ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (10,451)
  • FLUID MECHANICS AND HEAT TRANSFER  (3,947)
  • METEOROLOGY AND CLIMATOLOGY  (3,557)
  • 1985-1989  (7,656)
  • 1980-1984  (6,769)
  • 1910-1914  (3,530)
Collection
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-11-10
    Description: The low-g fluids management group with the Center for Space Construction is engaged in active research on the following topics: gauging; venting; controlling contamination; sloshing; transfer; acquisition; and two-phase flow. Our basic understanding of each of these topics at present is inadequate to design space structures optimally. A brief report is presented on each topic showing the present status, recent accomplishings by our group and our plans for future research. Reports are presented in graphic and outline form.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: First Annual Symposium. Volume 1: Plenary Session; 30 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: Experimental and theoretical studies have been conducted to determine critical parameters at the onset of nonlinear counterflow in He II below the lambda point of He-4. Critical temperature differences have been measured in porous media for zero net mass flow and for Darcy permeabilities in the order of magnitude range from 10 to the -10th to 10 to the -8th sq cm. The normalized critical temperature gradients, which covered the liquid temperature range of 1.5 K to the lambda temperature, are found to vary with T proportional to the ratio of the superfluid density to the normal fluid density. This liquid temperature dependence appears to be consistent with duct data which are limited at low temperature by a Reynolds number criterion.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Cryogenics (ISSN 0011-2275); 29; 498-502
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: In June 1978, the Seasat satellite was launched carrying, among other instruments, the Seasat-A scatterometer system (SASS), which produced ambiguous wind speed and direction data at the ocean surface. A fifteen day subset of dealiased wind vector data with the inherent ambiguities removed was produced for the period of September 6-20, 1978. On September 8, SASS began to observe a development of frontal cyclogenesis in the South Pacific off the east coast of New Zealand, in an area of few surface observations. A large mature cyclone contained weak warm and cold fronts and an occlusion with a strong horizontal wind shear. Satellite imagery shows that a strong upper-level jet streak was moving rapidly over the area of the surface frontal occlusion and as the jet passed over this area a new vortex formed. This cyclogenesis event was studied using 50-km resolution scatterometer surface wind data. High-resolution fields of wind vectors, divergence and vorticity are computed and plotted from the scatterometer data to study the structure and development of the newly formed cyclonic vortex, not otherwise possible using conventional observations.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The NASA scatterometer (NSCAT) is a spaceborne scatterometer scheduled to be deployed in the mid-1990s. An analysis of the wind retrieval error distribution for wind estimates based on backscatter measurements made by the NSCAT instrument is presented. The results are based on an end-to-end simulation of the scatterometer instrument and data processing. In general, the distribution of the wind speed error, when normalized, is independent of the true wind speed and direction. The wind speed error can be characterized by a normal distribution. The wind direction error is independent of the true wind speed, but depends on the true wind direction. Details for wind vectors with true wind speeds from 3 m/s to 33 m/s and true wind directions from 0 to 360 deg are presented.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: An analysis is made based upon the concept that the velocity fluctuations, and therefore, the Reynolds stresses, driven by the instability of the original flow grow until a new stable state is approached. The Reynolds stresses incorporated into the Orr-Sommerfeld equation are coupled with the main flow such that all the imaginary parts of the complex eigenvalues vanish, i.e., the original instability is eliminated. Using this stabilization principle, it is possible to find the Reynolds stresses as well as the mean velocity for plane Poiseuille flow with the Reynolds number slightly higher than the critical.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Mathematical and Computer Modelling (ISSN 0895-7177); 12; 8, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: The behavior of the reverse flow ceiling jet against the ventilation flow from 0.58 to 0.87 m/s was investigated in a 1/3 scale model of a wide body aircraft interior. For all tests, strong reverse-flow ceiling jets of hot gases were detected well upstream of the fire. Both thicknesses of the reverse-flow ceiling jet and the smoke layer increased with the fire-crossflow parameter. The thickness of the smoke layer where the smoke flows along the main flow below the reverse-flow ceiling jet was almost twice that of the reverse-flow ceiling jet. Detailed spatial and time-varying temperatures of the gas in the test section were measured, and velocity profiles were also measured using a temperature compensated hot film.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Certain theoretical studies of boundary-layer transition are described, based on high Reynolds numbers and with attention drawn to the various nonlinear interactions and scales present. The article concentrates in particular on theories for which the mean-flow profile is completely altered from its original state. Two- and three-dimensional flow theory and conjectures on turbulent-boundary-layer structures are included. Specific recent findings noted, and in qualitative agreement with experiments, are: nonlinear finite-time break-ups in unsteady interactive boundary layers; strong vortex/wave interactions; and prediction of turbulent boundary-layer displacement- and stress sublayer-thicknesses.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: Modulation of a rain wave pattern by longer waves has been studied. An analytical model taking into account capillarity effects and obliquity of short waves has been developed. Modulation rates in wave number and amplitude have been computed. Experiments were carried out in a wave tank. First results agree with theoretical models, but higher values of modulation rates are measured. These results could be taken into account for understanding the radar response from the sea surface during rain.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-19
    Description: Rainfall modification of directional scatterometer response from the sea surface was simulated in wind-wave tank experiments. Data show that for the range of conditions in laboratory experiments, rain enhances radar cross section for all azimuthal angles relative to wind direction. This result broadens previous measurements, which showed that scatterometer response increases with increasing rainfall for radars pointing upwind. But more to the point, the data also show that the directional dynamic-range of scatterometry diminishes rapidly as rainfall rate increases. Thus, while it may be possible to determine wind speed and direction during rain, it will require adequate system sensitivity.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-19
    Description: An account of the construction of surface pressure fields from Seasat-A satellite scatterometer (SASS) winds as carried out by different methods, and the comparison of these pressure fields with those derived from in situ ship observations is presented. On the assumption that the pressure adjusts itself instantaneously to the motion field, it may be computed by various methods. One of these makes use of planetary boundary theory, and of the possible techniques in this category a two-layer iterative scheme admitting of the parametrization of diabatic and baroclinic effects and of secondary flow was chosen. A second method involves the assumption of zero two-dimensional divergence, leading to a Laplace's equation (the balance equation) in pressure, with the wind field serving as a forcing function. This method does not accommodate adiabatic or baroclinic effects, and requires a knowledge of the pressure at all boundary points. Two comparison fields are used for validation: the conventional operational analyses of the US National Meteorological Center (NMC), and the special analyses of the Gulf of Alaska Experiment (GOASEX), which were done by hand. The results of the computations were as follows: (1) The pressure fields, as computed from the SASS winds alone, closely approximated the NMC fields in regions where reasonable in situ coverage was available (typically, one or two mb differences over most of the chart, three to four mb in extreme cases); (2) In some cases the SASS-derived pressure fields displayed high-resolution phenomena not detected by the NMC fields, but evident in the GOASEX data; and, (3) As expected, the pressure fields derived from the balance equation were much smoother and less well resolved than the SASS-derived or NMC fields. The divergence as measured from the SASS winds is smaller than, but of the same order of magnitude as, the vorticity.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 27; 1332-134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-19
    Description: The accuracy of temperature, pressure, potential temperature, and horizontal wind measurements is discussed in connection with the use of Meteorological Measurement System data in the AAOE. The vertical distribution of temperature measurements and latitudinal variations of the zonal wind for 12 flights over Antarctica during the 1987 AAOE campaign are summarized. Model atmospheres from 0 to 32 km at 70 deg and 55 deg S for the August-September period are constructed. Above the 420 K isentropic surface, the polar vortex remains strong throughout August and September of 1987.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 11573-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-19
    Description: The formulation and evolution of polar stratospheric ice clouds are simulated using a one-dimensional model of cloud microphysics. It is found that the optical thickness and particle size of ice clouds depend on the cooling rate of the air in which the cloud formed. It is necessary that there be an energy barrier to ice nucleation upon the preexisting aerosols in order to account for the cooling rate dependence of the cloud properties.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 11359-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-19
