ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 42.75
  • Aerodynamics
  • Aircraft Design, Testing and Performance
  • 1990-1994  (131)
  • 1980-1984  (36)
  • 1950-1954  (144)
  • 1945-1949  (309)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 18 (1994), S. 415-432 
    ISSN: 0271-2091
    Keywords: Aerodynamics ; Aerodynamic design ; Inverse problems ; Body shaping ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The axial singularity inverse method for designing bodies of revolution has been improved by using higher-order doublet elements. The performance of the method for various element orders and other solution parameters is presented in detail. The results indicate that the method is generally more robust, less sensitive to insets and has a better-conditioned coefficient matrix compared with the source method of the same order. The condition number of the matrix is shown to increase with the thickness of the body, the order of the method, the number of elements and the degree of stretching of the node distribution. In general, good performance is attained for most bodies even with ƒr as low as 2 by using 10-12 second-order doublet elements with insets greater than 0.02L from rounded ends. Increasing the insets to 0.06L appears to improve the accuracy of the method for most bodies but slows its convergence.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Originally developed as part of the Aircraft Energy Efficiency Program in the 1970's, winglets are now used by long-ranging aircraft as well as business jets and smaller planes. The winglet is an upturned wingtip, a lifting surface designed to operate in the wingtip "vortex," a whirlpool of air at an airplane's wingtips. It takes advantage of the turbulent vortex flow by producing forward thrust. This reduces drag and improves fuel efficiency. After McDonnell Douglas conducted wind tunnel tests of winglets in 1978-79, the technology was incorporated into the MD-11, their large payload, long range airplane. There are now more than 100 MD-11s in service.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1994; 90-91; NASA-NP-214
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: A NASA report detailing a wind tunnel investigation of a variable camber and twist could effectively reduce drag, thus improving performance. The resulting VooDoo fin is made of composite materials, has a rigid internal spar and a flexible polymer exterior coating. It is computer-designed and exceptionally durable.
    Keywords: Aerodynamics
    Type: Spinoff 1994; 79; NASA-NP-214
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Any aircraft preliminary design study requires a structural model of the proposed configuration. The model must be capable of estimating the structural weight of a given configuration, and of predicting the deflections which will result from foreseen flight and ground loads. The present work develops such a model for the proposed Oblique All Wing airplane. The model is based on preliminary structural work done by Jack Williams and Peter Rudolph at Mdng, and is encoded in a FORTRAN program. As a stand-alone application, the program can calculate the weight CG location, and several types of structural deflections; used in conjunction with an aerodynamics model, the program can be used for mission analysis or sizing studies.
    Keywords: Aerodynamics
    Type: NASA-CR-202164 , NAS 1.26:202164
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.
    Keywords: Aerodynamics
    Type: OTN-035236 , OTN-BIBL-AGARD-AR-303-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-05
    Description: A new eddy current probe developed at NASA Langley Research Center has been used to detect small cracks at rivets in aircraft lap splices [1]. The device has earlier been used to detect isolated fatigue cracks with a minimum detectable flaw size of roughly 1/2 to 1/3 the diameter of the probe [2]. The present work shows that the detectable flaw size for cracks originating at rivets can be greatly improved upon from that of isolated flaws. The use of a rotating probe method combined with spatial filtering has been used to detect 0.18 cm EDM notches, as measured from the rivet shank, with a 1.27 cm diameter probe and to detect flaws buried under the rivet head, down to a length of 0.076 cm, using a 0.32 cm diameter probe. The Self-Nulling Electromagnetic Flaw Detector induces a high density eddy current ring in the sample under test. A ferromagnetic flux focusing lens is incorporated such that in the absence of any inhomogeneities in the material under test only a minimal magnetic field will reach the interior of the probe. A magnetometer (pickup coil) located in the center of the probe therefore registers a null voltage in the absence of material defects. When a fatigue crack or other discontinuity is present in the test article the path of the eddy currents in the material is changed. The magnetic field associated with these eddy currents then enter into the interior of the probe, producing a large output voltage across the pickup coil leads. Further
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: It has been shown previously that hypersonic air-breathing aircraft exhibit strong aeroelastic/aeropropulsive dynamic interactions. To investigate these, especially from the perspective of the vehicle dynamics and control, analytical expressions for key stability derivatives were derived, and an analysis of the dynamics was performed. In this paper, the important issue of model uncertainty, and the appropriate forms for representing this uncertainty, is addressed. It is shown that the methods suggested in the literature for analyzing the robustness of multivariable feedback systems, which as a prerequisite to their application assume particular forms of model uncertainty, can be difficult to apply on real atmospheric flight vehicles. Also, the extent to which available methods are conservative is demonstrated for this class of vehicle dynamics.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-202600 , NAS 1.26:202600 , AIAA Paper 94-3629
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-111571 , NAS 1.15:111571
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are discretized using the newly proposed flux scheme, AUSM+, which will be briefly described herein. Numerical tests on representative 2D inviscid flows are given for demonstration. Finally, extension to 3D is underway, only paced by the availability of the 3D unstructured grid generator.
    Keywords: Aerodynamics
    Type: NASA-TM-106709 , NAS 1.15:106709 , ICOMP-94-19 , E-9071
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A three-dimensional computational fluid dynamics code, RPLUS3D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for glancing shock wave-boundary layer interactions. Both laminar and turbulent flows were studied. A supersonic flow over a wedge mounted on a flat plate was numerically simulated. For the laminar case, the static pressure distribution, velocity vectors, and particle traces on the flat plate were obtained. For turbulent flow, both the Baldwin-Lomax and Chien two-equation turbulent models were used. The static pressure distributions, pitot pressure, and yaw angle profiles were computed. In addition, the velocity vectors and particle traces on the flat plate were also obtained from the computed solution. Overall, the computed results for both laminar and turbulent cases compared very well with the experimentally obtained data.
    Keywords: Aerodynamics
    Type: NASA-TM-106579 , E-8839 , NAS 1.15:106579
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.
    Keywords: Aerodynamics
    Type: NASA-TM-4542 , L-17272 , NAS 1.15:4542
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: The NASA Langley 8-Foot Transonic Pressure Tunnel is a continuous-flow, variable-pressure wind tunnel with control capability to independently vary Mach number, stagnation pressure, stagnation temperature, and humidity. The top and bottom walls of the test section are axially slotted to permit continuous variation of the test section Mach number from 0.2 to 1.2, the slot-width contour provides a gradient-free test section 50 in. long for Mach numbers equal to or greater than 1.0 and 100 in. long for Mach numbers less than 1.0. The stagnation pressure may be varied from 0.25 to 2.0 atm. The tunnel test section has been recalibrated to determine the relationship between the free-stream Mach number and the test chamber reference Mach number. The hardware was the same as that of an earlier calibration in 1972 but the pressure measurement instrumentation available for the recalibration was about an order of magnitude more precise. The principal result of the recalibration was a slightly different schedule of reentry flap settings for Mach numbers from 0.80 to 1.05 than that determined during the 1972 calibration. Detailed tunnel contraction geometry, test section geometry, and limited test section wall boundary layer data are presented.
    Keywords: Aerodynamics
    Type: NASA-TP-3437 , L-17322 , NAS 1.60:3437
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-17
    Description: Results of flow visualization and tail buffett studies conducted on a full-scale production F/A-18 fighter aircraft in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex are presented. Test conditions range between 20 degrees and 40 degrees angle of attack, 16 degrees and -16 degrees side-slip angle, and up to a Mach number of 0.15 (corresponding to a Reynolds number of 12.3 x 10(exp 6) based on mean aerodynamic chord). Flow visualization results include both surface and off-surface techniques that examine forebody, canopy, leading-edge extension, and wing flow fields. Unsteady pressures measured at 96 locations on the port tail fin are used to determine the effect of a removable leading-edge extension fence on tail buffet loads at high angle of attack. Analyses and comparisons include tail fin bending moment and wave velocities on the tail surface. Repeatability and scaling issues are assessed through comparison with measurements from previous full-scale tests and several small-scales tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: May 24, 1994 - May 26, 1994; Ottawa; Canada|May 31, 1994; Medley, Alberta; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-17
    Description: A numerical investigation is carried out to determine the magnitude of wake radiation for a proposed Venus composition probe. One of the scientific goals of the mission is to determine the atmospheric composition of Venus by examining the intensity of scattered sunlight through the wake of the vehicle during planetary entry. In the wake of the vehicle, excited particles generated in the bow shock and boundary layers absorb and emit radiation. Thus, the purpose of this study is to determine if the radiation sensor will be able to sense the incoming solar radiative flux relative to the radiative flux generated in the wake. During portions of the entry trajectory the incident surface heat flux will be high enough to produce significant ablation. Ablation products such as CN are known to be strong radiators. Also, the ablation will be driven by strong radiation emanating from the bow shock. Thus, radiation and ablation will be coupled into the Navier-Stokes flow solutions.
    Keywords: Aerodynamics
    Type: AIAA 29th Thermophysics Conference; Jun 19, 1995 - Jun 22, 1995; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-18
    Description: Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: 29th AIAA Thermophysics Conference; Jun 19, 1995 - Jun 22, 1995; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The ability to control the extent of laminar flow on swept wings at supersonic speeds may be a critical element in developing the enabling technology for a High Speed Civil Transport (HSCT). Laminar boundary layers are less resistive to forward flight than their turbulent counterparts, thus the farther downstream that transition from laminar to turbulent flow in the wing boundary layer is extended can be of significant economic impact. Due to the complex processes involved experimental studies of boundary layer stability and transition are needed, and these are performed in "quiet" wind tunnels capable of simulating the low-disturbance environment of free flight. At Ames, a wind tunnel has been built to operate at flow conditions which match those of the HSCT laminar flow flight demonstration 'aircraft, the F-16XL, i.e. at a Mach number of 1.6 and a Reynolds number range of 1 to 3 million per foot. This will allow detailed studies of the attachment line and crossflow on the leading edge area of the highly swept wing. Also, use of suction as a means of control of transition due to crossflow and attachment line instabilities can be studied. Topics covered include: test operating conditions required; design requirements to efficiently make use of the existing infrastructure; development of an injector drive system using a small pilot facility; plenum chamber design; use of computational tools for tunnel and model design; and early operational results.
