of the hinge-moment characteristics of various sealed-internal-balance arrangements for control surfaces are presented. The analysis considered overhands sealed to various types of wing structure by flexible seals spanning gaps of various widths or sealed to the wing structure by a flexible system of linked plates. Leakage was not considered; the seal was assumed to extend the full spanwise length of the control surface. The effect of the developed width of the flexible seal and of the geometry of the structure to which the seal was anchored was investigated, as well as the effect of the gap width that is sealed. The results of the investigation indicated that the most nearly linear control-surface hinge-moment characteristics can probably be obtained from a flexible seal over a narrow gap (about 0.1 of the overhang chord), which is so installed that the motion of the seal is restricted to a region behind the point of attachment of the seal to the wing structure. Control-surface hinge moments that tend to be high at large deflections and low or overbalanced at small deflections will result if a very narrow seal is used.
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-L-174 , NACA-ARR-L5F30 , AD-A801569
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-28
    Description: The laws of conservation of mass, momentum, and energy are applied to the compressible flow through a two-dimensional cascade of airfoils. A fundamental relation between the ultimate upstream and downstream flow angles, the inlet Mach number, and the pressure ratio across the cascade is derived. Comparison with the corresponding relation for incompressible flow shows large differences. The fundamental relation reveals two ranges of flow angles and inlet Mach numbers, for which no ideal pressure ratio exists. One of these nonideal operating ranges is analogous to a similar type in incompressible flow. The other is characteristic only of compressible flow. The effect of variable axial-flow area is treated. Some implications of the basic conservation laws in the case of nonideal flow through cascades are discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-842
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-06-28
    Description: Efficiency tests have been conducted on a single-stage impulse turbine having a 13.2-inch pitch-line diameter wheel and a cast nozzle diaphram over a range of turbine speeds from 3000 to 17,000 rpm, pressure ratios from 1.5 to 5.0, inlet total temperatures from 1200 deg to 2000 deg R, and inlet total pressures from 18 to 59 inches of mercury absolute. The effect of inlet temperature and pressure on turbine efficiency for constant pressure ration and blade-to-jet speed ration is correlated against a factor derived from the equation for Reynolds number. The degree of correlation indicates that the change in turbine efficiency with inlet temperature and [ressure for constant pressure ration and blade-to-jet speed ration is principally a Reynolds number effect.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-E-232 , NACA-ARR-E5H10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-E-233 , NACA-ARR-E5H31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Tests were made of a model representative of a single-engine tractor-type airplane for the purpose of determining the stability and control effects of a propeller used as an aerodynamic brake. The tests were made with single-and dual-rotation propellers to show the effect of type of propeller rotation, and with positive thrust to provide basic data with which to compare the effects of negative thrust. Four configurations of the model were used to give the effects of tilting the propeller thrust axis down 5 deg., raising the horizontal tail, and combining both tilt and raised tail. Results of the tests are reported herein. The effects of negative thrust were found to be significant. The longitudinal stability was increased because of the loss of wing lift and increase of the angle of attack of the tail. Directional stability and both longitudinal and directional control were decreased because of the reduced velocity at the tail. These effects are moderate for moderate braking but become pronounced with full-power braking, particularly at high values of lift coefficient. The effects of model configuration changes were small when compared with the over-all effects of negative-thrust operation; however, improved stability and control characteristics were exhibited by the model with the tilted thrust axis. Raising the horizontal tail improved the longitudinal characteristics, but was detrimental to directional characteristics. The use of dual-rotation propeller reduced the directional trim charges resulting from the braking operation. A prototype airplane was assumed and handling qualities were computed and analyzed for normal (positive thrust) and braking operation with full and partial power. The results of these analyses are presented for the longitudinal characteristics in steady and accelerated flight, and for the directional characteristics in high- and low-speed flight. It was found that by limiting the power output of the engine (assuming the constant-speed propeller will function in the range of blade angles required for negative thrust) the stability and control characteristics may be held within the limits required for safe operation. Braking with full power, particularly at low speeds, is dangerous, but braking with very small power output is satisfactory from the standpoint of control. The amount of braking produced with zero power output is equal to or better than that produced by conventional spoiler-type brakes.
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-A-19 , NACA-ARR-5C01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-28
    Description: As part of a general investigation of propellers at high forward speeds, tests of two 2-blade propellers having the NACA 4-(3)(8)-03 and NACA 4-(3)(8)-45 blade designs have been made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.725 to establish in detail the changes in propeller characteristics due to compressibility effects. These propellers differed primarily only in blade solidity, one propeller having 50 percent and more solidity than the other. Serious losses in propeller efficiency were found as the propeller tip Mach number exceeded 0.91, irrespective of forward speed or blade angle. The magnitude of the efficiency losses varied from 9 percent to 22 percent per 0.1 increase in tip Mach number above the critical value. The range of advance ratio for peak efficiency decreased markedly with increase of forward speed. The general form of the changes in thrust and power coefficients was found to be similar to the changes in airfoil lift coefficient with changes in Mach number. Efficiency losses due to compressibility effects decreased with increase of blade width. The results indicated that the high level of propeller efficiency obtained at low speeds could be maintained to forward sea-level speeds exceeding 500 miles per hour.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-974 , NACA-ACR-L6D02 , NACA-AR-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-06-28
    Description: A theory has been developed for resetting the blade angles of an axial-flow compressor in order to improve the performance at speeds and flows other than the design and thus extend the useful operating range of the compressor. The theory is readily applicable to the resetting of both rotor and stator blades or to the resetting of only the stator blades and is based on adjustment of the blade angles to obtain lift coefficients at which the blades will operate efficiently. Calculations were made for resetting the stator blades of the NACA eight-stage axial-flow compressor for 75 percent of design speed and a series of load coefficients ranging from 0.28 to 0.70 with rotor blades left at the design setting. The NACA compressor was investigated with three different blade settings: (1) the design blade setting, (2) the stator blades reset for 75 percent of design speed and a load coefficient of 0.48, and (3) the stator blades reset for 75 percent of design speed and a load coefficient of 0.65.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-915 , NACA-ACR-E6E02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-06-28