    Description: The history of minimum temperatures at 50 and 70 mb is examined from NMC, UK Met O and ECMWF analyses. MSU channel 24 data are similarly inspected. South Pole sonde data are used to calculate saturation humidity mixing ratio as a function of altitude and time throughout 1987. Saturation with respect to ice could be maintained for water mixing ratios of 3.5 ppmv for a period of about 80 days from mid-June to mid-September. Dehydration to mixing ratios of 1 ppmv or less was possible sporadically. Data from the ER-2 flights between 53 S and 72 S are used in conjunction with particle size measurements and air parcel trajectories to demonstrate the dehydration occurring over Antarctica. Water mixing ratios at the latitude of Punta Arens (53 S), in conjunction with tracer measurements and trajectory analysis, show that at potential temperatures from about 325 to 400 K, the dryness (less than 3 ppmv) had its origin over Antarctica rather than in the tropics. Water mixing ratios within the Antarctic vortex varied from 1.5 to 3.8 ppmv, with a strong isentropic gradient being evident in the region of high potential vorticity gradients.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 11317-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-19
    Description: Measurements of total reactive nitrogen, NOy, total water vapor, and aerosols were made as part of the Airborne Antarctic Ozone Experiment. The measurements were made using instruments located onboard the NASA ER-2 aircrafts which conducted twelve flights over the Antarctic continent reaching altitudes of 18 km at 72 S latitude. Each instrument utilized an ambient air sample and provided a measurement up to 1 Hz or every 200 m of flight path. The data presented focus on the flights of Aug. 17th and 18th during which Polar Stratospheric Clouds (PSCs) were encountered containing concentrations of 0.5 to 1.0 micron diameter aerosols greater than 1 cm/cu. The temperature pressure during these events ranged as low as 184 K near 75 mb pressure, with water values near 3.5 ppm by volume (ppmv). With the exception of two short periods, the PSC activity was observed at temperatures above the frost point of water over ice. The data gathered during these flights are analyzed and presented.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 11299-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-19
    Description: A multichannel statistical approach is used to retrieve rainfall rates from the brightness temperature T(B) observed by passive microwave radiometers flown on a high-altitude NASA aircraft. T(B) statistics are based upon data generated by a cloud radiative model. This model simulates variabilities in the underlying geophysical parameters of interest, and computes their associated T(B) in each of the available channels. By further imposing the requirement that the observed T(B) agree with the T(B) values corresponding to the retrieved parameters through the cloud radiative transfer model, the results can be made to agree quite well with coincident radar-derived rainfall rates. Some information regarding the cloud vertical structure is also obtained by such an added requirement. The applicability of this technique to satellite retrievals is also investigated. Data which might be observed by satellite-borne radiometers, including the effects of nonuniformly filled footprints, are simulated by the cloud radiative model for this purpose.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 28; 869-884
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-19
    Description: This paper presents the results of a field program using a ground-based Raman lidar system to observe changes in moisture profiles as a cold and a warm front passed over the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The lidar operating only during darkness is capable of providing continuous high vertical resolution profiles of water vapor mixing ratio and aerosol scattering ratio from near the surface to about 7 km altitude. The lidar data acquired on three consecutive nights from shortly after sunset to shortly before sunrise, along with upper air data from specially launched rawinsondes, have provided a unique visualization of the detailed structure of the two fronts.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 28; 789-806
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-19
    Description: This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Institution of Mechanical Engineers, Proceedings, Part C - Journal of Mechanical Engineering Science (ISSN 0954-4062); 203; C4, 1; 255-265
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-19
    Description: Rapid distortion theory is applied to study distortion of homogeneous turbulence subject to two different axisymmetric strain modes: the axisymmetric contraction (AC, nozzle-type flow), and the axisymmetric expansion (AE, diffuser-type flow). The paper explores the differences in effects of the two axisymmetric strain modes on the anisotropy of correlations and structures of turbulence; examines the effect of dilatation on the distortion of turbulence; and provides a theoretical background for turbulence model development. It is found that velocity and vorticity fluctuations are enhanced more efficiently by contraction than by expansion; contraction produces much higher anisotropy in velocity and vorticity than expansion; root-mean-square pressure is slightly reduced during contraction, whereas it increases rapidly during expansion; and vortical structures of rodlike shape develop in a contraction flow, while disklike structures develop in an expansion flow. A simple model that reflects the dependence of turbulence evolution on structural parameters such as the Reynolds-stress anisotropy and total strain is proposed, and is shown to outperform all other models for all cases examined, regardless of the mean strain rate.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physics of Fluids A (ISSN 0899-8213); 1; 1541-155
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-19
    Description: An improved version of the GISS Model II cumulus parameterization designed for long-term climate integrations is used to study the effects of entrainment and multiple cloud types on the January climate simulation. Instead of prescribing convective mass as a fixed fraction of the cloud base grid-box mass, it is calculated based on the closure assumption that the cumulus convection restores the atmosphere to a neutral moist convective state at cloud base. This change alone significantly improves the distribution of precipitation, convective mass exchanges, and frequencies in the January climate. The vertical structure of the tropical atmosphere exhibits quasi-equilibrium behavior when this closure is used, even though there is no explicit constraint applied above cloud base.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 2; 850-863
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-19
    Description: The joint frequency distribution technique was used to analyze buoyancy fluxes in the marine atmospheric boundary layer (MABL) for the cloud street regime noted during the Genesis of Atlantic Lows Experiment. It is found that for the lower half of the MABL, the buoyancy flux is mainly generated by the rising thermals and the sinking compensating ambient air, and is mainly consumed by the entrainment and detrainment of thermals, penetrative convection, and the entrainment from the MABL top. If the buoyancy flux is primarily driven by the temperature flux, these buoyancy-flux generating processes should be the same for the lower boundary layers over land and ocean. The results of the scale analysis of the buoyancy flux agree well with those obtained for mesoscale cellular convection during the Air-Mass Transformation Experiment.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Boundary-Layer Meteorology (ISSN 0006-8314); 46; 1-2,
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 887
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-19
    Description: Results are presented on numerical experiments that were carried out to investigate the mechanisms of the observed variabilities in wind and convection associated with supercloud clusters (SCCs), westerly wind bursts, and 30-60 day oscillations in the western Pacific region. It is shown that the generation of a 30-60 day eastward propagating precipitation pattern in the Lau and Peng (1987) model, which can be identified as SCC, is accompanied by convective clusters coming in opposite direction to that of the SCC itself. The results suggest that the westward propagating cloud clusters are produced at the initial stage of the 30-60 day disturbance due to mutual adjustment of the large-scale flow and heating.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Meteorological Society of Japan, Journal (ISSN 0026-1165); 67; 205-219
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 27; 1068-107
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-19
    Description: Numerical studies of turbulent flow in an axisymmetric 45-deg-expansion combustor and bifurcated diffuser are presented. The Navier-Stokes equations incorporating a k-epsilon model were solved in a nonorthogonal curvilinear coordinate system. A zonal-grid method, where the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. Boundary overlap and interpolating techniques were used, and an adjustment of the flow variables was required to assure conservation of mass flux. Three finite-differencing methods (hybrid, quadratic upwind, and skew upwind) were used to represent the convection terms. Results were compared with existing experimental data. In general, good agreement between predicted and measured values was obtained.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal for Numerical Methods in Fluids (ISSN 0271-2091); 9; 167-183
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Multidecadal time series of surface winds from central tropical Pacific islands are used to compute trends in the trade winds between the end of WWII and 1985. Over this period, averaged over the whole region, there is no statistically significant trend in speed or zonal or meridional wind (or pseudostress). However, there is some tendency, within a few degrees of the equator, toward weakening of the easterlies and increased meridional flow toward the equator. Anomalous conditions subsequent to the 1972-73 ENSO event make a considerable contribution to the long-term trends. The period 1974-80 has been noted previously to have been anomalous, and trends over that period are sharply greater than those over the longer records.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 2; 1561-156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-19
    Description: This paper presents an analysis of the uncertainties expected in vertical velocities using a vertically pointing airborne Doppler radar which has a nadir or zenith-pointing beam. To examine the expected uncertainty, the Doppler velocity equation for a moving platform is derived and it is applied to cases of nadir-fixed and stabilized beams. The main emphasis of the paper is on the effect of platform stability on the deduced vertical air motions and it is shown that the antenna must be stabilized to obtain desired accuracy in the vertical velocity measurements.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 6; 1079-108