    Keywords: Aerodynamics
    Type: Aerospace Ground Test Facilities and Flight Testing XXIX Short Course; Apr 25, 1994 - May 05, 1994; Tullahoma, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-17
    Description: NASA Ames Research Center is pursuing the development of SOFIA, the Stratospheric Observatory For Infrared Astronomy. SOFIA will consist of a 2.5 meter telescope mounted aft of the wing of a Boeing 747 aircraft. Since a large portion of the infrared spectrum is not visible at ground level due to absorption by water vapor in the atmosphere below 40,000 feet, it is highly desirable to make observations above this altitude. SOFIA will provide the opportunity for astronomers to conduct high-altitude research for extended periods of time. Current study is focused on wind tunnel testing for the open cavity. If not controlled, air would create resonance and damage the telescope. For this reason, SOFIA will design a boundary layer control device to achieve laminar flow over the cavity. This also provides a clearer flow for seeing, thus improving resolution on infrared sources. Other effects being tested in the wind tunnel are aerodynamic torque loads on the telescope, and flutter loads on the tail.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-17
    Description: Experimental results for a two-dimensional separated turbulent boundary layer behind a backward facing step for five different Reynolds numbers are reported. Results are presented in the form of tables, graphs and a floppy disk for an easy access of the data. Reynolds number based on the step height was varied by changing the reference velocity upstream of the step, U(sub o), and the step height, h. Hot-wire measurement techniques were used to measure three Reynolds stresses and four triple-velocity correlations. In addition, surface pressure and skin friction coefficients were measured. All hot-wire measurements were acquired in a measuring domain which excluded recirculating flow region due to the directional insensitivity of hot-wires. The downstream extent of the domain from the step was 51 h for the largest and I 14h for the smallest step height. This significant downstream length permitted extensive study of the flow recovery. Prediction of perturbed flows and their recovery is particularly attractive for popular turbulence models since variations of turbulence length and time scales and flow interactions in different regions are generally inadequately predicted. The data indicate that the flow in the free shear layer region behaves like the plane mixing layer up to about 2/3 of the mean reattachment length when the flow interaction with the wall commences the flow recovery to that of an ordinary turbulent boundary layer structure. These changes of the flow do not occur abruptly with the change of boundary conditions. A reattachment region represents a transitional region where the flow undergoes the most dramatic adjustments to the new boundary conditions. Large eddies, created in the upstream free-shear layer region, are being torn, recirculated, reentrained back into the main stream interacting with the incoming flow structure. It is foreseeable that it is quite difficult to describe the physics of this region in a rational and quantitative manner other than statistical. Downstream of the reattachment point the flow recovers at different rates near the wall, in the newly developing internal boundary layer, and in the outer part of the flow. It appears that Reynolds stresses do not fully recover up to the longest recovery length of 114 h.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-17
    Description: Tail buffet studies were conducted on a full-scale, production, F/A-18 fighter aircraft in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center at Moffett Field, California. Tail buffet data were acquired over an angle-of-attack range of +20 deg to +40 deg, a side-slip range of -16 deg to + 16 deg, and at wind speeds up to 100 knots. The maximum speed corresponds to a Reynolds number of l2.3 x l0(exp 6) based on mean aerodynamic chord and a Mach number of 0. 15. The port, vertical tail fin was instrumented with ninety-six surface-pressure transducers, arranged in six by eight arrays, on each side of the fin. ne aircraft was also equipped with a removable Leading-Edge Extension (LEX) fence whose purpose is to reduce tail-buffet loads. Current analysis methods for the unsteady aerodynamic pressures and loads are described. Only results for the zero side-slip condition are to be presented, both with and without the LEX fence. Results of the time-averaged, power-spectral analysis are presented for the tail fin bending moments which are derived from the integrated pressure field. Local wave velocities on the tail surfaces are calculated from pressure correlations. It was found that the LEX fence significantly reduces the magnitude of the root-mean-square pressures and bending moments. Scaling and repeatability issues are addressed by comparing the present full scale results for pressures at the 60%-span and 45%-chord location with previous full-scale F/A-18 tail-buffet test in the 80- by 120- Foot Wind Tunnel, and with several small-scale tests. The comparisons show that the tail buffet frequency scales very well with tail chord and free-stream velocity, and that there is good agreement with the previous full-scale test. Root-mean-square pressures and power spectra do not scale as well as the frequency results. Addition of a LEX fence caused tail-buffet loads to be reduced at all model scales.
    Keywords: Aerodynamics
    Type: SAE Aerospace Atlantic Conference; Apr 18, 1994 - Apr 22, 1994; Dayton, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-17
    Description: A small scale wind tunnel test of a realistic fighter configuration has been completed in NASA Ames' 7'x10' wind tunnel. This test was part of the Fighter Lift and Control (FLAC) program, a joint NASA - USAF research program, involving small and large-scale wind-tunnel tests and computational analysis of unique lift augmentation and control devices. The goal of this program is to enhance the maneuver and control capability of next-generation Air Force multi-role fighter aircraft with low-observables geometries. The principal objective of this test was to determine the effectiveness of passive boundary layer control devices at increasing L/D at sustained maneuver lift coefficients. Vortex generators (VGs) were used to energize the boundary layer to prevent or delay separation. Corotating vanes, counter-rotating vanes, and Wheeler Wishbone VGs were used in the vicinity of the leading and trailing edge flap hinge lines. Principle test parameters were leading and trailing edge flap deflections, and location, size, spacing, and orientation for each VG type. Gurney flaps were also tested. Data gathered include balance force and moment data, surface pressures, and flow visualization for characterizing flow behavior and locating separation lines. Results were quite different for the two best flap configurations tested. All VG types tested showed improvement (up to 5%) in maneuver L/D with flaps at LE=20 degrees, TE=0 degrees. The same VGs degraded performance, in all but a few cases, with flaps at LE=15 degrees, TE=10 degrees.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Aerospace Atlantic; Apr 19, 1994 - Apr 21, 1994; Dayton, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-17
    Description: One of the goals of NASA's High Alpha Technology Program is to provide flight-validated design methods for the high-angle-of-attack regime. This is an integrated effort utilizing computational simulations, wind tunnel experiments, and flight tests using the F-18 High Alpha Research Vehicle (HARV). The dominant physics of the aircraft flows in the high alpha regime changes as the angle of attack is increased. At moderate angle of attack the flow is characterized by boundary layer separation and the formation of tight vortices. As the angle of attack is increased, these vortices break down producing unsteady wakes. With further increase in angle of attack, the, vortex breakdown moves progressively upstream until the entire flowfield becomes dominated by the unsteady wake. Previous computational work has demonstrated the ability to simulate flows about the F-18 HARV in the medium-to-high angle of attack range, where the flowfield is characterized by the vortex formation and subsequent breakdown. This paper extends the previous computations to include conditions of 45 degree angle of attack where the flowfield becomes dominated by the unsteady wake shed from the Leading Edge Extension (LEX), and regions of laminar and transitional flow appear on the fuselage forebody. A more complete surface geometry is utilized, which includes the features of the engine nacelle, inlet diffuser, and the boundary layer diverter duct. A volume grid sensitivity study was also performed to extend the accuracy of the results, most notably in the prediction of the LEX vortex breakdown position. This paper includes comparisons of computational results with both in-flight surface pressure measurements, and flow visualizations of the surface and off-surface particle trajectories.
    Keywords: Aircraft Design, Testing and Performance
    Type: 4th NASA High Alpha Conference/Workshop; Jul 12, 1994 - Jul 14, 1994; Edwards, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-17
    Description: The recent resurgence of interest in utilizing laminar flow on aircraft surfaces for reduction in skin friction drag has generated a considerable amount of research in natural laminar flow (NLF) and hybrid laminar flow control (HLFC) on transonic aircraft wings. This research has focused primarily on airfoil design and understanding transition behavior with little concern for the surface imperfections and manufacturing variations inherent to most production aircraft. In order for laminar flow to find wide-spread use on production aircraft, techniques for constructing the wings must be found such that the large surface imperfections present in the leading edge region of current aircraft do not occur. Toward this end, a modification to existing leading edge construction techniques was devised such that the resulting surface did not contain large gaps and steps as are common on current production aircraft of this class. A lowspeed experiment was first conducted on a simulation of the surface that would result from this construction technique. Preston tube measurements of the boundary layer downstream of the simulated joint and flow visualization using sublimation chemicals validated the literature on the effects of steps on a laminar boundary layer. These results also indicated that the construction technique was indeed compatible with laminar flow. In order to fully validate the compatibility of this construction technique with laminar flow, thus proving that it is possible to build wings that are smooth enough to be used on business jets and light transports in a manner compatible with laminar flow, a flight experiment is being conducted. In this experiment Mach number and Reynolds number will be matched in a real flight environment. The experiment is being conducted using the NASA Dryden F-104 Flight Test Fixture (FTF). The FTF is a low aspect ratio ventral fin mounted beneath an F-104G research aircraft. A new nose shape was designed and constructed for this experiment. This nose shape provides an accelerating pressure gradient in the leading edge region. By flying the aircraft at appropriate Mach numbers and altitudes, this nose shape simulates the leading edge region of a laminar flow wing for a business jet or light transport. Manufactured into the nose shape is a spanwise slot located approximately four inches downstream of the leading edge. The slot, which is an inch wide and one-eighth of an inch deep allows the simulation of surface imperfections, such as gaps and steps at skin joints, which will occur on aircraft using this new construction technique. By placing strips of aluminum of various sizes and shapes in the slot, the effect on the boundary layer of different sizes and shapes of steps and gaps will be examined. It is planned to use five different configurations, differing primarily in the size and number of gaps. Downstream of the slot, the state of the boundary layer is determined using hot film gages and Stanton gages. Agreement between these two very different techniques of measuring boundary layer properties is considered important to being able to state with confidence the effects on the boundary layer of the simulated manufacturing imperfections. To date, the aircraft has not flown. First flights of the aircraft are on schedule to begin October 4, 1993. Low-speed, preliminary experiments at matching Reynolds numbers have been completed.