    Description: NACA instrumentation has been installed ii the X-J4 airplanes to obtain stability and control data during the acceptance tests conducted by the Northrop Aircraft Corporation. This report presents data obtained on the stalling characteristics of the airplane in the clean and gear- down configurations. The center of gravity was located at approximately 18 percent of the mean aerodynamic chord during the tests. The results indicated that the airplane was not completely stalled when stall was gradually approached during nominally U accelerated flight but that it was completely stalled during a more abruptly approached stall in accelerated flight. The stall in accelerated flight was relatively mild, and this was attributed to the nature of the variation of lift with angle of attack for the 001-614 airfoil section, the plan form of the wing, and to the fact that the initial sideslip at the stall produced (as shown by wind-tunnel tests of a model of the airplane) a more symmetrical stall pattern.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A50A04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-06-27
    Description: Sound pressure levels, frequency spectrum, and jet velocity profiles are presented for an engine-afterburner combination at various values of afterburner fuel - air ratio. At the high fuel-air ratios, severe low-frequency resonance was encountered which represented more than half the total energy in the sound spectrum. At similar thrust conditions, lower sound pressure levels were obtained from a current fighter air craft with a different afterburner configuration. The lower sound pressure levels are attributed to resonance-free afterburner operation and thereby indicate the importance of acoustic considerations in afterburner design.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E54G07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: The trajectories of droplets in the air flowing past NACA 65(1)-208 airfoil and an NACA 65(1)-212 airfoil, both at an angle of attack of 4 degrees, were determined. The amount of water in droplet form impinging on the airfoils, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface affected were calculated from the trajectories and are presented. The amount, extent, and rate of impingement of the NACA 65(1)-208 airfoil are compared with the results for the NACA 65(1)1-212 airfoil. Under similar conditions of operation, the NACA 65(1)-208 airfoil collects less water than the NACA 65(1)-212 airfoil. The extent of impingement on the upper surface of the NACA 65(1)-208 airfoil is much less than on the upper surface of the NACA 65(1)-212 airfoil, but on the lower surface the extents of impingement are about the same.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2952
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: The rate of heat transfer between a fluid stream in turbulent flow and a smooth, solid wall is largely controlled by the relatively high resistance of the laminar sublayer next to the wall. Although this laminar layer ii extremely thin, heat can be transferred through it only by molecular diffusion. Hence the resistance of this layer is very much greater than for a layer the same thickness farther out in the stream where turbulent exchange is the controlling factor. The thickness of the laminar layer is difficult to define precisely, since there is a gradual transition to the turbulent flow outside, but for the usual scale of many engineering applications almost half the temperature difference between the fluid and the wall occurs in a layer of a few thousands of an inch in thickness. When the wall is made of porous material and a coolant gas is forced through the wall into the stream, it has been found that a very small flow rate of the coolant is remarkably effective in keeping the wall at a low temperature. The coolant flow rate required is such as to give an average velocity normal cooling wall of the order of 1 per cent of the main stream velocity. This flow rate is so low that clearly the injected gas must act as an insulator rather than as a normal coolant. Because of its relatively low velocity, the injected gas can have very little influence on heat convection or momentum transfer in the turbulent stream, and its effect must be confined to the laminar sublayer. The possible influence of the coolant flow on the thickness of the laminar layer will be discussed in Section V.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JPL-PR-4-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-06-27
    Description: An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well as those of other investigators, were used to isolate the influence of ratios of thread height to width, thread spacing to width, and the conventional roughness ratio on the friction coefficient. A fair correlation of the friction data was obtained for each tube with heat addition when the friction coefficient and Reynolds number were defined on the basis of film properties; however, the data for each tube retained the curve characteristic of that particular roughness. The friction data for all the rough tubes could be represented by a single line for the complete turbulence region by incorporating a roughness parameter in the film correlation. No correlation was obtained for the region of incomplete turbulence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E52D17 , E-2482
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-06-27
    Description: Research was conducted to determine the effect of the electrode parameters of spacing, configuration, and material' on the energy required for ignition of a flowing propane-air mixture. In addition, the data were used to indicate the energy distribution along the spark length and to confirm previous observations concerning the effect of spark duration on ignition energy requirements. The data were obtained with a mixture at a fuel-air ratio of 0.0835 (by weight), a pressure of 3 inches of mercury absolute, a temperature of 80 F, and a mixture velocity of 5 feet per second. Results showed that the energy required for ignition decreased as the electrode spacing was increased; a minimum energy occurred at. a spacing of 0.65 inch for large electrodes. For small electrodes, the spacing for minimum energy was not sharply defined. Small-diameter electrodes required less energy than large-diameter electrodes if the spacing was less than the optimum distance of 0.65 inch; at a spacing equal to the optimum distance, no difference was noted. Significant effects of electrode material on ignition energy were ascribed to differences in the type of spark discharges produced; glow discharges required higher energy than the arc-glow discharges. With pure glow discharges, the ignition energy was substantially constant for lead, cadmium, brass, aluminum, and tungsten electrodes. A method is described for determining the energy distribution along a glow discharge. It was found that one-third to one-half of the energy in the spark was concentrated in a small region near the cathode electrode, and the remainder was uniformly distributed across the spark gap. It was impossible to ascertain the dependence of ignition on. this distribution. It was also observed that long-duration (600 microsec) sparks required much less energy for ignition than did short-duration (1 microsec) sparks.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E51J12 , E-2394
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E50I29A , REPT-2003
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-27