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-19
    Description: A numerical procedure in which the Navier-Stokes equations are discretized using tightly coupled discretizations of pressure derivatives and continuity equations is used here to extend the range of known terminal velocities of gaseous bubbles in liquids well beyond that in previous investigations. Computations performed for Reynolds numbers up to 2000 and Marangoni numbers up to 1000 show only a modest variation of the scaled bubble velocity between 0.16 and 0.5. The bubble velocity is influenced more by the Marangoni number than by the Reynolds number.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer, Part A: Applications (ISSN 1040-7782); 16; 2, Se
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-19
    Description: A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer, Part A: Applications (ISSN 1040-7782); 16; 2, Se
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-19
    Description: Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer, Part A: Applications (ISSN 1040-7782); 15; 2, 19; 181-195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-19
    Description: A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer, Part B: Fundamentals (ISSN 1040-7790); 16; 2, 19; 193-211
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-19
    Description: Monthly fields of shortwave radiation (SR) and latent heat flux (LE) over the central and eastern tropical Pacific between 1980 and 1983 have been computed using satellite data. They are the dominant variable components of surface thermal forcing on the ocean in this time scale. During the 1982-1983 ENSO episode, surface-wind convergence and cloudiness associated with the displacement of equatorial organized convection caused a reduction in both the SR into the ocean and the LE out of the ocean. The lag-correlation coefficients between the forcing (SR-LE) and the sea surface temperature are found to be significantly high outside the equatorial region, showing that surface thermal forcing is the dominant factor in sea surface temperature change. In the narrow equatorial wave guide, ocean dynamics play a more important role, and surface heat flux is a consequence rather than the cause of sea surface temperature change.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-19
    Description: An aircraft experiment has been conducted with a dual-frequency (10 GHz and 35 GHz) radar/radiometer system and an 18-GHz radiometer to test various rain-rate retrieval algorithms from space. In the experiment, which took place in the fall of 1988 at the NASA Wallops Flight Facility, VA, both stratiform and convective storms were observed. A ground-based radar and rain gauges were also used to obtain truth data. An external radar calibration is made with rain gauge data, thereby enabling quantitative reflectivity measurements. Comparisons between path attenuations derived from the surface return and from the radar reflectivity profile are made to test the feasibility of a technique to estimate the raindrop size distribution from simultaneous radar and path-attenuation measurements.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-19
    Description: Azimuthal response of a scatterometer to radiation scattered by the sea surface was studied in a wind-wave tank. The variation of the normalized radar cross section with the azimuth angle is fitted by a three-term series. Results show that the upwind-downwind asymmetry decreases as the wind speed increases. The crosswind modulation depends on the wind velocity. The results show that the evolution of the long-wind-crosswind ratio evolves with wind speed in a manner similar to the evolution of the isotropy of short capillary-gravity waves. The maximum of the isotropy of the short wind waves is obtained for wind velocities close to 4 m/s. For the same value of the velocity, the variations of radar response between long-wind and crosswind directions is minimum. For lower or higher values of wind velocities the directional accuracy of the radar increases, since the wind-wave field tends to align in the wind direction.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-19
    Description: The present interpretation of the radar cross section sigma exp 0 measured by satellite altimeters implies that the rms wave slope gamma is controlled solely by the local wind. However, parameters of wave spectra, including the exponent in the power law for the equilibrium range, depend on sea maturity. The latter is characterized by the nondimensional fetch, x = gX/U-squared. Consequently, gamma and sigma exp 0 are controlled by both U and the wind fetch X. Geosat data for one year are used jointly with in-situ wind and wave observations to assess the fetch-related error trend in altimeter wind speeds. This trend results in overestimated winds in the regions and seasons characterized by a high x, and vice versa. A procedure for wind speed retrieval based on processing sigma exp 0 jointly with the significant wave height information contained in the altimeter wave forms is proposed.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-19
    Description: Seasat scatterometer data over the Arabian Sea are used to build wind-stress fields during July and August 1978. They are first compared with 3-day wind analyses from ship data along the Somali coast. Seasat scatterometer specifications of 2-m/s and 20-deg accuracy are fulfilled in almost all cases. The exceptions are for winds stronger than 14 m/s, which are underestimated by the scatterometer by 15 percent. Wind stress is derived from these wind data using a bulk formula with a drag coefficient depending on the wind intensity. A successive-correction objective analysis is used to build the wind-stress field over the Arabian Sea with 2 x 2-deg and 6-day resolution. The final wind-stress fields are not significantly dependent on the objective analysis because of the dense coverage of the scatterometer. The combination of scatterometer and coastal ship data gives the best coverage to resolve monsoon wind structures even close to the coast. The final wind stress fields show wind features consistent with other monthly mean wind stress field. However, a high variability is observed on the 6-day time scale.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 117; 2348-236
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-19
    Description: The emission from a gray radiating medium is analyzed for transient cooling in surroundings at a low temperature. The medium is rectangular with no variations in the direction normal to the cross section. The integral equation for the transient temperature distribution is solved numerically using a two-dimensional Gaussian integration subroutine. The emissive ability for a rectangle at uniform temperature is compared with that for transient cooling where the temperature distribution of the region has reached a fully developed shape, as shown by a separation of variables solution. The two solutions provide the upper and lower bounds for the emittance of a rectangle during transient cooling. The emittances for various aspect ratios are presented as a function of the mean length of the rectangle and are compared with results for a plane layer and a cylinder.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 32; 1955-196
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Calculations for n-decane drops evaporating in a spherical cluster surrounded by unvitiated ambient air at atmospheric pressure were performed using two previously proposed cluster models. Both cluster models predict that turbulent transport effects are more important in the case of small clusters. This is due to the smaller volume to surface ratio and thus to the greater transport of hot unvitiated gas to the drops in order to promote evaporation. The results obtained are compared with those of two turbulent models for each one of the 'trapping factors' and similarity models.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 32; 2000-200
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-19
    Description: The effects of critical layer nonlinearity are considered on spatially growing oblique instability waves on nominally two-dimensional shear layers between parallel streams. The analysis shows that three-dimensional effects cause nonlinearity to occur at much smaller amplitudes than it does in two-dimensional flows. The nonlinear instability wave amplitude is determined by an integro-differential equation with cubic type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. The numerical solutions always end in a singularity at a finite downstream distance.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 207; 97-120
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-19
    Description: The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 207; 73-96
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-19
    Description: A simulation is performed of a passive scalar field convected by a rapidly fluctuating velocity field whose correlation time approaches zero. By using a code proposed in a previous study (Chasnov et al., 1988), the turbulence spectrum of the passive temperature field in the conductive subrange is determined. A theoretical model is proposed which explains the result obtained by representing the transfer of scalar variance by an eddy conductivity, whose correlation time is limited by the correlation time of the velocity field.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physics of Fluids A (ISSN 0899-8213); 1; 1698-170
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 27; 1557-156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-19
    Description: Cumulus processes involved in the interaction and merging of clouds under the influence of different imposed conditions (including large-scale lifting forcing, environmental wind shear, and cloud microphysical processes) were studied using simulations with a three-dimensional model. The design of the study was to generate several convective clouds randomly inside the model domain, and then to observe and analyze the interactions and merging between the simulated clouds. Ten merged clouds were identified. Seven of these, each involving two previously separated clouds, generally lie along a line parallel to the initial environmental wind shear vector, while one (also a two-cloud system) lies along a line perpendicular to the wind shear vector prior to merging. The remaining two merging systems involve three parent clouds each; they are a combination of parallel and perpendicular cells. The merging mechanisms associated with three-cloud merging cases are studied by examining the temperature, pressure, and wind fields prior to, during, and following the merging.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 46; 2974-300
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-19