    Keywords: Aerodynamics
    Type: AIAA 6th Biennial Flight Test Conference; Jun 20, 1994 - Jun 23, 1994; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.
    Keywords: Aircraft Design, Testing and Performance
    Type: H-2000 , AIAA Paper 94-3359 , Joint Propulsion; Jun 27, 1994 - Jun 29, 1994; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: Available redundancy among aircraft control surfaces allows for effective wing camber modifications. As shown in the past, this fact can be used to improve aircraft performance. To date, however, algorithm developments for in-flight camber optimization have been limited. This paper presents a perturbational approach for cruise optimization through in-flight camber adaptation. The method uses, as a performance index, an indirect measurement of the instantaneous net thrust. As such, the actual performance improvement comes from the integrated effects of airframe and engine. The algorithm, whose design and robustness properties are discussed, is demonstrated on the NASA Dryden B-720 flight simulator.
    Keywords: Aerodynamics
    Type: H-1998 , Automatic Control in Aerospace; 35-40|Aerospace Control; Sep 12, 1994 - Sep 16, 1994; Palo Alto, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: Equivalent plate modeling techniques based on Ritz analysis with simple polynomials prove to be efficient tools for structural modeling of wings in the preliminary design stage. Accuracy problems are encountered, however, when these models are used to obtain finite difference behavior sensitivities with respect to planform shape. The accuracy problems are associated with the poor numerical conditioning of static and eigenvalue equations. As higher-order polynomials are being used to Improve the analysis itself, the more sensitive is the finite difference derivative to the step size used. This article describes a formulation of wing equivalent plate modeling in which it is simple to obtain analytic, explicit expressions for stiffness and mass matrix elements without the need to perform numerical integration. This formulation leads naturally to analytic expressions for the derivatives of displacements, stresses, and natural frequencies with respect to shape design variables. This article examines the accuracy of finite difference derivatives compared with the analytic derivatives, and shows that In some cases it is impossible to obtain any information of value by finite differences. Analytic sensitivities, in this case, are still sufficiently accurate for design optimization.
    Keywords: Aircraft Design, Testing and Performance
    Type: Journal of Aircraft; 31; 4; 961-969
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: A passive vibration reduction device in which the conventional main rotor blade pitch link is replaced by a spring/damper element is investigated using a comprehensive rotorcraft analysis code. A case study is conducted for a modern articulated helicopter main rotor. Correlation of vibratory pitch link loads with wind tunnel test data is satisfactory for lower harmonics. Inclusion of unsteady aerodynamics had little effect on the correlation. In the absence of pushrod damping, reduction in pushrod stiffness from the baseline value had an adverse effect on vibratory hub loads in forward flight. However, pushrod damping in combination with reduced pushrod stiffness resulted in modest improvements in fixed and rotating system hub loads.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-112911 , NAS 1.15:112911 , Annual Forum of the American Helicopter Society; May 11, 1994 - May 13, 1994; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-18
    Description: Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.
    Keywords: Aircraft Design, Testing and Performance
    Type: ASME Symposium on Industrial Applications of Parallel Computing; Nov 12, 1995 - Nov 17, 1995; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-18
    Description: A highly-instrumented UH-60A aircraft was tested at NASA-Ames Research Center from August 1993 to February 1994 obtaining an extensive data base for level flight, maneuvers, acoustics (both with respect to ground microphone arrays and inflight microphones), and flight dynamics. A majority of the data obtained are now in an electronic data base, however, only a small fraction of the data have been examined. The proposed paper will examine the issue of hovering steadiness in more detail. In particular, a single set of data obtained during ground acoustic testing may provide considerable insight as the wind speeds were measured at a hover height of 250 feet and the aircraft was positioned in 15 deg. steps in heading from 0 to 180 deg. Also, hover housekeeping data were obtained for many of the 31 flights and these will also allow a characterization of the unsteadiness. The variation in section lift will be examined in terms of the induced flow angle variation and this will be related to possible physical explanations.
    Keywords: Aerodynamics
    Type: AHS 51st Annual Forum and Technology Display; May 09, 1995 - May 11, 1995; Fort Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-18
    Description: Compressibility plays a significant role in the development of separation on airfoils experiencing unsteady motion, even at moderately compressible free-stream flow velocities. This effect can result in completely changed stall characteristics compared to those observed at incompressible speed, and can dramatically affect techniques used to control separation. There has been a significant effort in recent years directed toward better understanding; of this process, and its impact on possible techniques for control of separation in this complex environment. A review of existing research in this area will be presented, with emphasis on the physical mechanisms that play such an important role in the development of separation on airfoils. The increasing impact of compressibility on the stall process will be discussed as a function of free-stream Mach number, and an analysis of the changing flow physics will be presented. Examples of the effect of compressibility on dynamic stall will be selected from both recent and historical efforts by members of the aerospace community, as well as from the ongoing research program of the present authors. This will include a presentation of a sample of high speed filming of compressible dynamic stall which has recently been created using real-time interferometry.
    Keywords: Aerodynamics
    Type: 33rd AIAA Aerospace Sciences Meeting; Jan 09, 1995 - Jan 12, 1995; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possess much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.
    Keywords: Aircraft Design, Testing and Performance
    Type: 33rd IEEE CDC Meeting; Dec 12, 1994 - Dec 14, 1994; Lake Buena Vista, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-17
    Description: This paper will describe the Airbreathing Hypersonic Research Program at NASA Ames Research Center. A main theme will be the "From Computation Through Flight" research effort. General research areas covered will include systems analysis, aerodynamics and aerothermodynamics, propulsion, materials, and flight research. Illustrative results from each discipline will be presented. The synergism between computational and experimental research will be demonstrated by examples. All examples given will have been published in the open literature.
    Keywords: Aerodynamics
    Type: AIAA Atmospheric Flight Mechanics Conference; Aug 01, 1994 - Aug 03, 1994; Scottsdale, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-17
    Description: A developed method has been applied to calculate accurately the viscous flow about airfoils normal to the free-stream flow. This method has special application to the analysis of tilt rotor aircraft in the evaluation of download. In particular, the flow about an XV-15 airfoil with and without deflected leading and trailing edge flaps at -90 degrees incidence is evaluated. The multi-element aspect of the method provides for the evaluation of slotted flap configurations which may lead to decreased drag. The method solves for turbulent flow at flight Reynolds numbers. The flow about the XV-15 airfoil with and without flap deflections has been calculated and compared with experimental data at a Reynolds number of one million. The comparison between the calculated and measured pressure distributions are very good, thereby, verifying the method. The aerodynamic evaluation of multielement airfoils will be conducted to determine airfoil/flap configurations for reduced airfoil drag. Comparisons between the calculated lift, drag and pitching moment on the airfoil and the airfoil surface pressure will also be presented.
    Keywords: Aerodynamics
    Type: AIAA Aerospace Sciences; Jan 09, 1995 - Jan 12, 1995; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-17
    Description: Steady and unsteady viscous, three-dimensional flowfields are calculated using a thin layer approximation of Navier-Stokes equations in conjunction with Chimera overset grids. The finite-difference numerical scheme uses structured grids and a pentadiagonal flow solver called "OVERFLOW". The configuration of Boeing 747-200 has been chosen as one of configurations to be used as a platform for the SOFIA (Stratospheric Observatory For Infrared Astronomy). Initially, the steady flowfield of the full aircraft is calculated for the clean configuration (without a cavity to house telescope). This solution is then used to start the unsteady flowfield of a configuration containing cavity housing the observation telescope and its peripheral units. Analysis of unsteady flowfield in the cavity and its influence on the tail empennage, as well as the noise due to turbulence and optical quality of the flow are the main focus of this study. For the configuration considered here, the telescope housing cavity is located slightly downstream of the portwing. The entire flow-field is carefully constructed using 45 overset grids and consists of nearly 4 million grid points. All the computations axe done at one freestream flow condition of M(sub infinity) = 0.85, alpha = 2.5deg, and a Reynolds of Re = 1.85x10deg
    Keywords: Aerodynamics
    Type: AIAA Aerspace Sciences; Jan 02, 1995 - Jan 12, 1995; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-17
    Description: The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. This investigation used both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, leading edge extensions (LEXs), and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system. The flow visualization experiments were conducted over an angle of attack range from 20deg to 45deg and over a sideslip range from -10deg to 10deg. The results show regions of attached and separated flow on the forebody, canopy, and wings. Additionally, the vortical flow is clearly visible over the leading-edge extensions, canopy, and wings.