    Description: An experimental investigation was conducted to determine the cooling effectiveness of a wide variety of air-cooled turbine-blade configurations. The blades, which were tested in the turbine of a - commercial turbojet engine that was modified for this investigation by replacing two of the original blades with air-cooled blades located diametrically opposite each other, are untwisted, have no aerodynamic taper, and have essentially the same external profile. The cooling-passage configuration is different for each blade, however. The fabrication procedures were varied and often unique. The blades were fabricated using methods most suitable for obtaining a small number of blades for use in the cooling investigations and therefore not all the fabrication procedures would be directly applicable to production processes, although some of the ideas and steps might be useful. Blade shells were obtained by both casting and forming. The cast shells were either welded to the blade base or cast integrally with the base. The formed shells were attached to the base by a brazing and two welding methods. Additional surface area was supplied in the coolant passages by the addition of fins or tubes that were S-brazed. to the shell. A number of blades with special leading- and trailing-edge designs that provided added cooling to these areas were fabricated. The cooling effectiveness and purposes of the various blade configurations are discussed briefly.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E51E23 , REPT-2203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E50I29A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-19
    Description: A 1/5-scale model of the Republic x-84 airplane (Army Project MX-578) was tested in the Langley 300 MPH 7- by 10-foot tunnel. The primary object of the tests was twofold: to determine, a practicable method of increasing the longitudinal 3tability in the landing configuration, and to investigate the effects on longitudinal and lateral Stability of various external stored (fuel tanks, bombs, and rockets). The effects of the fuselage dive brakes were also determined, and the critical Mach numbers of certain of the airplane components were estimated. The use of the revised horizontal tail (of larger aspect ratio and area than the original) seemed to be the most feasible expedient for materially increasing the longitudinal stability in the landing configuration. The neutral-point shifts produced by the various external stores were unstable, the largest shift being about 2.5 percent mean aerodynamic chord. No appreciable aerodynamic trim changes were caused by the external stores. From the standpoint of range, maximum s peed, and rate of climb, the advantages of mounting the fuel tanks at the wing tips rather than inboard beneath the wings were clearly demonstrated by the tests. The effective dihedral parameter was the only static lateral-stability derivative appreciably affected by the external stores. At high lift coefficients, the tip-mounted tanks caused a large increase in the effective dihedral parameter (about 40 increase at a lift coefficient of 1.0). This increase was held undesirable, because the tendency toward oscillatory instability that it would cause would be heightened by the increased moments of inertia resulting from the weight of the tanks when carrying fuel. The fuselage dive brakes, when deflected, caused a change in trim tending to nose the airplane up; the neutral point also moved rearward upon deflecting the dive brakes. The amount of elevator required to overcome the change in trim was well within the available range of deflection. It was estimated that a drive-brake deflection of 900 would.decrease the terminal Mach number in a vertical dive by about 0.1. The estimated critical Mach number of the V-front canopy was about 0.04 greater than that of the original canopy. Pressure-distribution tests disclosed severe pressure peaks inside the nose of the jet entrance duct. These peaks, which would lead to separation and consequently poor pressure recovery at, the engine, could be reduced by, using a smaller nose,radius and: a modified internal lip shape
    Keywords: Aircraft Stability and Control
    Type: NACA-MR No. L6F25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: A theoretical analysis of the radial temperature distribution through the rotor and constant cross sectional area blades near the coolant passages of liquid cooled gas turbines was made. The analysis was applied to obtain the rotor and blade temperatures of a specific turbine using a gas flow of 55 pounds per second, a coolant flow of 6.42 pounds per second, and an average coolant temperature of 200 degrees F. The effect of using kerosene, water, and ethylene glycol was determined. The effect of varying blade length and coolant passage lengths with water as the coolant was also determined. The effective gas temperature was varied from 2000 degrees to 5000 degrees F in each investigation.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7B11c
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7B11F
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-17
    Description: The performance at inlet pressure of 21 inches mercury absolute and inlet temperature of 538 R for the 10-stage axial-flow X24C-2 compressor from the X24C-2 turbojet engine was investigated. the peak adiabatic temperature-rise efficiency for a given speed generally occurred at values of pressure coefficient fairly close to 0.35.For this compressor, the efficiency data at various speeds could be correlated on two converging curves by the use of a polytropic loss factor derived.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7G11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-17
    Description: Low Mach number longitudinal-stability and control characteristics as predicted by use of wind tunnel data from a powered 3/16-scale model are compared with flight test measurements of a Navy BTD-1 airplane. The accuracy of the wind tunnel data and the discrepancies involved in attempting to correlate with flight data are discussed and analyzed. The comparison showed that wind tunnel predictions were, in general, in good agreement with flight test data. The predicted values were for the most part sufficiently accurate to show the satisfactory and unsatisfactory characteristics in the preliminary design stage and to indicate possible methods of improvement. The discrepancies which did occur were attributed principally to physical dissimilarities between model and airplane and the instability to determine accurately the flight power conditions. The effect of Mach number was considered negligible since the maximum flight test value was about 0.5. In order to simulate more closely the flight conditions and hence obtain more accurate data for predictions, it appears desirable to perform large-scale tests of unorthodox control surfaces such as the sealed vaned elevators with which the airplane was equipped.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A6L30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-16
    Description: Contents: Preliminary notes on the efficiency of propulsion systems; Part I: Propulsion systems with direct axial reaction rockets and rockets with thrust augmentation; Part II: Helicoidal reaction propulsion systems; Appendix I: Steady flow of viscous gases; Appendix II: On the theory of viscous fluids in nozzles; and Appendix III: On the thrusts augmenters, and particularly of gas augmenters
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1259
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-16
    Description: On the basis of the investigations so far completed on the behavior of PTL power plants under various operating conditions, in which the influence of the propeller characteristics is of considerable importance, the most important aspects of a control system for turbine-propeller jet power plants are deduced. A simple possible means for its concrete realization, which is also applicable to TL [NACA comment: TL, jet] power plants, is presented by means of examples. A control device of this kind is now being developed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1172
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-16
    Description: A theoretical analysis of the temperature distribution through the trailing portion of a blade near the coolant passages of liquid cooled gas turbines was made. The analysis was applied to obtain the hot spot temperatures at the trailing edge and influence of design variables. The effective gas temperature was varied from 2000 degrees to 5000 degrees F in each investigation.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7B11d