    Description: The possibility of initiating the growth of ice sheets by solar insolation variations is examined. The study is conducted using a climate model with three different orbital configurations corresponding to 116,000 and 106,000 yr before the present and a modified insolation field with greater reductions in summer insolation at high northern latitudes. Despite the reduced summer and fall insolation, the model fails to maintain snow cover through the summer at locations of suspected ice sheet initiation. The results suggest that there is a discrepancy between the model's response to Milankovitch perturbations and the geophysical evidence of ice sheet initiation. If the model results are correct, the growth of ice shown by geophysical evidence would have occurred in an extremely ablative environment, demanding a complicated strategy.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 12851-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Long's self-similar vortex is known to have two solutions for each supercritical value of the flow force. Each of those solutions is shown to have a double structure if the flow force is large. The inertial instabilities of one of those large-flow-force limit solutions are investigated, showing that they are related to the instabilities of the Bickley jet in one regime. However, the swirl in the vortex becomes important for long waves, very strongly modifying the sinuous and varicose, Bickley modes. The asymptotic results obtained agree well with the numerical solutions for the sinuous mode, but not for the varicose mode, the difficulty in the latter case being apparently due to mode jumping.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 206; 405-432
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-19
    Description: Numerical techniques are developed to solve the Navier-Stokes equations for unsteady incompressible flow. The extension of the finite-difference Galerkin (FDG) method of Stephens et al. (1984) to the continuous-time case in two or three space dimensions is explained, and the numerical implementation of the method is discussed with particular attention to the staggered-MAC-grid primitive-variable discretization, the application of discrete mass balance to avoid problems inherent in FDG schemes, the direct interpretation of the FDG expansion variables as a discrete streamfunction, and a mass-balance approach to two-dimensional problems with throughflow or obstacles. Numerical results are presented graphically for the evolution of asymptotic steady flow in a driven cavity at Reynolds number 400, 1000, or 3200; good agreement with published experimental data is demonstrated, with accurate predictions of secondary-vortex formation from wall bubble recirculations at Reynolds number 1000.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics (ISSN 0021-9991); 84; 207-241
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-19
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 70; 1263-127
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-19
    Description: Flow-field measurements of unsteady turbulent flow downstream of a rotating spoked-wheel wake generator were performed in a short-duration light-piston tunnel, and the instantaneous-velocity data were phase averaged based on a signal synchronized with the bar-passing frequency. Mean axial velocities were found to agree well with those obtained from measurements behind a stationary cylinder and to be independent of both Reynolds and bar-passing Strouhal numbers. Reynolds stresses were found to be consistent with related cylinder-wake measurements, but were significantly higher than corresponding measurements obtained in large-scale research turbomachines. Phase-averaged triple velocity correlations were calculated from the digital velocity records, revealing the sign and the magnitude of skewness in the velocity probability density distributions for the two components.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ASME, Transactions, Journal of Turbomachinery (ISSN 0889-504X); 111; 475-482
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The bifurcation diagram corresponding to the Eckhaus stability curve has been constructed for the one-dimensional Swift-Hohenberg equation in a finite domain. Finite-amplitude solutions with particular spatial wavelength recover linear stability, as predicted by the Eckhaus curve, after a sequence of secondary bifurcations from the branch of solutions with this wavelength. No connectivity between the primary-solution branches is admissible if the stability predicted by this bifurcation diagram is to correspond to the prediction of the Eckhaus analysis. The Eckhaus curve does not exist if nonlinear couplings destroy this pattern. This is demonstrated by analysis of a coupled pair of Swift-Hohenberg equations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physical Review Letters (ISSN 0031-9007); 63; 2048-205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Thirty-three Landsat TM scenes of California stratocumulus cloud fields were acquired as part of the FIRE Marine Stratocumulus Intensive Field Observations in July 1987. They exhibit a wide variety of stratocumulus structures. Analysis has so far focused upon the July 7 scene, in which aircraft from NASA, NCAR, and the British Meteorological Office repeatedly gathered data across a stratocumulus-fair weather cumulus transition. The aircraft soundings validate the cloud base temperature threshold determined by spatial coherence analysis of the TM thermal band. Brightness variations in the stratocumulus region exhibit a -5/3 power-law decrease of the wavenumber spectra for scales larger than the cloud thickness, about 200 m, changing to a -3 power at smaller scales. Observations by an upward-looking three-channel microwave radiometer on San Nicolas Island also show the -5/3 power-law in total integrated liquid water, suggesting that the largest-scale TM brightness variations are primarily due to variations in the liquid water. The Kolmogorov 5/3 power suggests that for some purposes liquid water in turbulent stratocumulus clouds may be treated as a passive scalar, simply reflecting variations in vertical velocity. This may be tested using the velocities measured by the aircraft.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Remote Sensing of Environment (ISSN 0034-4257); 28; 95-107
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-19
    Description: The effects of asymmetry in furnace temperature profile and pulling velocity on the crystal interface shape are demonstrated while neglecting the latent heat of solidification. It is seen that the furnace temperature profile may be varied in order to influence the shape of the melt-crystal interface. An exact thermal analysis is then performed on the Bridgman technique by including the latent heat of solidification as a source term. The exact temperature field required for yielding a flat melt-crystal interface is obtained. The earlier observation regarding the influence of furnace temperature profile on the interface shape is confirmed and a criterion for achieving a flat interface is obtained. Various furnace temperature profiles are selected and their corresponding melt-crystal interface results are presented.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 32; 1741-175
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-19
    Description: New nonlinear partial differential equations containing terrain curvature and its rate of change are derived that describe the flow of an atmospheric density current. Unlike the classical hydraulic-type equations for density currents, the new equations are valid for two-dimensional, gradually varied flow over highly curved terrain, hence suitable for computing unsteady (or steady) flows over arbitrary mountain/valley profiles. The model assumes the atmosphere above the density current exerts a known arbitrary variable pressure upon the unknown interface. Later this is specialized to the varying hydrostatic pressure of the atmosphere above. The new equations yield the variable velocity distribution, the interface position, and the pressure distribution that contains a centrifugal component, often significantly larger than its hydrostatic component. These partial differential equations are hyperbolic, and the characteristic equations and characteristic directions are derived. Using these to form a characteristic mesh, a hypothetical unsteady curved-flow problem is calculated, not based upon observed data, merely as an example to illustrate the simplicity of their application to unsteady flows over mountains.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 46; 3192-320
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-19
    Description: Transient cooling by radiation is analyzed for a cylindrical region filled with axially flowing streams of drops that are becoming solidified. This is of interest for the dissipation of waste heat from orbiting power system in space. The drops absorb, emit, and scatter radiation, and the surroundings are at a lower uniform temperature. The radiative properties are assumed gray, and the scattering is isotropic. The radiating region is a two-phase mixture that remains at the melting temperature of the drops. Its temperature uniformity maintains a high emissive power as energy is lost. This is an advantage over a sensible heat radiator in which the temperature decreases, thereby reducing the emissive power. The results provide the axial length that remains two-phase and the fraction of energy dissipated within this length in which the emissive power has not decreased because of sensible cooling. It is also shown how the radial distribution of the axial velocity of the drops can be modified to increase this energy fraction.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 3; 340-344
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 3; 233-244
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-19
    Description: A number of successful applications of a spectral collocation method extended by a multi-domain patching technique are shown. The multi-domain technique can be used to improve resolution for problems with widely disparate scales, and to reduce the ill-conditioning of the spectral operators for problems in which a large number of points are required for distributed resolution. A new nonreflecting outflow boundary treatment for unsteady transition-to-turbulence simulations is also presented, which relies on the multi-domain technique. The role of multi-domain in improving the efficiency of such calculations is discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Applied Numerical Mathematics (ISSN 0168-9274); 6; 123-139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-19