    Keywords: Aerodynamics
    Type: SAE Aerospace Atlantic Conference; Apr 18, 1994 - Apr 22, 1994; Dayton, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: It is stated that the aerodynamic forces on the vehicle being aerocaptured are controlled by "altering the angle of attack" and thereby controlling the lift coefficient. Furthermore, the resulting variation of drag coefficient with angle of attack was ignored. The purpose of this Comment is to point out that an aerodynamic control method that is much more effective than the pitch modulation has been studied and utilized during entries for many years. During aerocapture, it is desirable to have a large range of lift coefficients available, while keeping the vehicle's ballistic coefficients constant. This is accomplished by modulating the vehicle's bank angle, i.e., by rolling the vehicle about its velocity vector. By this method, the angle of attack can be held constant (at the trim angle, if desired), and the C(sub D) and the ballistic coefficient remain constant. Furthermore, the vertical component of the normal force vector (essentially the lift) can be varied over its entire range, from maximum positive to maximum negative values. Reaction controls, rather than aerodynamic ones, are usually utilized to change the bank angle of the vehicle, thus requiring the use of fuel. However, the fuel expenditure that is required to change the bank angle is far less than the amount that would have to be used to continuously hold the vehicle at pitch angles that differ significantly from its trim angle of attack. Also, it has been shown that bank angle modulation to vary the lift can enlarge the entry corridor by increasing the entry angle for the undershoot boundary, where both the heating rate and deceleration reach a maximum. Finally, the crew's deceleration tolerance can be increased somewhat when the bank angle is varied, as opposed to the pitch angle. For bank modulation, the deceleration force vector can be kept at a constant angle with respect to the occupants whose tolerance to g loads is highest when the force is applied in a direction normal to the upper torso. The advantages of bank angle variation to modulate the lift vector were recognized long ago, and this method of control was used successfully on the Apollo command module during lunar return' and, more recently, for the Space Shuttle Orbiter.
    Keywords: Aerodynamics
    Type: Journal of Guidance, Control, and Dynamics; 17; 4; 878-878
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-18
    Description: This paper describes a new wing-body design procedure which is based on the Euler equations and a constrained numerical optimization technique. The geometry modification is based on a set of fundamental modes defined on the unit interval. A design example involving a generic wing-body model is presented to demonstrate the usefulness of the design program. It is shown that the use of an Euler solver coupled with a direct numerical optimization procedure is affordable on the current generation of supercomputers.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-18
    Description: Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock-shear-layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.
    Keywords: Aerodynamics
    Type: AIAA Atmospheric Flight Mechanics Conference; Aug 07, 1995 - Aug 09, 1995; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-18
    Description: A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.
    Keywords: Aircraft Design, Testing and Performance
    Type: AHS 51st Annual Forum and Technology Display; May 09, 1995 - May 11, 1995; Fort Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-17
    Description: Three direct numerical simulations of time-evolving turbulent plane wakes with velocity deficit Reynolds numbers of about 2,000 have been simulated using a spectral numerical method with up to 600 x 260 x 160 modes. The initial conditions for the simulations are generated from direct numerical simulations of a turbulent boundary layer (momentum thickness Reynolds number of 670), and varying amounts of additional two- dimensional, forcing. In order to preserve the self-similar flow evolution, the forcing is implemented by multiplying all the two-dimensional modes in the initial condition by a constant factor. In the "natural" case no additional forcing is used; in the "forced" and "heavily forced" cases this factor is 5 and 20, respectively. The wake spreading rate Is increased by factors of 1.7 and 7.1 for the two forced cases. The Reynolds stresses are also increased by a similar or even larger factor. These results indicate that the plane wake is much more sensitive to initial forcing than the plane mixing layer. As in the plane mixing layer, two-dimensional forcing promotes more organized large-scale vortical flow structures and these structures axe sometimes separated by "braid regions" containing streamwise "rib" vortices, unlike in the unforced wake.
    Keywords: Aerodynamics
    Type: Forty-Seventh Annual Meeting of the American Physical Society; Nov 20, 1994 - Nov 22, 1994; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-17
    Description: Large-eddy simulation of the incompressible Navier-Stokes equations has been used to examine the long-time development of initially isotropic turbulence subjected to solid-body rotation. The simulations were carried out using a pseudo-spectral method with 128 x 128 x 512 collocation points in a computational domain that is four times larger along the rotation axis than in the other directions; subgrid-scale motions were parameterized using a spectral eddy viscosity model modified for system rotation. Simulation results show that the correlation length along the rotation am's of velocities orthogonal to the rotation vector exhibits rapid growth while the integral length-scale of velocities aligned with the rotation axis is relatively unaffected by rotation. Examination of the energy spectrum of two-dimensional, two-component motions indicates the presence of an inverse cascade of energy. System rotation also causes an alignment of vorticity along the rotation axis with relatively stronger cyclonic vorticity than anticyclonic. The onset of anisotropic effects are well characterized by Rossby numbers defined in terms of both macroscopic and microscopic quantities.
    Keywords: Aerodynamics
    Type: Forty-Seventh Annual Meeting of the American Physical Society; Nov 20, 1994 - Nov 22, 1994; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-17
    Description: This paper will review the advances made recently in the Navier-Stokes CFD methods to simulate aerodynamics and aeroacoustics of helicopter rotors and rotor-body flows. Although a complete flowfield simulation of full helicopter is currently not feasible with these methods, impressive gains have been made in analyzing individual components of this complex problem in a very detailed manner. The use of the state-of-the-art numerical algorithms in solution methods, in conjunction with powerful supercomputers, like the Cray-2, have enabled noticeable progress to be made in modeling viscous-inviscid interactions, blade-vortex interactions, tip-vortex: simulation and wake effects, as well as high speed impulsive noise in hover and forward flight for isolated rotor blades. This paper will critically evaluate the presently available Euler and Navier-Stokes methods, both finite-difference and finite volume methods using structured and unstructured grids for helicopter applications for accuracy, suitability, and computational efficiency. The review will also include the recent progress made using overset grids to model rotor-body flows. All the material for this review will be drawn from the published material shown below.
    Keywords: Aerodynamics
    Type: International Colloquium on Vortical Flows in the Aeronautics; Oct 12, 1994 - Oct 14, 1994; Aachan; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-17
    Description: In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-10
    Description: This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper -94-4325-CP
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-13
    Description: The performance of a workstation cluster used for the solution of the Reynolds-averaged Navier-Stokes equations is compared with a conventional vector supercomputer architecture. The application simulation of the steady flowfield about a transonic transport was computed using an implicit diagonal scheme in an overset mesh framework. Static load balancing was used, while coarse grain decomposition was achieved by solution of a grid zone per processor. Price/performance ratios are estimated for several scenarios in which such clusters may be utilized.
    Keywords: Aerodynamics
    Type: OAI/NASA Symposium Application of Parallel and Distributed Computing; Apr 18, 1994 - Apr 19, 1994; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: The aerospace industry is currently addressing the problem of integrating manufacturing and design. To address the difficulties associated with using many conventional procedural techniques and algorithms, one feasible way to integrate the two concepts is with the development of an appropriate Knowledge-Based System (KBS). The authors present their reasons for selecting a KBS to integrate design and manufacturing. A methodology for an aircraft producibility assessment is proposed, utilizing a KBS for manufacturing process selection, that addresses both procedural and heuristic aspects of designing and manufacturing of a High Speed Civil Transport (HSCT) wing. A cost model is discussed that would allow system level trades utilizing information describing the material characteristics as well as the manufacturing process selections. Statements of future work conclude the paper.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research for Future Supersonic and Hypersonic Vehicles; Dec 01, 1994; Greensboro, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: The aerospace industry is currently addressing the problem of integrating design and manufacturing. Because of the difficulties associated with using conventional, procedural techniques and algorithms, it is the authors' belief that the only feasible way to integrate the two concepts is with the development of an appropriate Knowledge-Based System (KBS). The authors propose a methodology for an aircraft producibility assessment, including a KBS, that addresses both procedural and heuristic aspects of integrating design and manufacturing of a High Speed Civil Transport (HSCT) wing. The HSCT was chosen as the focus of this investigation since it is a current NASA/aerospace industry initiative full of technological challenges involving many disciplines. The paper gives a brief background of selected previous supersonic transport studies followed by descriptions of key relevant design and manufacturing methodologies. Georgia Tech's Concurrent Engineering/Integrated Product and Process Development methodology is discussed with reference to this proposed conceptual producibility assessment. Evaluation criteria are presented that relate pertinent product and process parameters to overall product producibility. In addition, the authors' integration methodology and reasons for selecting a KBS to integrate design and manufacturing are presented in this paper. Finally, a proposed KBS is given, as well as statements of future work and overall investigation objectives.
    Keywords: Aircraft Design, Testing and Performance
    Type: Aircraft Systems; Sep 01, 1994; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The University of Maryland Advanced Rotorcraft Code (UMARC) is utilized to study the effects of blade design parameters on the aeroelastic stability of an isolated modern bearingless rotor blade in hover. The McDonnell Douglas Advanced Rotor Technology (MDART) Rotor is the baseline rotor investigated. Results indicate that kinematic pitch-lag coupling introduced through the control system geometry and the damping levels of the shear lag dampers strongly affect the hover inplane damping of the baseline rotor blade. Hub precone, pitchcase chordwise stiffness, and blade fundamental torsion frequency have small to moderate influence on the inplane damping, while blade pre-twist and placements of blade fundamental flapwise and chord-wise frequencies have negligible effects. A damperless configuration with a leading edge pitch-link, 15 deg of pitch-link cant angle, and reduced pitch-link stiffness is shown to be stable with an inplane damping level in excess of 2.7 percent critical at the full hover tip speed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-112912 , NAS 1.15:112912 , Aeromechanics Specialists; Jan 19, 1994 - Jan 21, 1994; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: The aim of the present investigation is to characterize the motion of dendrite fragments falling under the influence of gravity in a uniform liquid medium at low Reynolds number. In an earlier study, Zakhem, Weidman and de Groh (1992) reported on the settling speed of model equiaxed dendrite grains released along their axis of symmetry. In this follow-up study uniaxial model dendrite grains were released off-axis to observe and document their motion at different orientations. It was hypothesized that the dendrite models might rotate when released off-axis in which case an attempt would be made to document the ensuing unsteady motion. This latter event turned out to be in fact true: at the small but finite Reynolds numbers that existed, each uniaxial dendrite slowly rotated towards its equilibrium orientation while failing under the influence of gravity. In addition to completing the original goal, we have made use of a beads-on-a shell Stokes flow code to numerically determine the drag coefficient for capsules, i.e.. uniaxial dendrites without arms. The drag on horizontally and vertically falling capsules are reported and compared with measurements.
