ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (886)
  • Male  (612)
  • American Association for the Advancement of Science (AAAS)  (1,395)
  • Nature Publishing Group
  • 1995-1999  (1,395)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (1,395)
  • Nature Publishing Group
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The metabotropic glutamate receptors (mGluRs) are widely distributed in the brain and play important roles in synaptic plasticity. Here it is shown that some types of mGluRs are activated not only by glutamate but also by extracellular Ca2+ (Ca2+o). A single amino acid residue was found to determine the sensitivity of mGluRs to Ca2+o. One of the receptors, mGluR1alpha, but not its point mutant with reduced sensitivity to Ca2+o, caused morphological changes when transfected into mammalian cells. Thus, the sensing of Ca2+o by mGluRs may be important in cells under physiological condition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kubo, Y -- Miyashita, T -- Murata, Y -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1722-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Tokyo Metropolitan Institute for Neuroscience, Musashidai 2-6, Fuchu, Tokyo 183-8526, Japan. ykubo@tmin.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497291" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/ultrastructure ; Amino Acid Sequence ; Animals ; Binding Sites ; Brain/metabolism ; CHO Cells ; Calcium/*metabolism/pharmacology ; Cell Size ; Cricetinae ; Cyclic AMP/metabolism ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Glutamic Acid/metabolism/pharmacology ; Molecular Sequence Data ; Oocytes ; Point Mutation ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Rats ; Receptors, Metabotropic Glutamate/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; Transfection ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-12-16
    Description: A peripheral membrane protein that is interactive with lymphocytic choriomeningitis virus (LCMV) was purified from cells permissive to infection. Tryptic peptides from this protein were determined to be alpha-dystroglycan (alpha-DG). Several strains of LCMV and other arenaviruses, including Lassa fever virus (LFV), Oliveros, and Mobala, bound to purified alpha-DG protein. Soluble alpha-DG blocked both LCMV and LFV infection. Cells bearing a null mutation of the gene encoding DG were resistant to LCMV infection, and reconstitution of DG expression in null mutant cells restored susceptibility to LCMV infection. Thus, alpha-DG is a cellular receptor for both LCMV and LFV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, W -- Henry, M D -- Borrow, P -- Yamada, H -- Elder, J H -- Ravkov, E V -- Nichol, S T -- Compans, R W -- Campbell, K P -- Oldstone, M B -- AG 00080/AG/NIA NIH HHS/ -- AI 09484/AI/NIAID NIH HHS/ -- DK09712/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2079-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851928" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arenavirus/metabolism ; Cell Line ; Cytoskeletal Proteins/chemistry/genetics/*metabolism ; Dystroglycans ; Lassa virus/*metabolism/physiology ; Lymphocytic choriomeningitis virus/*metabolism/physiology ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Receptors, Virus/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-29
    Description: After the vertebrate lens is induced from head ectoderm, lens-specific genes are expressed. Transcriptional regulation of the lens-specific alphaA-crystallin gene is controlled by an enhancer element, alphaCE2. A gene encoding an alphaCE2-binding protein, L-maf(lens-specific maf), was isolated. L-maf expression is initiated in the lens placode and is restricted to lens cells. The gene product L-Maf regulates the expression of multiple genes expressed in the lens, and ectopic expression of this transcription factor converts chick embryonic ectodermal cells and cultured cells into lens fibers. Thus, vertebrate lens induction and differentiation can be triggered by the activation of L-Maf.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogino, H -- Yasuda, K -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525857" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basic-Leucine Zipper Transcription Factors ; Cell Differentiation ; Cells, Cultured ; Chick Embryo ; Crystallins/genetics ; DNA, Complementary ; DNA-Binding Proteins/chemistry/genetics ; Ectoderm ; Enhancer Elements, Genetic ; Eye Proteins/genetics ; G-Box Binding Factors ; *Gene Expression Regulation, Developmental ; Genes, Reporter ; Intermediate Filament Proteins/genetics ; Lens, Crystalline/*cytology/*embryology/metabolism ; Maf Transcription Factors ; Molecular Sequence Data ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, A -- New York, N.Y. -- Science. 1998 May 1;280(5364):677-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9599145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Female ; *Hylobates ; Male ; *Sexual Behavior, Animal ; *Social Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, A -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):380-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9575083" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthropology, Physical ; Biological Evolution ; Brain/*anatomy & histology ; Computer Simulation ; DNA, Mitochondrial/genetics ; Female ; *Genetics, Population ; *Hinduism/history ; History, Ancient ; Hominidae/*anatomy & histology ; Humans ; India ; Male ; Models, Anatomic ; Y Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: Mice homozygous for a disrupted allele of the mismatch repair gene Pms2 have a mutator phenotype. When this allele is crossed into quasi-monoclonal (QM) mice, which have a very limited B cell repertoire, homozygotes have fewer somatic mutations at the immunoglobulin heavy chain and lambda chain loci than do heterozygotes or wild-type QM mice. That is, mismatch repair seems to contribute to somatic hypermutation rather than stifling it. It is suggested that at immunoglobulin loci in hypermutable B cells, mismatched base pairs are "corrected" according to the newly synthesized DNA strand, thereby fixing incipient mutations instead of eliminating them.