    Description: Spectral element methods are high-order weighted residual techniques based on spectral expansions of variables and geometry for the Navier-Stokes (NS) and transport equations. Here, practical aspects of these methods and their efficient implementation are examined, and several examples of flows in truly complex geometries are presented. The spectral element discretization for NS equations is introduced, and the convergence of the method is addressed. An efficient data management scheme is discussed in the context of parallel processing computations. The method is validated by comparing the spectral element solutions with the exact eigensolutions for the Orr-Sommerfeld equations in two and three dimensions. Computer-aided flow visualizations are presented for an impulsive flow past a sharp edge wedge. Three-dimensional states of channel flow disrupted by an array of cylindrical eddy promoters are studied, and the results of a direct simulation of the turbulent flow in a plane channel are presented.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Applied Numerical Mathematics (ISSN 0168-9274); 6; 85-105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-08-19
    Description: The sources of sub-Saharan precipitation are studied using diagnostic procedures integrated into the code of the GISS climate model. Water vapor evaporating from defined source regions is 'tagged', allowing the determination of the relative contributions of each evaporative source to the simulated July rainfall in the Sahel. Two June-July simulations are studied to compare the moisture sources, moisture convergence patterns and the spatial variations of precipitation for rainy and drought conditions. Results for this case study indicate that patterns of moisture convergence and divergence over northern Africa had a stronger influence on model rainfall over the sub-Sahara than did evaporation rates over the adjacent oceans or moisture advection from ocean to continent. While local continental evaporation contributed significant amounts of water to Sahelian precipitation in the'rainy' simulation, moisture from the Indian Ocean did not precipitate over the Sahel in either case.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 2; 1438-144
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The long-term climatic evolution of the earth has been studied on the basis of one-dimensional, globally-averaged climate models yielding only a qualitative understanding of climatic history, and in any case proceeding under a series of potentially invalid assumptions. One such major assumption, which invites comparison with a three-dimensional GCM, is that of fixed relative humidity. A GCM may also be used to study the problem of water loss from both the earth and Venus.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Global and Planetary Change (ISSN 0921-8181); 1; 83-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 27; 1707-171
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-31
    Description: A description of the Axial Flow Turbine Research Facility (AFTRF) being built at the Turbomachinery Laboratory of the Pennsylvania State University is presented. The purpose of the research to be performed in this facility is to obtain a better understanding of the rotor/stator interaction, three dimensional viscous flow field in nozzle and rotor blade passages, spanwise mixing and losses in these blade rows, transport of wake through rotor passage, and unsteady aerodynamics and heat transfer of rotor blade row. The experimental results will directly feed and support the analytical and the computational tool development. This large scale low speed facility is heavily instrumented with pressure and temperature probes and has provision for flow visualization and laser Doppler anemometer measurement. The facility design permits extensive use of the high frequency response instrumentation on the stationary vanes and more importantly on the rotating blades. Furthermore it facilitates detailed nozzle wake, rotor wake, and boundary layer surveys. The large size of the rig also has the advantage of operating at Reynolds numbers representative of the engine environment.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Structural Integrity and Durability of Reusable Space Propulsion Systems; p 223-236
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-31
    Description: A quasi-three-dimensional analysis has been developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stress-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations are integrated in time using an explicit four-stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing is used to increase the stability limit of the time-accurate computations. The scheme is described, and stability and accuracy analyses are given.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Structural Integrity and Durability of Reusable Space Propulsion Systems; p 237-246
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-31
    Description: A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Structural Integrity and Durability of Reusable Space Propulsion Systems; p 247-251
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-31
    Description: An analysis of the relationship between the IMF section boundary crossing, solar flares, the sunspot 11 year cycle variation and the thunderstorm index is given, using the superposition epoch method, for data from more than 13,000 thunderstorms from 10 meteorological stations in the Beijing area and the Northeast region during 1957 to 1978. The results show that for some years a correlation exists between the thunderstorm index and the positive IMF section boundary crossing. The thunderstorm index increases obviously within three days near the crossing and on the seventh day after the crossing. The influence of the crossing on thunderstorms is stronger in the first half year than the latter half year. For different classes of solar flares, the influences are not equally obvious. The solar flares which appeared on the west side, especially in the western region (from 0 to 30 deg) have the most obvious influence. There is no discernible correlation between the thunderstorm index and the sunspot eleven-year cycle.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: International Council of Scientific Unions, Middle Atmosphere Program. Handbook for MAP, Volume 29. Part 1: Extended Abstracts, International Symposium on Solar Activity Forcing of the Middle Atmosphere. Part 2: MASH Workshop, Williamsburg, 1986; p 179-182
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-31
    Description: The possibility that solar variations associated with the 11-year solar cycle may be the cause of the changes in tropospheric weather and climate has been the subject to scientific investigation for several decades. Meteorologists are greatly concerned with the changes in tropospheric phenomena. An attempt was made to find solar activity related changes in tropospheric weather, by the modulation of the quasi-biennial oscillation (QBO) of zonal wind at 50 mb. Rainfall and surface temperature data for a period of about three solar cycles, 1953 to 1988, from various stations in the Indian subcontinent were utilized. By extension, a possible teleconnection was looked for between the temperature changes in middle atmospheric levels and surface temperature when the data are stratified according to east or west phase of the QBO. The temperature data were averaged for January and February to represent the winter temperature and for July and August to represent the summer temperature.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: International Council of Scientific Unions, Middle Atmosphere Program. Handbook for MAP, Volume 29. Part 1: Extended Abstracts, International Symposium on Solar Activity Forcing of the Middle Atmosphere. Part 2: MASH Workshop, Williamsburg, 1986; p 62-66
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-31
    Description: The part of energy of the planetary waves which enters the stratosphere depends on conditions of planetary wave generation and propagation through the tropopause, and the part of planetary wave energy which enters the mesosphere depends on conditions of planetary wave propagation through the stratopause. An attempt is made to estimate connections between extratropical middle atmosphere temperature long term variations and portions of energy of planetary waves which enter the mesosphere and stratosphere during winter seasons in Northern and Southern Hemispheres. Interannual variations of temperatures at the 30 km and 70 km levels are investigated for the central winter months of the period 1970 to 1986. This period includes the descending branch of the 20th solar cycle and the whole 21st cycle. Calculations are made on the basis of measurements at Heiss Island and Molodezhnaya.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: International Council of Scientific Unions, Middle Atmosphere Program. Handbook for MAP, Volume 29. Part 1: Extended Abstracts, International Symposium on Solar Activity Forcing of the Middle Atmosphere. Part 2: MASH Workshop, Williamsburg, 1986; p 47-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-31
    Description: The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. An discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: International Council of Scientific Unions, Middle Atmosphere Program. Handbook for MAP, Volume 29. Part 1: Extended Abstracts, International Symposium on Solar Activity Forcing of the Middle Atmosphere. Part 2: MASH Workshop, Williamsburg, 1986; p 43-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-31
    Description: Before the introduction of the Quasi Biennial Oscillation (Q.B.O.) in the study of the solar atmosphere relationship by Labitzke (1987) and Labitzke and Van Loon (1988), the only region of the atmosphere where an effect of a change in solar activity was generally admitted was the mesosphere. The response of the mesosphere, in phase with the solar activity, was found to be about one order of magnitude above model expectancy (around 10 to 20 Kelvin). It was observed independently of the season and maximized around 70 km (Chanin et al. 1987). However, from the same study, it was shown that the response of the stratosphere of opposite sign, clearly seen during winter and autumn, was at the threshold of detection in spring and summer. In the stratosphere, it was shown later that the separation of the data taking into account the sign of the Q.B.O. amplifies the negative correlation of the stratospheric temperature with solar activity in winter; it then becomes more significantly negative for the East phase of the Q.B.O. than when the data are all mixed (Labitzke and Chanin 1988). The studies of the seasonal response of the atmosphere to solar effect is crucial to understand the possible mechanism responsible of such a solar activity Q.B.O. relationship, knowing that the global dynamic circulation is quite different according to the seasons. The question is examined as to whether such separation of the data according to the phase of the Q.B.O. has any impact on the solar response of the middle atmosphere for seasons other than winter.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: International Council of Scientific Unions, Middle Atmosphere Program. Handbook for MAP, Volume 29. Part 1: Extended Abstracts, International Symposium on Solar Activity Forcing of the Middle Atmosphere. Part 2: MASH Workshop, Williamsburg, 1986; p 33-38