    Keywords: Aerodynamics
    Type: NASA/CR-94-207107 , NAS 1.26:207107
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: A new technique for structural modeling of airplane wings is presented taking transverse shear effects into account. The kinematic assumptions of first-order shear deformation plate theory In combination with numerical analysis, where simple polynomials are used to define geometry, construction, and displacement approximations, lead to analytical expressions for elements of the stiffness and mass matrices and load vector. Contributions from the cover skins, spar and rib caps, and spar and rib webs are included as well as concentrated springs and concentrated masses. Limitations of wing modeling techniques based on classical plate theory are discussed, and the Improved accuracy of the new equivalent plate technique is demonstrated through comparison with finite element analysis and test results. Expressions for analytical derivatives of stiffness, mass, and load terms with respect to wing shape are given. Based on these, it is possible to obtain analytic sensitivities of displacements, stresses, and natural frequencies with respect to planform shape and depth distribution. This makes the new capability an effective structural tool for wing shape optimization.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Journal; 32; 6; 1278-1288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Supersonic jet plumes were studied using a two-equation turbulence model employing corrections for compressible dissipation and pressure-dilatation. A space-marching procedure based on an upwind numerical scheme was used to solve the governing equations and turbulence transport equations. The computed results indicate that two-equation models employing corrections for compressible dissipation and pressure-dilatation yield improved agreement with the experimental data. In addition, the numerical study demonstrates that the computed results are sensitive to the effect of grid refinement and insensitive to the type of velocity profiles used at the inflow boundary for the cases considered in the present study.
    Keywords: Aerodynamics
    Type: NASA-TM-111555 , NAS 1.15:111555 , AIAA Paper 92-2604 , Applied Aerodynamics Conference; Jun 22, 1992 - Jun 24, 1992; Palo Alto, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Results are obtained for cylindrical leading edges of proposed transatmospheric vehicles by employing a two-dimensional viscous shock-layer code for nonequilibrium gas flows. The accuracy and efficiency of the planar code is verified through detailed comparisons with other predictions. This study includes results for 6-deg half-angle bodies with nose radii ranging from 0.01 to 2.0 ft for both cylindrically blunted wedges and spherically blunted cones (included for comparison). Some results are presented as a ratio of the noncatalytic to the corresponding fully catalytic heating value to illustrate the maximum potential for a heating reduction in dissociated nonequilibrium flows. Generally, this ratio and the individual heating rates are smaller for cylindrically blunted wedges with small nose radii as compared to the spherically blunted cones (for the same nose radius). Therefore, a larger potential exists for heating reduction in cylindrically blunted as compared with the spherically blunted surfaces. However, the results presented at higher altitudes (where the slip effects become important) show that the spherically, blunted nose gives lower stagnation-point heating due to stronger merged shock-layer effects as compared with a cylindrically blunted nose.
    Keywords: Aerodynamics
    Type: NASA-TM-111564 , NAS 1.15:111564 , AIAA Paper 93-2751 , Thermophysics Conference; Jul 06, 1993 - Jul 09, 1993; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: The three-dimensional Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65 degree sweep delta wing at 30 degrees angle of attack. Two large-amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental forces, moments, and roll-angle time histories. The overall agreement is good. Vortex breakdown is present in each case, which causes significant time lags in the vortex breakdown motions relative to the body motions. This behavior strongly influences the dynamic forces and moments.
    Keywords: Aerodynamics
    Type: NASA-TM-111611 , NAS 1.15:111611 , AIAA Paper 94-1884 , AIAA Applied Aerodynamics Conference; Jun 20, 1994 - Jun 22, 1994; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by use of measurements made in the 80- by 120-foot wind tunnel of the lift, rolling-moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling moment distributions are used to determine the accuracy of the vortex-lattice code. It was found that the vortex-lattice method is very reliable as long as the span of the encountering of following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts. The increase in deviation of the computed from the measured loads with size of the following wing is attributed to the increase in distortion of the structure of the vortex wake as it approaches and passes the larger following wings.
    Keywords: Aerodynamics
    Type: NASA-TM-111610 , NAS 1.15:111610 , AIAA-94-1839 , AIAA Applied Aerodynamics Conference; Jun 20, 1994 - Jun 22, 1994; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: The viscous flow field near the surface of a hovering rotor blade was studied for blade twist distributions typical of a till rotor blade and a conventional helicopter rotor blade. Three blade geometries were studied, including a tilt rotor blade twist distribution (baseline), conventional helicopter rotor blade twist distribution, and the baseline twist distribution with 2 deg of precone. The results give insight into the delayed stall phenomenon often observed for highly twisted rotors. Calculations were performed for a high thrust condition near stall using the thin-layer Navier-Stokes CFD code TURNS. Effects of built-in twist on section force coefficients, skin friction, velocities, surface pressures, and boundary layer shape factor are discussed. Although the rotor thrust coefficient was nominally the same for the cases using the two twist distributions, large differences were found in the section in-plane and normal force coefficients. These preliminary results imply that the blade outboard region, rather than the inboard region, provides the majority of the performance advantage of the baseline case over the low twist case. Skin friction, velocities near the blade, and surface pressures for the two twist distributions reveal significant differences in the blade outboard region.
    Keywords: Aerodynamics
    Type: NASA-TM-111741 , NAS 1.15:111741 , Aeromechanics Specialists; Jan 19, 1994 - Jan 21, 1994; San Fransisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: A hybrid method for computing compressible viscous flows is presented. This method divides the computational domain into two zones. In the outer zone, the unsteady full-potential equation (FPE) is solved. In the inner zone, the Navier-Stokes equations are solved. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. The resulting CPU times are less than 50 percent of the required for a full-blown Navier-Stokes analysis. Sample applications of the method to an unswept iced wing at 4 deg and 8 deg angle of attack are presented. Surface pressures are in good agreement with the measurements obtained by Bragg et al. at the University of Illinois.
    Keywords: Aerodynamics
    Type: NASA-CR-201432 , NAS 1.26:201432 , AIAA Paper 94-0489 , AIAA Aerospace Sciences Meeting and Exhibit; Jan 10, 1994 - Jan 13, 1994; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.
    Keywords: Aerodynamics
    Type: NASA-CR-201433 , NAS 1.26:201433 , AIAA Paper 94-1587 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Apr 18, 1994 - Apr 20, 1994; Hilton Head, SC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: A model of the Shuttle Orbiter rarefied-flow aerodynamic force coefficients has been derived from the ratio of flight acceleration measurements. The in-situ, low-frequency (less than 1Hz), low-level (approximately 1 x 10(exp -6) g) acceleration measurements are made during atmospheric re-entry. The experiment equipment designed and used for this task is the High Resolution Accelerometer Package (HiRAP), one of the sensor packages in the Orbiter Experiments Program. To date, 12 HiRAP re-entry mission data sets spanning a period of about 10 years have been processed. The HiRAP-derived aerodynamics model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as function of angle of attack, body-flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle of attack are also presented, along with flight-derived rarefied-flow transition bridging formulae. Comparisons are made between the aerodynamics model, data from the latest Orbiter Operational Aerodynamic Design Data Book, applicable computer simulations, and wind-tunnel data.
    Keywords: Aerodynamics
    Type: NASA-TM-111566 , NAS 1.15:111566 , AIAA Paper 93-3441 , Applied Aerodynamics Conference; Aug 09, 1993 - Aug 11, 1993; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: Generation of significant side forces and yawing moments on an F/A-18 fuselage through tangential slot blowing is analyzed using computational fluid dynamics. The effects of freestream Mach number, jet exit conditions, jet length, and jet location are studied. The effects of over- and under-blowing on force and moment production are analyzed. Non-time-accurate solutions are obtained to determine the steady-state side forces, yawing moments, and surface pressure distributions generated by tangential slot blowing. Time-accurate solutions are obtained to study the force onset time lag of tangential slot blowing. Comparison with available experimental data from full-scale wind tunnel and sub-scale wind tunnel tests are made. This computational analysis complements the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flow field about the isolated F/A-18 forebody. Additionally, it extends the slot-blowing database to transonic maneuvering Mach numbers.
    Keywords: Aerodynamics
    Type: NASA-TM-111696 , NAS 1.15:111696 , AIAA Paper 95-1831 , AIAA Applied Aerodynamics Conference; Jun 20, 1994 - Jun 23, 1994; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.
    Keywords: Aerodynamics
    Type: NASA-CR-202591 , NAS 1.26:202591 , AIAA Paper 94-2576 , Aerospace Ground Testing; Jun 20, 1994 - Jun 23, 1994; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Digital flight records from reported clear-air turbulence incidents are used to determine winds and turbulence, to determine maneuver g loads, and to analyze control problems. Many cases of severe turbulence are found downwind of mountains and thunderstorms where sharp, sudden jolts are associated with vortices in atmospheric waves. Other cases of severe turbulence are round in strong updrafts above thunderstorm buildups that may be undetected by onboard weather radar. An important finding is that there are large maneuvering loads in over half of the reported clear-air turbulence incidents. Maneuvering loads are determined through an analysis of the short-term variations in elevator deflection and aircraft pitch angle. For altitude control in mountain waves the results indicate that small pitch angle changes with proper timing are sufficient to counter variations in vertical wind. For airspeed control in strong mountain waves, however, there is neither the available thrust nor the quickness in engine response necessary to counter the large variations in winds.