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-16
    Description: Axial blowers are gaining importance as aircraft engine superchargers. However, the pressure head obtainable per stage is small. Due to the necessary great number of stages, the physical length of the blower becomes too great for an airworthy device. This report discusses several types of construction that permit a reduction in the length of the blower.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1132 , Tech. Berichte ZWB; 4; 130-133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-16
    Description: An altitude-wind-tunnel investigation of a TG-100A gas turbine-propeller engine was performed. Pressure and temperature data were obtained at altitudes from 5000 to 35000 feet, compressor inlet ram-pressure ratios from 1.00 to 1.17, and engine speeds from 800 to 13000 rpm. The effect of engine speed, shaft horsepower, and compressor-inlet ram-pressure ratio on pressure and temperature distribution at each measuring station are presented graphically.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7J02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-16
    Description: A wind tunnel investigation was conducted to determine the performance of a 4000-pound-thrust axial-flow turbojet engine with a high flow compressor. Pressure altitudes included 5000 to 40000 feet with ram pressure ratios from 1.00 to 1.82. Altitudes included 20000 to 40000 feet and ram pressure ratios from 1.09 to 1.75. A comparison is made between engine performance with high flow and low flow compressors.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-16
    Description: A wind tunnel investigation was conducted to determine the performance of a turbine operating as an integral part of a turbojet engine. Data was obtained while the engine was running over full operable range of speeds at various altitudes and flight mach numbers, and with four nozzles of different outlet areas.A maximum turbine efficiency of 0.875 was obtained at altitude of 15 thousand feet, Mach number 0.53, and corrected turbine speed of 5900 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8A23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-16
    Description: The preignition characteristics of the R-2800 cylinder, as effected by fuel consumption, engine operating variables, and spark plug type and condition, were evaluated. The effects on preignition-limited performance of various percentages of aromatics (benzene, toluene, cumene, xylene) in a base fuel of triptane were investigated. Two paraffins (triptane and S + 6.0 ml TEL/gal) and two refinery blends (28-R and 33-R) were preignition rated. The effect of changes in the following engine operating variables on preignition limit was determined: inlet-air temperature, rear spark plug gasket temperature, engine speed, spark advance, tappet clearance, and oil consumption. Preignition limits of the R-2800 cylinder using Champion C34S and C35S and AC-LS86, LS87, and LS88 spark plugs were established and the effect of spark plug deterioration was investigated. No definite trends in preignition-limited indicated mean effective pressure were indicated for aromatics as a class when increased percentages of different aromatics were added to a base fuel of triptane. Three types of fuel (aromatics, paraffins, and refinery blends) showed a preignition range for this cylinder from 65 to 104 percent when based on the performance of S plus 6.0 ml TEL per gallon as 100 percent. The R-2800 cylinder is therefore relatively insensitive to fuel composition when compared to a CFR F-4 engine, which had a pre-ignition range from 72 to 100 percent for the same fuels. Six engine operating variables were investigated with the following results: preignition-limited indicated mean effective pressure decreased, with increases in engine speed, rear spark plug gasket temperature, inlet-air temperature, and spark advance beyond 20 F B.T.C. and was unaffected by rate of oil consumption or by tappet clearance. Spark plugs were rated over a range of preignition-limited indicated mean effective pressure from 200 to 390 pounds per square inch at a fuel-air ratio of 0.07 in the following order of increased resistance to preignition: AC-LS97, AC-LS88, Champion C358, AC-LS86, and Champion C34S. Spark plug deterioration in the form of cracks in the porcelain had been broken away from the center electrode and were retained in the spark plug cavity, the preignition limit was decreased as much as 57 percent. When the broken pieces had been removed, the preignition limit increased from that of the undamaged porcelain as the weight of removed porcelain was increased.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E6J08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-16
    Description: Rim cracking in turbine wheels with welded blades was evaluated. The problem is explained on the basis of the occurrence of plastic flow in the rim during transient starting conditions when thermal compressive stresses resulting from high-temperature gradients exceed the proportional elastic limit of the material.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E6L17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-16
    Description: Temperature and pressure distributions for an original and modified 3000 pound thrust axial flow turbojet engine were investigated. Data are included for a range of simulated altitudes from 5000 to 45000 feet, Mach numbers from 0.24 to 1.08, and corrected engine speeds from 10,550 to 13,359 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8C17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-11
    Description: An investigation of a 1/7-scale powered model of the Kaiser Fleetwing all-wing airplane was made in the Langley full-scale tunnel to provide data for an estimation of the flying qualities of the airplane. The analysis of the stability and control characteristics of the airplane has been made as closely as possible in accordance with the requirements of the Bureau of Aeronautics, Navy Department's specifications, and a summary of the more significant conclusions is presented as follows. With the normal center of gravity located at 20 percent of the mean aerodynamic chord, the airplane will have adequate static longitudinal stability, elevator fixed, for all flight conditions except for low-power operation at low speeds where the stability will be about neutral. There will not be sufficient down-elevator deflection available for trim above speeds of about 130 miles per hour. It is probable that the reduction in the up-elevator deflections required for trim will be accompanied by reduced elevator hinge moments for low-power operation at low flight speeds. The static directional stability for this airplane will be low for all rudder-fixed or rudder-free flight conditions. The maximum rudder deflection of 30 deg will trim only about 15 deg yaw for most flight conditions and only 10 deg yaw for the condition with low power at low speeds. Also, at low powers and low speeds, it is estimated that the rudders will not trim the total adverse yaw resulting from an abrupt aileron roll using maximum aileron deflection. The airplane will meet the requirements for stability and control for asymmetric power operation with one outboard engine inoperative. The airplane would have no tendency for directional divergence but would probably be spirally unstable, with rudders fixed. The static lateral stability of the airplane will probably be about neutral for the high-speed flight conditions and will be only slightly increased for the low-power operation in low-speed flight. The airplane will not roll against the ailerons in a side-slip maneuver. Although the airplane would probably meet the minimum requirements of pb/2V of 0.07 at all speeds, there will be a loss in rolling ability of the airplane at high aileron deflections and at low flight speeds. It is estimated that the wing stall will be a gradual movement forward from the trailing edge and will be accompanied by no sudden pitching or rolling accelerations. Some stall warning may be indicated by reduction in the elevator and aileron force gradients and by the shaking of the controls caused by unsteady flow over the surfaces near the stall.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-11