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: There is no doubt that the antropogenic effect play an important role in the effects of corpuscular radiation on weather and climate. The task, however, is to distinguish between antropogenic effect in the atmosphere due to human activities and natural climatic fluctuations influencing biological systems. The increase in global temperature during the past 100 years is in relatively good coincidence with the increase in geomagnetic (corpuscular) activity. It is concluded that it could have been the increase in temperature on the Northern Hemisphere, due to the processes occurring in the auroral oval under enhanced corpuscular radiation which led to an increased atmospheric concentration of CO2 in the past. Both processes, i.e., antropogenic and solar activity effects, should be therefore intensively studied due to their important role for elucidating the past and present global change mainly in temperature, climate and biological systems.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: International Council of Scientific Unions, Middle Atmosphere Program. Handbook for MAP, Volume 29. Part 1: Extended Abstracts, International Symposium on Solar Activity Forcing of the Middle Atmosphere. Part 2: MASH Workshop, Williamsburg, 1986; p 13-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-31
    Description: A multiphase turbulence closure model is presented which employs one transport equation, namely the turbulence kinetic energy equation. The proposed form of this equation is different from the earlier formulations in some aspects. The power spectrum of the carrier fluid is divided into two regions, which interact in different ways and at different rates with the suspended particles as a function of the particle-eddy size ratio and density ratio. The length scale is described algebraically. A mass/time averaging procedure for the momentum and kinetic energy equations is adopted. The resulting turbulence correlations are modeled under less retrictive assumptions comparative to previous work. The closures for the momentum and kinetic energy equations are given. Comparisons of the predictions with experimental results on liquid-solid jet and gas-solid pipe flow show satisfactory agreement.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA, Marshall Space Flight Center, Constitutive Relationships and Models in Continuum Theories of Multiphase Flows; p 147-162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Generally, two types of theory are used to describe the field equations for suspensions. The so-called postulated equations are based on the kinetic theory of mixtures, which logically should give reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a system of equations which is underdetermined, in a sense that can be made precise. On the other hand, the so-called averaging theory starts with a determined system, but the very process of averaging renders the resulting system underdetermined. A third type of theory is proposed in which the kinetic theory of gases is used to motivate continuum equations for the suspended particles. This entails an interpretation of the stress in the particles that is different from the usual one. Classical theory is used to describe the motion of the suspending medium. The result is a determined system for a dilute suspension. Extension of the theory to more concentrated systems is discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA, Marshall Space Flight Center, Constitutive Relationships and Models in Continuum Theories of Multiphase Flows; p 57-64
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-31
    Description: A blocking pattern which formed over eastern North America following the landfall of Hurricane Juan during November 1985 was investigated. It is hypothesize that latent heat released in the Hurricane's rainfall was either directly or indirectly responsible for the large observed 500 mb height rises over eastern Canada during the formation of this block. This idea is evaluated with a diagnostic model for the height tendency field which includes latent heat release as a forcing function. The total column heating is calculated using satellite-derived precipitation estimates. These estimates are qualitatively congruent with observations, but overestimate light rainfall and underestimate heavy rainfall. The calculations reveal that the direct contribution of the heating to the 500 mb height tendency field is small relative to the quasigeostrophic forcing. However, maxima in heating coincide with regions where anticyclonic potential vorticity is generated. Once such region is just upstream of the location of large 500 mb height rises in the incipient block. An indirect role is proposed for the heating in this case. Specifically, anticyclonic potential vorticity is generated near the heating maxima; this vorticity is then advected downstream, forcing the 500 mb heights to rise and the block to develop.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA, Marshall Space Flight Center, NASA(MSFC FY88 Global Scale Atmospheric Processes Research Program Review; p 53-54
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-08-31
    Description: Simple models are being developed to simulate interaction of planetary and synoptic-scale waves incorporating the effects of large-scale topography; eddy heat and momentum fluxes (or nonlinear dynamics); radiative heating/cooling; and latent heat release (precipitation) in synoptic-scale waves. The importance of latent heat release is determined in oceanic storm tracks for temporal variability and time-mean behavior of planetary waves. The model results were compared with available observations of planetary and synoptic-scale wave variability and time-mean circulation. The usefulness of monitoring precipitation in oceanic storm tracks by satellite observing systems was ascertained. The modeling effort includes two different low-order quasi-geostrophic models-time-dependent version and climatological mean version. The modeling also includes a low-order primitive equation model. A time-dependent, multi-level version will be used to validate the two-level Q-G models and examine effects of spherical geometry.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA, Marshall Space Flight Center, NASA(MSFC FY88 Global Scale Atmospheric Processes Research Program Review; p 49-51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-31
    Description: Applications of mesosphere stratosphere troposphere radar to mesoscale meteorology are discussed. The applications include using the radar either as a research tool to improve our understanding of certain dynamical systems or as part of a network used to provide input data for weather forecasting. The workhorse of the operational observing network is the radiosonde balloon which provides measurements of pressure, temperature, humidity, and winds up to heights of 16 to 20 km. Horizontal and vertical measurement capabilities, reflectivity data, derivable quantities and parameters, and special operational requirements are surveyed.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: International Council of Scientific Unions, Kyoto Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar; p 299-332
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-31
    Description: The vaporization of a droplet, interacting with its neighbors in a non-dilute spray environment is examined as well as a vaporization scaling law established on the basis of a recently developed theory of renormalized droplet. The interacting droplet consists of a centrally located droplet and its vapor bubble which is surrounded by a cloud of droplets. The distribution of the droplets and the size of the cloud are characterized by a pair-distribution function. The vaporization of a droplet is retarded by the collective thermal quenching, the vapor concentration accumulated in the outer sphere, and by the limited percolative passages for mass, momentum and energy fluxes. The retardation is scaled by the local collective interaction parameters (group combustion number of renormalized droplet, droplet spacing, renormalization number and local ambient conditions). The numerical results of a selected case study reveal that the vaporization correction factor falls from unity monotonically as the group combustion number increases, and saturation is likely to occur when the group combustion number reaches 35 to 40 with interdroplet spacing of 7.5 diameters and an environment temperature of 500 K. The scaling law suggests that dense sprays can be classified into: (1) a diffusively dense cloud characterized by uniform thermal quenching in the cloud; (2) a stratified dense cloud characterized by a radial stratification in temperature by the differential thermal quenching of the cloud; or (3) a sharply dense cloud marked by fine structure in the quasi-droplet cloud and the corresponding variation in the correction factor due to the variation in the topological structure of the cloud characterized by a pair-distribution function of quasi-droplets.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA, Marshall Space Flight Center, Constitutive Relationships and Models in Continuum Theories of Multiphase Flows; p 65-101
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-08-31
    Description: An understanding is being developed for processes which may be important in the atmosphere, and the definition and analysis of baroclinic experiments utilizing the geophysical fluid flow cells (GFFC) apparatus in microgravity space flights. Included are studies using numerical codes, theoretical models, and terrestrial laboratory experiments. The numerical modeling is performed in three stages: calculation of steady axisymmetric flow, calculation of fastest-growing linear eigenmodes, and nonlinear effects (first, wave-mean flow interactions, then wave-wave interactions). The code can accommodate cylindrical, spherical, or channel geometry. It uses finite differences in the vertical and meridional directions, and is spectral in the azimuthal. The theoretical work was mostly in the area of effects of topography upon the baroclinic instability problem. The laboratory experiments are performed in a cylindrical annulus which has a temperture gradient imposed upon the lower surface and an approximately isothermal outer wall, with the upper and inner surfaces being nominally thermally insulating.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA, Marshall Space Flight Center, NASA(MSFC FY88 Global Scale Atmospheric Processes Research Review Program; p 65-68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-29
    Description: The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: JHU, The 26th JANNAF Combustion Meeting, Volume 2; p 233-242
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-29