    Keywords: Aerodynamics
    Type: NASA-TM-111780 , NAS 1.15:111780 , AIAA Paper 92-4341 , Journal of Aircraft; 31; 4; 753-760|Atmospheric Flight Mechanics; Aug 10, 1992 - Aug 12, 1992; Hilton Head, SC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: The effect of forebody tangential slot blowing on the flowfield about an F/A-18 aircraft is investigated numerically using solutions of the Navier-Stokes equations. Computed solutions are obtained for an aircraft geometry which includes the fuselage, a wing with deflected leading-edge flap, empennage, and a faired-over engine inlet. The computational slot geometry corresponds to that used in full-scale wind-tunnel tests. Solutions are computed using flight test conditions and jet mass flow ratios equivalent to wind-tunnel test conditions. The effect of slot location is analyzed by computing two nontime-accurate solutions with a 16-in. slot located 3 in. and 11 in. aft of the nose of the aircraft. These computations resolve the trends observed in the full-scale wind-tunnel test data. The flow aft of the leading-edge extension vortex burst is unsteady. A time-accurate solution is obtained to investigate the flow characteristics aft of the vortex burst, including the effect of blowing on tail buffet.
    Keywords: Aerodynamics
    Type: NASA-TM-111779 , NAS 1.15:111779 , AIAA Paper 93-2962 , Journal of Aircraft; 31; 4; 922-928|Fluid Dynamics, Plasmadynamics, and Lasers Conference; Jul 06, 1993 - Jul 09, 1993; Orlando, Fl; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Floquet eigenanalysis requires a few dominant eigenvalues of the Floquet transition matrix (FTM). Although the QR method is used almost exclusively, it is expensive for such partial eigenanalysis; the operation counts and, thereby, the approximate machine-time grow cubically with the matrix order. Accordingly, for Floquet eigenanalysis, the Arnold-Saad method, a subspace iteration method, is investigated as an alternative to the QR method. The two methods are compared for machine-time efficiency and the residual errors of the corresponding eigenpairs. The Arnolds-Saad method takes much less machine-time than the QR method with comparable computational reliability and offers promise fpr large-scale Floquet eigenanalysis.
    Keywords: Aerodynamics
    Type: NASA-CR-203147 , NAS 1.26:203147 , Mathl. Comput. Modelling (ISSN 0895-7177); 19; 4-Mar; 69-73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Computed results from UMARC and DART analyses are compared with the blade bending moments and vibratory hub loads data obtained from a full-scale wind tunnel test of the McDonnell Douglas five-bladed advanced bearingless rotor. The 5 per-rev vibratory hub loads data are corrected using results from a dynamic calibration of the rotor balance. The comparison between UMARC computed blade bending moments at different flight conditions are poor to fair, while DART results are fair to good. Using the free wake module, UMARC adequately computes the 5P vibratory hub loads for this rotor, capturing both magnitude and variations with forward speed. DART employs a uniform inflow wake model and does not adequately compute the 5P vibratory hub loads for this rotor.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-111887 , NAS 1.15:111887 , American Helicopter Society Annual Forum; May 11, 1994 - May 13, 1994; Washinton, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: A 3-D compressible Navier-Stokes solver has been developed and applied to 3-D viscous flow over clean and iced wings. This method uses a third order accurate finite volume scheme with flux difference splitting to model the inviscid fluxes, and second order accurate symmetric differences to model the viscous terms. The effects of turbulence are modeled using a Kappa-epsilon model. In the vicinity of the sold walls the kappa and epsilon values are modeled using Gorski's algebraic model. Sampling results are presented for surface pressure distributions, for untapered swept clean and iced wings made of NACA 0012 airfoil sections. The leading edge of these sections is modified using a simulated ice shape. Comparisons with experimental data are given.
    Keywords: Aerodynamics
    Type: NASA-CR-202616 , NAS 1.26:202616 , AIAA Paper 94-0485 , Aerospace Sciences; Jan 10, 1994 - Jan 13, 1994; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: The design of the high lift system has a major impact on the performance of an aircraft yet our understanding of the physics of this flow is still weak. Flow features include interactions between the wakes shed from the upstream elements and the pressure gradients and boundary layers of the downstream elements. Interaction of the turbulent wake of the main element and the flap can cause (1) separation of the flap boundary layer or (2) 'bursting' of the main airfoil wake. Although the first factor is at least partially understood, even the qualitative aspects of (2) remain to be determined. In order to study these phenomena at Reynolds numbers approaching those of flight, a thick high Reynolds number wake is created using a 24 foot flat plate in the long rectangular test section of a 4 ft. by 6 ft subsonic wind tunnel. The design and construction of this test section, plate, and accompanying flap is described. Results obtained in a quarter-scale model were used for design purposes and are also described. Construction of the full scale facility is complete and preliminary results are presented.
    Keywords: Aerodynamics
    Type: NASA-CR-203019 , NAS 1.26:203019 , AIAA Paper 94-2613 , Aerospace Ground Testing; Jun 20, 1994 - Jun 23, 1994; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Interest has increased recently in the thrust-producing capability of rotors at very high collective pitch angles. An early reference noted this behaviour in rotors and offered alternative models for section lift characteristics to explain it. The same phenomenon was coincidentally noted and used in a propeller code, resulting in very good correlation with static thrust data. The proposed paper will present experimental data demonstrating the pronounced persistence of thrust for propellers at increasing collective pitch angles. Comparisons with blade element/momentum theory will be made. These results are expected to point to the need to define (ultimately to explain) aerodynamic lift and drag behaviour in a rotating environment. Experimental measurements made by the U.S. Army Aeroflightdynamics Directorate at the Ames Research Center have shown that locally measured normal force coefficients along the span of a highly twisted rotor blade continue to increase at high values of collective pitch. In some cases these coefficients exceed expected values for the same type of airfoil tested under two dimensional conditions. To date no one to the authors' knowledge has defined the variation of C(n) with pitch for very high angles (to 45 deg) in a rotating environment and for a blade of reasonably high aspect ratio; however, total propeller thrust measurements support the idea that stalling does not occur in the same way as on a wing. This paper will present experimental data in the form of surface pressure distributions as well as flow visualization (microtufts) to explore the aerodynamic behavior of the rotating airfoil at high values of blade incidence. This paper also reviews experimental evidence and infers some high lift coefficient behavior from it. Comparisons between predicted thrust, utilizing modified airfoil characteristics and a blade element model, and measured thrust for both rotors and propellers that cover the extremes of collective pitch are shown and discussed.
    Keywords: Aerodynamics
    Type: AGARD Aerodynamic Conference; Oct 01, 1994; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-31
    Description: Effective design of the High Speed Civil Transport requires the systematic application of design resources throughout a product's life-cycle. Information obtained from the use of these resources is used for the decision-making processes of Concurrent Engineering. Integrated computing environments facilitate the acquisition, organization, and use of required information. State-of-the-art computing technologies provide the basis for the Intelligent Multi-disciplinary Aircraft Generation Environment (IMAGE) described in this paper. IMAGE builds upon existing agent technologies by adding a new component called a model. With the addition of a model, the agent can provide accountable resource utilization in the presence of increasing design fidelity. The development of a zeroth-order agent is used to illustrate agent fundamentals. Using a CATIA(TM)-based agent from previous work, a High Speed Civil Transport visualization system linking CATIA, FLOPS, and ASTROS will be shown. These examples illustrate the important role of the agent technologies used to implement IMAGE, and together they demonstrate that IMAGE can provide an integrated computing environment for the design of the High Speed Civil Transport.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Langley Research Center has done extensive research into the effectiveness of tail boom strakes on conventional tail rotor helicopters. (A strake is a "spoiler" whose purpose is to alter the airflow around an aerodynamic body.) By placing strakes on a tail boom, the air loading can be changed, thrust and power requirements of the tail rotor can be reduced, and helicopter low speed flight handling qualities are improved. This research led to the incorporation of tail boom strakes on three production-type commercial helicopters manufactured by McDonnell Douglas Helicopter Company.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1993; 92-93; NASA-NP-211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.
    Keywords: Aerodynamics
    Type: NASA-CR-200793 , NAS 1.26:200793
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
    Keywords: Aerodynamics
    Type: NASA-CR-202403 , NAS 1.26: 202403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-28
    Description: An experiment has been performed to investigate the far-field hover acoustic characteristics of the XV-15 aircraft with advanced technology blades (ATB). An extensive, high-quality, far-field acoustics data base was obtained for a rotor tip speed range of 645-771 ft/s. A 12-microphone, 500-ft radius semicircular array combined with two aircraft headings provided acoustic data over the full 360-deg azimuth about the aircraft with a resolution of 15 deg. Altitude variations provided data from near in-plane to 45 deg below the rotor tip path plane. Acoustic directivity characteristics in the lower hemisphere are explored through pressure time histories, narrow-band spectra, and contour plots. Directivity patterns were found to vary greatly with azimuth angle, especially in the forward quadrants. Sharp positive pressure pulses typical of blade-vortex interactions were found to propagate aft of the aircraft and were most intense at 45 deg below the rotor plane. Modest overall sound pressure levels were measured near in-plane indicating that thickness noise is not a major problem for this aircraft when operating in the hover mode with ATB. Rotor tip speed reductions reduced the average overall sound pressure level (dB (0.0002 dyne/cm(exp 2)) by nearly 8 dB in-plane, and 12.6 deg below the rotor plane.