    Description: Buffet boundaries, buffeting-load increments for the stabilizers and elevators, and buffeting bending-moment increments for the stabilizers and wings as measured in gradual maneuvers for a jet-powered bomber airplane are presented. The buffeting-load increments were determined from strain-gage measurements at the roots or hinge supports of the various surfaces considered. The Mach numbers of the tests ranged from 0.19 to 0.78 at altitudes close to 30,000 feet. The predominant buffet frequencies were close to the natural frequencies of the structural components. The buffeting-load data, when extrapolated to low-altitude conditions, indicated loads on the elevators and stabilizers near the design limit loads. When the airplane was held in buffeting, the load increments were larger than when recovery was made immediately.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L50I06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-11
    Description: The hydrodynamic characteristics of a 1/10-size powered dynamic model of the XP5Y-1 flying boat were determined in Langley tank no. 1. Stable take-offs were possible at all practicable positions of the center of gravity and flap deflections. An increase in gross load from 123.5 to 150.0 pounds (21.5 percent) had only a slight effect on the stable range for take-off. A decrease in forward acceleration from 3.0 to 1.0 feet per second per second had only a very small effect on the stable range for take-off. In general, the landings were free from skipping except at trims below 6 deg where one skip was encountered at an aft position of the center of gravity. The model porpoised during the landing runout at all positions of the center of gravity when landed at trims above 10 deg. Spray in the propellers was light at the design gross load, and was not considered excessive,at a gross load of 136.0 pounds.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9K14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-11
    Description: The effects of several wing leading-edge camber and deflected-tip modifications on the force and moment characteristics of a 1/20-scale model of the Convair F-102 airplane have been determined at Mach numbers from 0.60 t o 1.14 for angles of attack up to 14 deg. in the Langley 8-foot transonic tunnel. The effects of elevator deflections from 0 deg. to -10 deg. were also obtained for a configuration incorporating favorable leading- edge and tip modifications. Leading-edge modifications which had a small amount of constant-chord camber obtained by vertically adjusting the thickness distribution over the forward (3.9 percent of the mean aerodynamic chord) portion of the wing were ineffective in reducing the drag at lifting conditions at transonic speeds. Leading edges with relatively large cambers designed to support nearly elliptical span load distributions at lift coefficients of 0.15 and 0.22 near a Mach number of 1.0 produced substantial reductions in drag at most lift coefficients.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54K29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-11
    Description: A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9H31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the effects of decreasing the rudder deflection, of decreasing the rudder span, and of differential rudder movements on the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane. The results indicated that decreasing the rudder span or the rudder deflections, individually or jointly, did not seriously alter the spin or recovery characteristics of the model; and recovery by normal use of controls (full rapid rudder reversal followed l/2 to 1 turn later by movement of the stick forward of neutral) remained satisfactory. Linking the original rudders so that the inboard rudder moves from full with the spin to neutral while the outboard rudder moves from neutral to full against the spin will also result in satisfactory spin and recovery characteristics. Calculations of rudder-pedal forces for recovery showed that the expected forces would probably be within the capabilities of a pilot but that it would be advisable to install some type of boost in the control system to insure easy and rapid movement of the rudders.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9H30a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-11
    Description: The static longitudinal stability characteristics of a 0.15-scale model of the Hermes A-lE2 missile have been determined in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.98, corresponding to Reynolds numbers, based on body length, of 12.3 x 10(exp 6) to 17.1 x 10(exp 6). This paper presents results obtained with body alone and body-fins combinations at 0 degrees (one set of fins vertical and the other set horizontal) and 45 degree angle of roll. The results indicate that the addition of the fins to the body insures static longitudinal stability and provides essentially linear variations of the lift and pitching moment at small angles of attack throughout the Mach number range. The slopes of the lift and pitching-moment curves vary slightly with Mach number and show only small effects due to the angle of roll.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52I10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-11
    Description: The present report of Mr. Dupleich is the summary of a very extensive experimental study of the well-known mechanical phenomenon: the rotation in free fall (* air, for instance) of more or less elongated rectangles cut out of paper or pasteboard. This phenomenon, the conditions for existence of which depend chiefly on the elongated of the small plate and its weight per unit area, is essentially an aerodynamic phenomenon and as such, raises questions of a certain interest to our department.We believe that the modern concepts of the mechanics of fluids do not have the range attributed to them.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1201 , Scientifiques et Techniques du Secretariat d'Etat a l'Aviation; Rept-178
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-11
    Description: At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52G11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-11
    Description: An investigation was made to determine the static lateral stability and control characteristics of a l/6-scale model of the Republic XF-84H airplane with the propeller operating. The model had a 40deg swept wing of aspect ratio 3.45 and had a thin 3-blade supersonic-type propeller. Many modifications to the basic configuration were investigated in attempts to alleviate lateral and directional trim problems which appeared to be associated with propeller slipstream rotation. Although significant benefits were realized with several modifications, none of those tested would be expected to afford satisfactory behavior for all normal flight conditions. A marked left-wing roll-off tendency was indicated at high angles of attack for the basic model configuration. Projection of only the left slat was the most effective remedy found for this problem with the propeller operating. The use of differential wing-flap deflection also appeared to offer a promising means for reducing the roll-off tendency with power on. The large sidewash over the vertical tail, associated with slip- stream rotation, severely restricted the conditions for which directional , trim could be maintained. A small triangular dorsal fin, oriented opposite to the slipstream rotation, was found very effective in reducing the adverse sidewash flow at the tail.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53G10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model of the Convair YF-102 airplane has been made in the Langley free-flight tunnel. The model was flown over a lift-coefficient range from 0.5 to the stall in its basic configuration and with several modifications involving leading-edge slats and increases in vertical-tail size. Only relatively low-altitude conditions were simulated and no attempt was made to determine the effect of freeing the controls. The longitudinal stability characteristics of the model were considered satisfactory for all conditions investigated. The lateral stability characteristics were considered satisfactory for the basic configuration over the speed range investigated except near the stall, where large values of static directional instability caused the model to be directionally divergent. The addition of leading-edge slats or an 8-percent increase in vertical-tail area increased the angle of attack at which the model became directionally divergent. The use of leading-edge slats in combination with a 40-percent increase in vertical-tail size eliminated the directional divergence and produced satisfactory stability characteristics through the stall. The longitudinal and lateral control characteristics were generally satisfactory. Although the adverse sideslip characteristics for the model were considered satisfactory over the angle-of-attack range, analysis indicates that the adverse sideslip characteristics of the airplane may be objectionable at high angles of attack.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53L04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-11