    Description: Advanced methods were developed to determine time varying winds and turbulence from digital flight data recorders carried aboard modern airliners. Analysis of several cases involving severe clear air turbulence encounters at cruise altitudes has shown that the aircraft encountered vortex arrays generated by destabilized wind shear layers above mountains or thunderstorms. A model was developed to identify the strength, size, and spacing of vortex arrays. This model is used to study the effects of severe wind hazards on operational safety for different types of aircraft. It is demonstrated that small remotely piloted vehicles and executive aircraft exhibit more violent behavior than do large airliners during encounters with high-altitude vortices. Analysis of digital flight data from the accident at Dallas/Ft. Worth in 1985 indicates that the aircraft encountered a microburst with rapidly changing winds embedded in a strong outflow near the ground. A multiple-vortex-ring model was developed to represent the microburst wind pattern. This model can be used in flight simulators to better understand the control problems in severe microburst encounters.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: AGARD, Flight in Adverse Environmental Conditions; 7 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-08-31
    Description: An explicit multistage Runge-Kutta type of time-stepping scheme is used for solving transonic flow past a transport type wing/fuselage configuration. Solutions for both Euler and Navier-Stokes equations are obtained for quantitative assessment of boundary layer interaction effects. The viscous solutions are obtained on both a medium resolution grid of approximately 270,000 points and a find grid of 460,000 points to assess the effects of grid density on the solution. Computed pressure distributions are compared with the experimental data.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 571-579
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-08-31
    Description: Some considerations toward developing numerical procedures for simulating viscous compressible flows are discussed. Both Navier-Stokes and boundary layer field methods are considered. Because efficient viscous-inviscid interaction methods have been difficult to extend to complex 3-D flow simulations, Navier-Stokes procedures are more frequently being utilized even though they require considerably more work per grid point. It would seem a mistake, however, not to make use of the more efficient approximate methods in those regions in which they are clearly valid. Ideally, a general purpose compressible flow solver that can optionally take advantage of approximate solution methods would suffice, both to improve accuracy and efficiency. Some potentially useful steps toward this goal are described: a generalized 3-D boundary layer formulation and the fortified Navier-Stokes procedure.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 547-570
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-08-31
    Description: The construction and development of the multi-component traversing system and associated control hardware and software are presented. A hydrogen bubble/laser sheet flow visualization technique was developed to visually study the characteristics of the mixing layers. With this technique large-scale rollers arising from the Taylor-Gortler instability and its interaction with the primary Kelvin-Helmholtz structures can be studied.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 147-152
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-31
    Description: The sizes and arrangement of the wind tunnel used for the experimentation are described. The specifications for the cold-wire anemometers, hot-wire anemometers, cold-wire rakes, and miniature 3-wire probe are proveded. The results of the experiment are briefly discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 127-146
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-08-31
    Description: A very low Reynolds number turbulent boundary layer subject to an adverse pressure gradient is studied. The aim is to obtain highly accurate mean-flow and turbulence measurements under conditions that can be closely related to the numerical simulations of Philippe Spalart for the purposes of CFD validation. Much of the Boundary Layer Wind Tunnel was completely rebuilt with a new wider contraction and working section which will improve compatibility with the simulations. A unique sophisticated high-speed computer controlled 3-D probe traversing mechanism was integrated into the test section. Construction of the tunnel and traverse is discussed in some detail. The hardware is now complete, and measurements are in progress. The mean-flow data indicate that a suitably two-dimensional base flow was established. Automation of the probe positioning and data acquistion have led to a decreased running time for total pressure measurements. However, the most significant benefits are expected to occur when using hot-wire probes. Calibrations can be performed automatically and there is no need to handle fragile probes when moving between measuring stations. Techniques are being developed which require sampling of the signals from moving hot-wire probes on the basis of their position in the flow. Measurements can be made in high intensity turbulence by flying probes upstream at high speed so that the relative magnitude of the turbulent velocity fluctuations are reduced. In regions, where the turbulence intensity is not too large, the probe can also be repetitively scanned across very dense spatial grids in other directions. With this technique, a complete profile can be measured in about 1/3 the time and with a spatial density about 50 times that obtainable using a stationary probe.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 153-166
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-08-31
    Description: Thermal convection was proposed as a possible mechanism for generation and maintenance of turbulence in the inner accretion disk regime of the primordial solar nebula. It is of fundamental interest to design experiments with the basic physical features of the solar nebula conditions cannot be produced in the laboratory, numerical simulations of hydrodynamic flows, which have been very successful in describing aerodynamic flows, can be suitable modified to provide experimental data for solar nebula modelling. The goals are to modify an extant, proven hydrodynamics code with the most important features of the solar nebula and other thin accretion disks: bouyancy terms to generate convection, internal heating representing the release of gravitational potential energy, a variable gravity linearly proportional the the distance from the vertical midplane due to centrifugal balance, rapid rotation with axis aligned with gravity, and Keplerian rotational shear; to determine the effect that these features have on the turbulent convection by introducing them individually and to determine the cumulative nature of the turbulent convection for accretion disk conditions; and to model the convection and the turbulence. In this manner, prior solar nebula models can be tested and their deficiencies rectified.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 121-125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: It is likely that turbulence played a major role in the evolution of the solar nebula, which is the flattened disk of dust and gas out of which our solar system formed. Relevant turbulent processes include the transport of angular momentum, mass, and heat, which were critically important to the formation of the solar system. This research will break ground in the modeling of compressible turbulence and its effects on the evolution of the solar nebula. The computational techniques which were developed should be of interest to researchers studying other astrophysical disk systems (e.g., active galactic nuclei), as well as turbulence modelers outside the astrophysics community.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 107-114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-08-31
    Description: A research program for direct numerical simulations of compressible reacting flows is described. Two main research subjects are proposed: the effect of pressure waves on turbulent combustion and the use of direct simulation methods to validate flamelet models for turbulent combustion. The interest of a compressible code to study turbulent combustion is emphasized through examples of reacting shear layer and combustion instabilities studies. The choice of experimental data to compare with direct simulation results is discussed. A tentative program is given and the computation cases to use are described as well as the code validation runs.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 99-106
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Outline of the research program and a recent progress in the studies of sheared turbulence are described. The research program reported is directed at two goals: (1) understanding of fundamental physics of organized structures in turbulent shear flows; and (2) development of phenomenological models of turbulence based on physical arguments. Three projects that were carried out are: (1) structure of sheared turbulence near a plane boundary; (2) distortion of turbulence by axisymmetric strain and dilation; and (3) study of energy transfer in turbulent shear flow.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 63-78
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Vortex interactions and their role in turbulent flow are examined. The objectives are twofold. First, to use the existing axisymmetric code to study the annihilation process of colliding vortex rings and determine the relevance of this problem to similar 3-D phenomena. The second objective is to extend the code to three dimensions. The code under development is unique in that it can compute flows in a truly infinite domain (i.e., without periodic boundary conditions or approximations from truncating the domain). Because of this, the far field sound can be computed, and therefore, contribute to improved models of turbulence generated noise for this class of flows. Issues which can be addressed by the code include: effects of viscosity on mode selection in azimuthal breakdown of vortex rings (i.e., the Widnall instability); reconnection, the associated production of small scales, and the time scale of the process.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 51-54
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The motivation for studying close vortex interactions is briefly discussed in the light of turbulence and coherent structures. Particular attention is given to the interaction known as reconnection. Two reconnection mechanisms are discussed. One is annihilation of vorticity by cross-diffusion, the other is an inviscid head-tail formation. At intermediate Reynolds numbers both mechanisms are operating.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 39-50
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-08-31