    Keywords: Aerodynamics
    Type: NASA-TM-111578 , NAS 1.15:111578
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-02
    Description: The National Aeronautics and Space Administration (NASA) is conducting research with the goal of enabling safe improvements in the capacity of the nation's air transportation system. The wake-vortex upset hazard is an important factor in establishing the minimum safe spacing between aircraft during landing and take-off operations, thus impacting airport capacity. A batch simulation study was conducted to assess the sensitivity of various safe landing criteria in the development of an acceptable wake encounter boundary. A baseline six-degree-of-freedom simulation of a B737-100 airplane was modified to include a wake model and the vortex-induced forces and moments. The guidance and control input for the airplane was provided by an auto-land system. The wake strength and encounter geometry were varied. A sensitivity study was also conducted to assess the effects of encounter modeling methods and accuracy.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-28
    Description: The accuracy of various methods used to predict tilt rotor hover performance was established by comparing predictions with large-scale experimental data. A wide range of analytical approaches were examined. Blade lift was predicted with a lifting line analysis, two lifting surface analyses, and by a finite-difference solution of the full potential equation. Blade profile drag was predicted with two different types of airfoil tables and an integral boundary layer analysis. The inflow at the rotor was predicted using momentum theory, two types of prescribed wakes, and two free wake analyses. All of the analyses were accurate at moderate thrust coefficients. The accuracy of the analyses at high thrust coefficients was dependent upon their treatment of high sectional angles of attack on the inboard sections of the rotor blade. The analyses which allowed sectional lift coefficients on the inboard stations of the blade to exceed the maximum observed in two-dimensional wind tunnel tests provided better accuracy at high thrust coefficients than those which limited lift to the maximum two-dimensional value. These results provide tilt rotor aircraft designers guidance on which analytical approaches provide the best results, and the level of accuracy which can be expected from the best analyses.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-104023 , A-93083 , NAS 1.15:104023 , ARC-E-DAA-TN27262
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-17
    Description: This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Design Program; 101-111; EP-309
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-16
    Description: Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Design Program; 26-37; EP-309
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-10
    Description: The large-eddy simulation of the spatial evolution of a stationary crossflow vortex packet in a three-dimensional boundary layer was performed. Although a coarse grid was used (compared to that required by a direct numerical simulation) the essential features of the disturbance evolution, such as the spanwise disturbance spreading and the vortex rollover, were captured accurately. The eddy viscosity became significant only in the late nonlinear stages of the simulation.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-10
    Description: A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure data. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing- inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flow- field differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-3041
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-10
    Description: Since mission profiles for airbreathing hypersonic vehicles such as the National Aero-Space Plane include single-stage-to-orbit requirements, real gas effects may become important with respect to engine performance. The effects of the decrease in the ratio of specific heats have been investigated in generic three-dimensional sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane (where gamma=1.22) and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air (where gamma=1.4). In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-0740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-112741 , NAS 1.15:112741 , Computers & Structures (ISSN 0045-7949); 48; 6; 1001-1010
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: The flutter characteristics of the first AGARD standard aeroelastic configuration for dynamic response, Wing 445.6, are studied using an unsteady Navier-Stokes algorithm in order to investigate a previously noted discrepancy between Euler flutter characteristics and the experimental data. The algorithm, which is a three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1), was previously modified for the time-marching, aeroelastic analysis of wings using the unsteady Euler equations. These modifications include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time integration with the governing flow equations. In this paper, the aeroelastic method is extended and evaluated for applications that use the Navier- Stokes aerodynamics. The paper presents a brief description of the aeroelastic method and presents unsteady calculations which verify this method for Navier-Stokes calculations. A linear stability analysis and a time-marching aeroelastic analysis are used to determine the flutter characteristics of the isolated 45 deg. swept-back wing. Effects of fluid viscosity, structural damping, and number of modes in the structural model are investigated. For the linear stability analysis, the unsteady generalized aerodynamic forces of the wing are computed for a range of reduced frequencies using the pulse transfer-function approach. The flutter characteristics of the wing are determined using these unsteady generalized aerodynamic forces in a traditional V-g analysis. This stability analysis is used to determine the flutter characteristics of the wing at free-stream Mach numbers of 0.96 and 1.141 using the generalized aerodynamic forces generated by solving the Euler equations and the Navier-Stokes equations. Time-marching aeroelastic calculations are performed at a free-stream Mach number of 1.141 using the Euler and Navier-Stokes equations to compare with the linear V-g flutter analysis method. The V-g analysis, which is used in conjunction with the time-marching analysis, indicates that the fluid viscosity has a significant effect on the supersonic flutter boundary for this wing while the structural damping and number of modes in the structural model have a lesser effect.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-3476 , AIAA 11th Applied Aerodynamics Conference; Aug 09, 1993 - Aug 11, 1993; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: A computational study was conducted to better understand experimental results obtained from wind tunnel tests of a Mach 4 waverider model and a comparative reference configuration. The experimental results showed that the performance of the reference configuration was slightly better than that of the waverider model. These results contradict waverider design theory, which suggests that a waverider optimized for maximum lift-to-drag should provide better performance than any other non-waverider configuration at a given design point, especially at hypersonic speeds. The computational results showed that the predicted surface pressure values and the integrated lift and drag coefficients from the pressure distributions were much lower for the reference model than for the flat-top model, due to the reference model bottom surface having a slight expansion. The lift-to-drag ratios for the flat-top model were higher due to a relatively low drag for the same amount of lift. These results indicate that the performance advantage of the reference model was due to the shape of the bottom surface and not due to the flat top surface. The results also showed that the reference model exhibited the same shock attachment characteristics as the waverider because the planform shapes were identical. CFD predictions show that the planform shape gives the waverider an advantage in performance over conventional hypersonic vehicles and that altering the bottom surface of a waverider does not cause significant performance degradation.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-2921 , AIAA 24th Fluid Dynamics Conference; Jul 06, 1993 - Jul 09, 1993; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Two computational methods, a surface panel method and an Euler method employing unstructured grid methodology, were used to analyze a subsonic transport aircraft in cruise and high-lift conditions. The computational results were compared with two separate sets of flight data obtained for the cruise and high-lift configurations. For the cruise configuration, the surface pressures obtained by the panel method and the Euler method agreed fairly well with results from flight test. However, for the high-lift configuration considerable differences were observed when the computational surface pressures were compared with the results from high-lift flight test. On the lower surface of all the elements with the exception of the slat, both the panel and Euler methods predicted pressures which were in good agreement with flight data. On the upper surface of all the elements the panel method predicted slightly higher suction compared to the Euler method. On the upper surface of the slat, pressure coefficients obtained by both the Euler and panel methods did not agree with the results of the flight tests. A sensitivity study of the upward deflection of the slat from the 40 deg. flap setting suggested that the differences in the slat deflection between the computational model and the flight configuration could be one of the sources of this discrepancy. The computation time for the implicit version of the Euler code was about 1/3 the time taken by the explicit version though the implicit code required 3 times the memory taken by the explicit version.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-3536 , AIAA Applied Aerodynamics Conference; Aug 09, 1993 - Aug 11, 1993; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Results of calculations obtained using the direct simulation Monte Carlo method for Mach 25 flow over a control surface are presented. The numerical simulations are for a 35-deg compression ramp at a low-density wind-tunnel test condition. Calculations obtained using both two- and three-dimensional solutions are reviewed, and a qualitative comparison is made with the oil flow pictures highlight separation and three-dimensional flow structure.
    Keywords: Aerodynamics
    Type: NASA-TM-111528 , NAS 1.15:111528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high-angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high-angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes ground-based piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-3647 , AIAA Atmospheric Flight Mechanics Conference; Aug 09, 1993 - Aug 11, 1993; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Two new versions of the kappa-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original kappa-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50% of the boundary-layer but changes gradually to the standard kappa-epsilon model (in a kappa- omega formulation) towards the boundary-layer edge. The free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is a variation of the BSL model with the additional ability to account for the transport of the principal turbulent shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear-stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original kappa-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values but show better agreement with experimental data for adverse pressure gradient boundary-layer flows.
    Keywords: Aerodynamics
    Type: NASA-TM-111629 , NAS 1.15:111629 , AIAA Paper 93-2906 , AIAA Fluid Dynamics Conference; Jul 06, 1993 - Jul 09, 1993; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: An efficient approach for simultaneous aerodynamic analysis and design optimization is presented. This approach does not require the performance of many flow analyses at each design optimization step, which can be an expensive procedure. Thus, this approach brings us one step closer to meeting the challenge of incorporating computational fluid dynamic codes into gradient-based optimization techniques for aerodynamic design. An adjoint-variable method is introduced to nullify the effect of the increased number of design variables in the problem formulation. The method has been successfully tested on one-dimensional nozzle flow problems, including a sample problem with a normal shock. Implementations of the above algorithm are also presented that incorporate Newton iterations to secure a high-quality flow solution at the end of the design process. Implementations with iterative flow solvers are possible and will be required for large, multidimensional flow problems.
    Keywords: Aerodynamics
    Type: NASA-CR-201036 , NAS 1.26:201036 , U.S. National Congress on Computational Mechanics; Aug 16, 1993 - Aug 18, 1993; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: This paper presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data (MIMD) parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a High Speed Civil Transport type wing-body configuration.
    Keywords: Aerodynamics
    Type: NASA-TM-111450 , NAS 1.15:111450 , AIAA Paper 94-1487 , AIAA/ASME/ASCE/AHS/ASC 35th Structural, Structural Dynamics, and Materials Conference; Apr 18, 1994 - Apr 20, 1994; Hilton Head, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-10
    Description: The displacement formulation of the finite element method is the most general and most widely used technique for structural analysis of airplane configurations. Modem structural synthesis techniques based on the finite element method have reached a certain maturity in recent years, and large airplane structures can now be optimized with respect to sizing type design variables for many load cases subject to a rich variety of constraints including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3). These structural synthesis capabilities use gradient based nonlinear programming techniques to search for improved designs. For these techniques to be practical a major improvement was required in computational cost of finite element analyses (needed repeatedly in the optimization process). Thus, associated with the progress in structural optimization, a new perspective of structural analysis has emerged, namely, structural analysis specialized for design optimization application, or.what is known as "design oriented structural analysis" (Ref. 4). This discipline includes approximation concepts and methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the optimization of large structural systems (modeled by thousands of degrees of freedom and thousands of design variables) practical and cost effective.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Wind tunnel tests have been conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve by as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.