    Description: A series of flight tests have been made at the Langley Flight Research Division at the request of the Bureau of Aeronautics, Department of the Navy, to determine the flying qualities of the Grumman F8F-1 air- plane. This paper presents the test results necessary to determine the longitudinal stability and control characteristics end the stalling characteristics. These tests were made between February and June of 1947- The range of Mach numbers covered in this investigation was approximately 0.10 to 0.62, and no attempt was made to investigate compressibility effects at higher Mach numbers. The lateral and directional stability and control characteristics of the subject airplane have already been reported (reference 1). Also presented in this paper is a discussion of the normal accelerations induced by yawing velocity and sideslip which were considered ob,jectionable by the pilot for this airplane. A discussion of the undesirable accelerations has been included with a view towards formulating some flying-qualities requirements limiting them.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8H27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the pitching stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient, control deflections, and propeller blade angle were investigated. The tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53G27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-11
    Description: A spin investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the North American XP-86 airplane. The effects of control settings and movements upon the erect and inverted spin and recovery characteristics of the model were determined for the design gross weight loading. The long-range loading was also investigated and the effects of extending slats and dive flaps were determined. In addition, the investigation included the determination of the size of spin-recovery parachute required for emergency recovery from demonstration spins, the rudder force required to move the rudder for recovery, and the best method for the pilot to escape if it should become necessary to do so during a spin. The results of the investigation indicated that the XP-86 airplane will probably recover satisfactorily from erect and inverted spins for all possible loadings. It was found that fully extending both slats would be beneficial but that extending the dive brakes would cause unsatisfactory recoveries. It was determined that a 10.0-foot-diameter tail parachute with a drag coefficient of 0.7 and with a towline 30.0 feet long attached below the jet exit or a 6.0-foot-diameter wingtip parachute opened on the outer wing tip with a towline 6.0 feet long would insure recoveries from any spins obtainable. The rudder-pedal force necessary to move the rudder for satisfactory recovery was found to be within the physical capabilities of the pilot.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8D22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-11
    Description: This paper presents the results of measurements of longitudinal stability of a 1/50-scale model of the XP-88 airplane by the wing-flow method. Lift, rolling-moment, hinge-moment, and pitching-moment characteristics as well as the downwash at the tail were measured over a Mach number range from approximately 0.5 to 1.05 at Reynolds numbers below 1,000,000. No measurements of drag were obtained. No abrupt changes due to Mach number were noted in any of the parameters measured. The data indicated that the wing was subject to early tip stalling; that the tail effectiveness decreased gradually with increasing Mach number up to M = 0.9, but increased again at higher Mach numbers; that the variation of downwash with angle of attack did not change appreciably with Mach number except between 0.95 and 1.0 where d(epsilon)/d(alpha), decreased from 0.46 to 0.32; that at zero lift with a stabilizer setting of -1.5 deg there was a gradually increasing nosing-up tendency with increasing Mach number; and that the control-fixed stability in maneuvers at constant speed gradually increased with increasing Mach number.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8E28A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics were determined, as were also the effects of extending the wing slats, of center-of-gravity movement, and-of variation in the mass distribution. The investigation also included wing-tip spin-recovery-parachute tests, pilot-escape tests, and rudder-control-force tests. The investigation indicated that the spin and recovery characteristics of the airplane will be satisfactory for all conditions. It was found that a single 4.24-foot (full-scale) parachute when opened alone from the outboard wing tip or two 8.77-foot (full-scale) parachutes when opened simultaneously, one from each wing tip, would effect satisfactory emergency recoveries (the drag coefficients of the parachutes, based on the surface area of the parachute, were 0.83 and 0.70 for the 4.24- and 8.77-foot parachutes, respectively). The towline length in both cases was 25 feet (full scale). Tests results showed that, if the pilot should have to leave the airplane during a spin, he should jump from the outboard side (left side in a right spin) of the cockpit. The rudder-control force necessary for recovery from a spin was found to be rather high but appeared to be within the upper limits of a pilot's capabilities.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8A13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-11
    Description: Tests of a 1/20-scale dynamically similar model of the Northrop B-35 airplane were made to study its ditching characteristics. The model was ditched in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds,and conditions of damage were simulated during the investigation. The ditching characteristics were determined by visual observation and from motion-picture records and time-history acceleration records. Both longitudinal and lateral accelerations were measured. Results are given in tabular form and time-history acceleration curves and sequence photographs are presented. Conclusions based on the model investigation are as follows: 1. The best ditching of the B-35 airplane probably can be made by contacting the water in a near normal landing attitude of about 9 deg with the landing flaps full down so as to have a low horizontal speed. 2. The airplane usually will turn or yaw but the motion will not be violent. The maximum lateral acceleration will be about 2g. 3. If the airplane does not turn or yaw immediately after landing, it probably will trim up and then make a smooth run or porpoise slightly. The maximum longitudinal decelerations that will be encountered are about 6g or 7g. 4. Although the decelerations are not indicated to be especially large, the construction of the airplane is such that extensive damage is to be expected, and it probably will be difficult to find ditching stations where crew members can adequately brace themselves and be reasonably sure of avoiding a large inrush of water.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8A29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed; power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane equipped with full-span leading-edge slats has been conducted in the Langley free-flight tunnel. In this investigation it was found that the-full-span leading-edge slat gave about the same maximum lift coefficient as was obtained with the outboard single slotted flap and inboard slat. The stability and control characteristics were greatly improved except near the stall where the characteristics with the full-span slat were considered unsatisfactory because of a loss of directional stability and a slight nosing-up tendency.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL7L17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-11