    Description: The objective of the present research was to extend the Direct Numerical Simulation (DNS) approach to particle-laden turbulent flows using a simple model of particle/flow interaction. The program addressed the simplest type of flow, homogeneous, isotropic turbulence, and examined interactions between the particles and gas phase turbulence. The specific range of problems examined include those in which the particle is much smaller than the smallest length scales of the turbulence yet heavy enough to slip relative to the flow. The particle mass loading is large enough to have a significant impact on the turbulence, while the volume loading was small enough such that particle-particle interactions could be neglected. Therefore, these simulations are relevant to practical problems involving small, dense particles conveyed by turbulent gas flows at moderate loadings. A sample of the results illustrating modifications of the particle concentration field caused by the turbulence structure is presented and attenuation of turbulence by the particle cloud is also illustrated.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 55-61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Direct numerical simulations are being performed on two different fluid flows in an attempt to discover the mechanism underlying the transition to turbulence in each. The first system is Taylor-Couette flow; the second, two-dimensional flow over an airfoil. Both flows exhibit a gradual transition to high-dimensional turbulence through low-dimensional chaos. The hope is that the instabilities leading to chaos will be easier to relate to physical processes in this case, and that the understanding of these mechanisms can then be applied to a wider array of turbulent systems.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 35-37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-08-31
    Description: Cocke (1969) proved that in incompressible, isotropic turbulence the average material line (material surface) elements increase in comparison with their initial values. Good estimates of how much they increase in terms of the eigenvalues of the Green deformation tensor were rigorously obtained.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 19-27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The objective is to understand and extend a recent theory of turbulence based on dynamic renormalization group (RNG) techniques. The application of RNG methods to hydrodynamic turbulence was explored most extensively by Yakhot and Orszag (1986). An eddy viscosity was calculated which was consistent with the Kolmogorov inertial range by systematic elimination of the small scales in the flow. Further, assumed smallness of the nonlinear terms in the redefined equations for the large scales results in predictions for important flow constants such as the Kolmogorov constant. It is emphasized that no adjustable parameters are needed. The parameterization of the small scales in a self-consistent manner has important implications for sub-grid modeling.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 29-33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-31
    Description: Use of the Smagorinsky eddy-viscosity formulation and related schemes for subgrid-scale parameterization of large eddy simulation models requires specification of a single length scale, earlier related by Lilly to the scale of filtering and/or numerical resolution. An anisotropic integration of the Kolmogoroff enstrophy spectrum allows generalization of that relationship to anisotropic resolution. It is found that the Deardorff assumption is reasonably accurate for small anisotropies and can be simply improved for larger values.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 3-9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: In recent years codes that use the Navier-Stokes equations to compute aerodynamic flows have evolved from computing two-dimensional flows around simple airfoils to computing flows around full scale aircraft configurations. Most flows of engineering interest are turbulent and turbulence models are needed for their prediction. Yet, it is known that present turbulence models are adequate only for simple flows and do poorly in complicated flows such as three-dimensional separation, or large-scale unsteadiness. The same progress that allowed the development of these aerodynamic codes, namely the introduction of supercomputers, has allowed us to compute directly turbulent flows, albeit only for simple flows at moderate Reynolds numbers. These direct turbulence simulations provide us with detailed data that experimentalists were not able to measure. This work is motivated by the fact that data exists for developing better turbulence models and by the need for better models to compute flows of engineering interest. The objective is to develop turbulence models for engineering applications. The model categories that show promise for immediate use are on the two-equation level and the Reynolds-stress level.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1988; p 11-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-31
    Description: In the last two decades there have been extensive developments in computational unsteady transonic aerodynamics. Such developments are essential since the transonic regime plays an important role in the design of modern aircraft. Therefore, there has been a large effort to develop computational tools with which to accurately perform flutter analysis at transonic speeds. In the area of Computational Fluid Dynamics (CFD), unsteady transonic aerodynamics are characterized by the feature of modeling the motion of shock waves over aerodynamic bodies, such as wings. This modeling requires the solution of nonlinear partial differential equations. Most advanced codes such as XTRAN3S use the transonic small perturbation equation. Currently, XTRAN3S is being used for generic research in unsteady aerodynamics and aeroelasticity of almost full aircraft configurations. Use of Euler/Navier Stokes equations for simple typical sections has just begun. A brief history of the development of CFD for aeroelastic applications is summarized. The development of unsteady transonic aerodynamics and aeroelasticity are also summarized.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA, Langley Research Center, Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 1; p 47-61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-31
    Description: A finite difference code was implemented for the compressible Navier-Stokes equations on the Connection Machine, a massively parallel computer. The code is based on the ARC2D/ARC3D program and uses the implicit factored algorithm of Beam and Warming. The codes uses odd-even elimination to solve linear systems. Timings and computation rates are given for the code, and a comparison is made with a Cray XMP.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA Computational Fluid Dynamics Conference. Volume 2: Sessions 7-12; p 467-481
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The hardware and software currently used for visualization of fluid dynamics at NASA Ames is described. The software includes programs to create scenes (for example particle traces representing the flow over an aircraft), programs to interactively view the scenes, and programs to control the creation of video tapes and 16mm movies. The hardware includes high performance graphics workstations, a high speed network, digital video equipment, and film recorders.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA Computational Fluid Dynamics Conference. Volume 2: Sessions 7-12; p 451-465
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-31
    Description: The present investigation has focused on a computational methodology for the fundamental case of transition in channel flow, in which recently published experimental data are utilized both as a stimulus and as a measure of merit of the method. The research has proceeded along three avenues in parallel. The first task has consisted of the development and verification of a computer code which calculates the mean evolution of flow in a channel similar to the one employed experimentally by Blair and Anderson. An analytical test case was created for the dual purposes of code verification and of highlighting the interactions between the Reynolds stress and the mean velocity profile. This test case generated a Reynolds stress by the residue in the momentum equation which is produced by a typical analytical velocity profile. By a substitution of this Reynolds stress into the appropriate code module, the correctness of the code may be verified, along with the accuracy of the computational method. The second task pursued has involved the development of a triple layer model for the Reynolds stress profile, which was suggested and derived from experimental velocity profiles. It is demonstrated that the innermost length scale is based on the local friction velocity, the intermediate layer corresponds to the usual logarithmic law of the wall region in which the normalized Reynolds stress is approximately unity, and the outermost layer is represented by a closed mathematical form depending explicitly on the velocity profile in the wake region. The third task was comprised of scrutiny of the excellent databases developed by Blair and others, and the planning of its incorporation into the transition analysis. These extensive measurements indicate that turbulent statistics in the transition regime may be considered to alternate between laminar and fully turbulent types, the proportions of which are quantified by a measured intermittency function.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Old Dominion Univ., NASA/American Society for Engineering Ed; Old Dominion Univ.,
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-08-31
    Description: An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Old Dominion Univ., NASA/American Society for Engineering Ed; Old Dominion Univ.,
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-31
    Description: Numerous experimental studies were conducted on the steady, three-dimensional boundary layer over a disk rotating at constant angular speed in an otherwise undisturbed fluid. The subject flow geometry is of interest because it provides a relatively simple way to study the cross-flow instability phenomenon which occurs in three-dimensional boundary layers, as on swept wings. This flow instability results in the formation of a stationary spiral vortex flow field over the disk, as shown by Wilkinson and Malik. Using a hot-wire probe, the spatial wave pattern of stationary vortices, which filled the entire circumference of the disk was mapped. The subject flow instability caused transition-to-turbulent flow as the periphery of the disk was approached. The effect on receptivity and transition of discrete disturbance modes, such as three-dimensional toughness elements and acoustic excitation was investigated. The present study (an extension of the work of Wilkinson and Malik) is focused on the effect of pulsed point suction on flow instability and transition, and consequently, on the classical stationary vortical flow pattern.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1989; NASA(American Societ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...