    Keywords: Aerodynamics
    Type: NASA-CR-203750 , NAS 1.26:203750 , AIAA Paper 93-3513 , Applied Aerodynamics; Aug 09, 1993 - Aug 11, 1993; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-15
    Description: The successful design of a commercial aircraft which is intended to be in direct competition with existing aircraft requires a market analysis to establish design requirements, the development of a concept to achieve those goals. and the ability to economically manufacture the aircraft. It is often the case that an engineer designs system components with only the perspective of a particular discipline. The relationship of that component to the entire system is often a minor consideration. In an effort to highlight the interaction that is necessary during the design process, the students were organized into design/build teams and required to integrate aspects of market analysis, engineering design, production and economics into their concepts. In order to facilitate this process a hypothetical "Aeroworld" was established. Having been furnished relevant demographic and economic data for "Aeroworld". students were given the task of designing and building an aircraft for a specific market while achieving an economically competitive design. Involvement of the team in the evolution of the design from market definition to technical development to manufacturing allowed the students to identify critical issues in the design process and to encounter many of the conflicting requirements which arise in an aerospace systems design.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Design Program; 81-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-15
    Description: Reduced quantities of ozone in the atmosphere allow greater levels of ultraviolet (UV) radiation to reach the earth's surface. The 1992/1993 project goals for the Virginia Tech Senior Design Team were to 1) understand the processes which contribute to stratospheric ozone loss, 2) examine ways to prevent ozone loss, and 3) define the requirements for an implementation vehicle to carry out the prevention scheme. A scheme proposed by R.J. Cicerone, el al late in 1991 was selected because of its supporting research and economic feasibility. This scheme uses hydrocarbon injected into the Antarctic ozone hole to form stable compounds with free chlorine, thus reducing ozone depletion. A study of the hydrocarbon injection requirements determined that 130 aircraft traveling Mach 2.4 at a maximum altitude of 66,000 ft. would provide the most economic approach to preventing ozone loss. Each aircraft would require an 8,000 nm. range and be able to carry 35,000 lbs. of propane. The propane would be stored in a three-tank high pressure system. Modularity and multi-role functionality were selected to be key design features. Missions originate from airports located in South America and Australia.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Design Program; 112-123; EP-309
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-16
    Description: A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 162 (1992), S. 267-277 
    ISSN: 1432-136X
    Keywords: Aerodynamics ; Insect flight ; Body drag ; Drag coefficient ; Lift coefficient ; Honeybee
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Drag forces and lift forces acting on honeybee trunks were measured by using specially built sensitive mechanical balances. Measurements were made on prepared bodies in ‘good’ and in ‘bad’ flight position, with and without legs, at velocities between 0.5 and 5m·s-1 (Reynolds numbers between 4·102 and 4·103) and at angles of attack between-20° and +20°. From the forces drag coefficients and lift coefficients were calculated. The drag coefficient measured with a zero angle of attack was 0.45 at 3≤v≤5m·s-1, 0.6 at 2m·s-1, 0.9 at 1m·s-1 and 1.35 at 0.5m·s-1, thus demonstrating a pronounced effect of Reynolds number on drag. These values are about 2 times lower (better) than those of a “drag disc” with the same diameter and attacked at the same velocity. The drag coefficient (related to constant minimal frontal area) was minimal at zero angle of attack, rising symmetrically to larger (+) and smaller (-) angles of attack in a non-linear fashion. The absolute value is higher and the rise is steeper at lower speeds or Reynolds numbers, but the incremental factors are independent of Reynolds number. For example, the drag coefficient is 1.44±0.05 times higher at an angle of attack of 20° than at one of 0°. On a double-logarithmic scale the slope of the drag versus Reynolds number plot was 1.5: with decreasing Reynolds number the relationship between drag and velocity changes from quadratic (Newton's law) to linear (viscous flow). Trunk drag was not systematically increased by the legs at any velocity or Reynolds number or any angle of attack. The legs appear to shape the trunk “aerodynamically”, to form a relatively low-drag trunk-leg system. The body is able to generate dynamic lift. Highly significant positive linear correlations between lift coefficient and angle of attack were determined for the trunk-leg system in the typical flight position. Lift coefficient was +0.05 at zero angle of attack (possibly attained during very fast flight), +0.1 at 5° (attained during fast flight), +0.25 at +20° (attained during slow flight) and +0.55 at 45° (attained whilst changing over to hovering). Average slope ΔcLΔα was 0.66±0.07, and average profile efficiency was 0.10. Non-wing lift contribution due to body form and banking only accounts for a few percent of body weight during fast flight. A non-wing lift contribution due to the legs has been demonstrated. The legs increase trunk lift by 23–24%. Reynolds number lift effects are present but of no biological significance. Force and power calculations do not support maximum flight speeds substantially higher than approximately 7m · s-1 relative to the ambient air. At this speed body drag attains 35% and body lift 8.4% of the body weight, and parasite power is 5% of the maximum metabolic power.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 427-451 
    ISSN: 0271-2091
    Keywords: Aerodynamics ; Rotor ; Blade-vortex ; Interactions ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite-difference procedure has been developed for the prediction of three-dimensional rotor blade-vortex interactions. The interaction velocity field was obtained through a non-linear superposition of the rotor flow field, computed using the unsteady three-dimensional Euler equations, and the embedded vortex wake flow field, computed using the law of Biot-Savart. In the Euler model, near wake rotational effects were simulated using the surface velocity ‘transpiration’ approach. As a result, a modified surface boundary condition was prescribed and enforced at each time step of the computations to satisfy the tangency boundary condition. For supercritical interactions using an upstream-generated vortex, accuracy of the numerical results were found to rely on the user-specified vortex core radius and vortex strength. For the more general self-generated subcritical interactions, vortex wake trajectories were computed using the lifting-line helicopter/rotor trim code CAMRAD. For these interactions, accuracy of the results were found to rely heavily on the CAMRAD-predicted vortex strength, vortex orientation with respect to the blade, and to a large extent on the user-specified vortex core radius. Results for the one-seventh scale model OLS rotor and for a non-lifting rectangular blade having a NACA0012 section are presented. Comparisons with the experimental windtunnel data are also made.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Venture, a kit airplane designed and manufactured by Questair, is a high performance lightplane with excellent low speed characteristics and enhanced safety due to NASA technology incorporated in its unusual wing design. In 1987, North Carolina State graduate students and Langley Research Center spent seven months researching and analyzing the Venture. The result was a wing modification, improving control and providing more usable lift. The plane subsequently set 10 world speed records.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1992; 59; NASA-NP-201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: The amount of engine power required for a helicopter to hover is an important, but difficult, consideration in helicopter design. The EHPIC program model produces converged, freely distorted wake geometries that generate accurate analysis of wake-induced downwash, allowing good predictions of rotor thrust and power requirements. Continuum Dynamics, Inc., the Small Business Innovation Research (SBIR) company that developed EHPIC, also produces RotorCRAFT, a program for analysis of aerodynamic loading of helicopter blades in forward flight. Both helicopter codes have been licensed to commercial manufacturers.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1992; 122-125; NASA-NP-201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: In high performance boardsailing, demands on the vertical fin or "skeg" often produce "spinout" - when the skeg loses horizontal lift creating a force imbalance and causing the tail of the board to slide sideways. Richard Caldwell, RACE Technology, Inc. used NASA airfoil technology to solve this problem and formed a business based on his solution. After determining that the spinout resulted from air ventilating down the low pressure side of the underwater fin, he adapted the airfoil technology to the design of a short board skeg, which would overcome the problem and lower the drag, resulting in improved performance. He patented his RACE 145 foil section, formed his company and later returned to Langley for additional technical assistance. The company's newest product is a rigid sail that also incorporates NASA technology and has excellent performance. This company no longer exists - product is no longer in production.
    Keywords: Aerodynamics
    Type: Spinoff 1992; 60-61; NAA-NP-201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-02
    Description: This paper presents a summary of results obtained to date in an ongoing cooperative research program between NASA and the U.S. Navy to develop design criteria for high-angle-of-attack nose- down pitch control for combat aircraft. A fundamental design consideration for aircraft incorporating relaxed static stability in pitch is the level of stability which achieves a proper balance between high- speed performance considerations and low-speed requirements for maneuvering at high angles of attack. A comprehensive data base of piloted simulation results was generated for parametric variations of critical parameters affecting nose-down control capability. The results showed a strong correlation of pilot rating to the short-term pitch response for nose-down commands applied at high- angle-of-attack conditions. Using these data, candidate design guidelines and flight demonstration requirements were defined. Full- scale flight testing to validate the research methodology and proposed guidelines is in progress, some preliminary results of which are reviewed.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-17
    Description: The invention concerns a connector, in an aircraft engine, for mounting a ring to a turbine rotor which the ring surrounds. The ring carries propeller blades, and the connector transmits both thrust and torque loads between the ring and the rotor, without significant deformation. However, the connector does deform in order to accommodate differential thermal growth between the ring and the rotor.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-15
    Description: A rotor disk 18 and rotor blade 26 assembly is disclosed having a blade lock 66 which retains the rotor blade against axial movement in an axially extending blade retention slot 58. Various construction details are developed which shield the dead rim region D.sub.d and shift at least a portion of the loads associated with the locking device from the dead rim. In one detailed embodiment, a projection 68 from the live rim D.sub.1 of the disk 18 is adapted by slots 86 to receive blade locks 66.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...