    Description: This report presents the results of the tests of a power-plant installation to improve the circumferential pressure-recovery distribution at the face of the engine. An underslung "C" cowling was tested with two propellers with full cuffs and with a modification to one set of cuffs. Little improvement was obtained because the base sections of the cuffs were stalled. A set of guide vanes boosted the over-all pressures and helped the pressure recoveries for a few of the cylinders. Making the underslung cowling into a symmetrical "C" cowling evened the pressure distribution; however, no increases in front pressures were obtained. The pressures at the top cylinders remained low and the high pressures at the bottom cylinders were reduced. At higher powers and engine speeds, the symmetrical cowling appeared best from the standpoint of over-all cooling characteristics.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SL7L10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-11
    Description: A large number of papers have been devoted to the problem of integration of equations of two-dimensional steady nonvertical adiabatic motion of a gas. Most of these papers are based on the application of the hodograph method of S. A. Chaplygin in which the plane of the hodograph of the velocity is taken as the region of variation of the independent variables in the equations of motion; the equations become linear in this plane. The exact integration of these equations is, however, obtained in the form of infinite series containing hypergeometric functions. The obtaining of such solutions and their investigation involves extensive computations. As a result, methods have been developed for the approximate integration of the equations of motion first transformed to a linear form. S. A. Chaplygin first pointed out such an approximate method applicable to flows in which the Mach number does not exceed 0.4.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1239 , Prikladnaia Matematika I Mekhanika, Tom XI
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: A study is made herein of the irrotational adiabatic motion of a gas in the transition from subsonic to supersonic velocities. A shape of the de Laval nozzle is given, which transforms a homogeneous plane-parallel flow at large subsonic velocity into a supersonic flow without any shockwaves beyond the transition line from the subsonic to the supersonic regions of flow. The method of solution is based on integration near the transition line of the gas equations of motion in the form investigated by S. A. Christianovich.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1236 , Prikladnaia Matematika I Mekhanika, Tom XI
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-11
    Description: By means of characteristics theory, formulas for the numerical treatment of stationary compressible supersonic flows for the two-dimensional and rotationally symmetrical cases have been obtained from their differential equations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1211 , ZWB Forschungsbericht; Rept-1581
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-11
    Description: Strain-gages were used to measure blade vibrations causing failures in the third stage of a production 11-stage axial-flow compressor. After the serious third-stage vibration was detected, a series of investigations were conducted with second-stage vane assemblies of varying angles of incidence. Curves presented herein show the effect of varying the angle of incidence of second-stage vane assembly on third-stage rotor-blade vibration amplitude and engine performance. A minimum vibration amplitude was obtained without greatly affecting the engine performance with a second-stage vane assembly of 9deg. greater angle of incidence than the assembly normally furnished with the engine.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE51F08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-11
    Description: The problem of turbulence in aerodynamics is at present being attacked both theoretically and experimentally. In view of the fact however that purely theoretical considerations have not thus far led to satisfactory results the experimental treatment of the problem is of great importance. Among the different measuring procedures the hot wire methods are so far recognized as the most suitable for investigating the turbulence structure. The several disadvantages of these methods however, in particular those arising from the temperature lag of the wire can greatly impair the measurements and may easily render questionable the entire value of the experiment. The name turbulence is applied to that flow condition in which at any point of the stream the magnitude and direction of the velocity fluctuate arbitrarily about a well definable mean value. This fluctuation imparts a certain whirling characteristic to the flow.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1130 , A Muegyetem Aerodinamikai Intezeteben Keszult Munka
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-11
    Description: An investigation was conducted to determine the effects of water injection on the over-all performance of a modified J33-A-27 turbojet-engine compressor at the design equivalent speed of 11,800 rpm. The water-air ratio by weight was 0.05. With water injection the peak pressure ratio increased 9.0 per- cent, the maximum efficiency decreased 15 percent (actual numerical difference 0.12), and. the maximum total weight flow increased 9.3 percent.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50F14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-11
    Description: An investigation of the altitude performance characteristics of an Allison J35-A-17 turbojet engines have been conducted in an altitude chamber at the NACA Lewis laboratory. Engine performance was obtained over a range of altitudes from 20,000 to 60,000 feet at a flight Mach number of 0.62 and a range of flight Mach numbers from 0.42 to 1.22 at an altitude of 30,000 feet. The performance of the engine over the range investigated could be generalized up to an altitude of 30,000 feet. Performance of the engine at any flight Mach number in the range investigated can be predicted for those operating condition a t which critical flow exits in the exhaust nozzle with the exception of the variables corrected net thrust, and net-thrust specific fuel consumption.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E50I15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-11
    Description: While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1141 , Zeitschrift des Vereines Deutschere Ingenieure; 245
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-11
    Description: After defining the aims and requirements to be set for a control system of gas-turbine power plants for aircraft, the report will deal with devices that prevent the quantity of fuel supplied per unit of time from exceeding the value permissible at a given moment. The general principles of the actuation of the adjustable parts of the power plant are also discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1143 , Deutsche Luftfahrtforschung; Rept-1796/2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-11
    Description: The compressor from the XT-46 turbine-propeller engine was revised by removing the last two rows of stator blades and by eliminating the interstage leakage paths described in a previous report. With the revised compressor, the flow choking point shifted upstream into the last rotor-blade row but the maximum weight flow was not increased over that of the original compressor. The flow range of the revised compressor was reduced to about two-thirds that obtained with the original compressor. The later stages of the compressor did not produce the design static-pressure increase probably because of excessive boundary-layer build-up in this region. Measurements obtained in the ninth-stage stator showed that the performance up to this station was promising but that the last three stages of the compressor were limiting the useful operating range of the preceding stages. Some modifications in flow-passage geometry and blade settings are believed to be necessary, however, before any major improvements in over-all compressor performance can be obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50J10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-11
    Description: The turbulent flow in a conical diffuser represents the type of turbulent boundary layer with positive longitudinal pressure gradient. In contrast to the boundary layer problem, however, it is not necessary that the pressure distribution along the limits of the boundary layer(along the axis of the diffuser) be given, since this distribution can be obtained from the computation. This circumstance, together with the greater simplicity of the problem as a whole, provides a useful basis for the study of the extension of the results of semiempirical theories to the case of motion with a positive pressure gradient. In the first part of the paper,formulas are derived for the computation of the velocity and.pressure distributions in the turbulent flow along, and at right angles to, the axis of a diffuser of small cone angle. The problem is solved.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1137 , Central Aero-Hydrodynaical Institute Reports; Rept-462
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-11
    Description: The effect of rotor-blade length, inlet angle, and shrouding was investigated with four different nozzles in a single-stage modification of the Mark 25 aerial-torpedo power plant. The results obtained with the five special rotor configurations are compared with those of the standard first-stage rotor with each nozzle. Each nozzle-rotor combination was operated at nominal pressure ratios of 8, 15 (design), and 20 over a range of speeds from 6000 rpm to the design speed of 18,000 rpm. Inlet temperature and pressure conditions of 1OOOo F and 95 pounds per square inch gage, respectively, were maintained constant for all runs.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9G20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-11
    Description: A flight test was conducted at the Flight Test Station of the Pilotless Aircraft Research Division at Wallops Island, Va., to determine the longitudinal control and stability characteristics of a 0.5-scale model of the Fairchild Lerk Pilotless aircraft with the horizontal wing flaps deflected 15 degrees. The data were obtained by the use of a telemeter and also by radar tracking. The results show an increase of effectiveness of the longitudinal control in producing normal accelerations up to a Mach number of 0.75 where this effectiveness gradually decreased becoming negative at a Mach number of 0.89. Previous tests with wing flaps undeflected an increase in effectiveness up to Mach number of 0.93 where a sudden loss of control occurred. The model was dynamically stable throughout the speed range. The data confirmed the drag increase at the critical Mach number for large angles of attack is indicated in high-speed wind-tunnel tests.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J28a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-11
    Description: The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6H30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-11
    Description: The power plant from a Mark 25 aerial torpedo was investigated both as a two-stage turbine and as a single-stage modified turbine to determine the effect on overall performance of nozzle size and shape, first-stage rotor-blade configuration, and axial nozzle-rotor running clearance. Performance was evaluated in terms of brake, rotor, and blade efficiencies. All the performance data were obtained for inlet total to outlet static pressure ratios of 8, 15 (design), and 20 with inlet conditions maintained constant at 95 pounds per square inch gage and 1000 F for rotor speeds from approximately 6000 to 18,000 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50D12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-11
    Description: An investigation of a decoupler and a controlled-feathering device incorporated with the YT-56A turboprop engine has been made to determine the effectiveness of these devices in reducing the high negative thrust (drag) which accompanies power failure of this type of engine. Power failures were simulated by fuel cut-off, both without either device free to operate, and with each device free to operate singly. The investigation was made through an airspeed range from 50 to 230 mph. It was found that with neither device free to operate, the drag levels realized after power failures at airspeeds above 170 mph would impose vertical tail loads higher than those allowable for the YC-130, the airplane for which the test power package was designed. These levels were reached in approximately one second. The maximum drag realized after power failure was not appreciably altered by the use of the decoupler although the decoupler did put a limit on the duration of the peak drag. The controlled-feathering device maintained a level of essentially zero drag after power failure. The use of the decoupler in the YT-56A engine complicates windmilling air-starting procedures and makes it necessary to place operating restrictions on the engine to assure safe flight at low-power conditions,
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SA54I09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-11
    Description: Flow-metering devices used by the NACA and by the manufacturer of the J33 turbojet engine were calibrated together to determine whether an observed discrepancy in weight flow of approximately 4 percent for the two separate investigations might be due to the different devices used to meter air flow. A commercial adjustable orifice and a square-edge flat-plate orifice used by the NACA and a flow nozzle used by the manufacturer were calibrated against surveys across the throat of the nozzle. It was determined that over a range of weight flows from 18 to 45 pounds per second the average weight flows measured by the metering device used for the compressor test would be 0.70 percent lower than those measured by the metering device used in the engine tests and the probable variation about this mean would be +/- 0.39 percent. The very close agreement of the metering devices shows that the greater part of the discrepancy in weight flow is attributable to the effect of inlet pressure.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8H03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-11
    Description: The performance of the 11-stage axial-flow compressor, modified to improve the compressor-outlet velocity, in a revised X24C-4B turbojet engine is presented and compared with the performance of the compressor in the original engine. Performance data were obtained from an investigation of the revised engine in the MACA Cleveland altitude wind tunnel. Compressor performance data were obtained for engine operation with four exhaust nozzles of different outlet area at simulated altitudes from 15,OOO to 45,000 feet, simulated flight Mach numbers from 0.24 to 1.07, and engine speeds from 4000 to 12,500 rpm. The data cover a range of corrected engine speeds from 4100 to 13,500 rpm, which correspond to compressor Mach numbers from 0.30 to 1.00.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE7L22A-Pt-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...