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cascalho, M -- Wong, J -- Steinberg, C -- Wabl, M -- 1R01 GM37699/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1207-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0670, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469811" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenosine Triphosphatases ; Alleles ; Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology ; Base Composition ; Base Sequence ; Cloning, Molecular ; Crosses, Genetic ; *DNA Repair ; *DNA Repair Enzymes ; *DNA-Binding Proteins ; Female ; Gene Rearrangement ; *Genes, Immunoglobulin ; Heterozygote ; Immunoglobulin Heavy Chains/chemistry/genetics ; Immunoglobulin Variable Region/chemistry/*genetics ; Immunoglobulin lambda-Chains/chemistry/genetics ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; *Mutation ; Proteins/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-12-05
    Description: Group I introns possess a single active site that catalyzes the two sequential reactions of self-splicing. An RNA comprising the two domains of the Tetrahymena thermophila group I intron catalytic core retains activity, and the 5.0 angstrom crystal structure of this 247-nucleotide ribozyme is now described. Close packing of the two domains forms a shallow cleft capable of binding the short helix that contains the 5' splice site. The helix that provides the binding site for the guanosine substrate deviates significantly from A-form geometry, providing a tight binding pocket. The binding pockets for both the 5' splice site helix and guanosine are formed and oriented in the absence of these substrates. Thus, this large ribozyme is largely preorganized for catalysis, much like a globular protein enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golden, B L -- Gooding, A R -- Podell, E R -- Cech, T R -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):259-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA. bgolden@petunia.colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841391" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Guanosine/metabolism ; Introns ; Magnesium/metabolism ; Manganese/metabolism ; *Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Phosphates/metabolism ; RNA Splicing ; RNA, Catalytic/*chemistry/metabolism ; Tetrahymena thermophila/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: The 2.5 angstrom resolution x-ray crystal structure of the Escherichia coli RNA polymerase (RNAP) alpha subunit amino-terminal domain (alphaNTD), which is necessary and sufficient to dimerize and assemble the other RNAP subunits into a transcriptionally active enzyme and contains all of the sequence elements conserved among eukaryotic alpha homologs, has been determined. The alphaNTD monomer comprises two distinct, flexibly linked domains, only one of which participates in the dimer interface. In the alphaNTD dimer, a pair of helices from one monomer interact with the cognate helices of the other to form an extensive hydrophobic core. All of the determinants for interactions with the other RNAP subunits lie on one face of the alphaNTD dimer. Sequence alignments, combined with secondary-structure predictions, support proposals that a heterodimer of the eukaryotic RNAP subunits related to Saccharomyces cerevisiae Rpb3 and Rpb11 plays the role of the alphaNTD dimer in prokaryotic RNAP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, G -- Darst, S A -- GM19441-01/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):262-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/*chemistry ; Dimerization ; Escherichia coli/*enzymology ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Polymerase II/chemistry ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-02-28
    Description: In the adult mouse, single and compound null mutations in the genes for retinoic acid receptor beta and retinoid X receptors beta and gamma resulted in locomotor defects related to dysfunction of the mesolimbic dopamine signaling pathway. Expression of the D1 and D2 receptors for dopamine was reduced in the ventral striatum of mutant mice, and the response of double null mutant mice to cocaine, which affects dopamine signaling in the mesolimbic system, was blunted. Thus, retinoid receptors are involved in the regulation of brain functions, and retinoic acid signaling defects may contribute to pathologies such as Parkinson's disease and schizophrenia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krezel, W -- Ghyselinck, N -- Samad, T A -- Dupe, V -- Kastner, P -- Borrelli, E -- Chambon, P -- New York, N.Y. -- Science. 1998 Feb 6;279(5352):863-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS, INSERM, Universite Louis Pasteur, College de France, Boite Postale 163, 67404 Illkirch Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9452386" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cocaine/pharmacology ; Corpus Striatum/*metabolism ; Dimerization ; Dopamine/*metabolism ; Locomotion ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; *Motor Activity/drug effects ; Muscle, Skeletal/physiology ; Parkinson Disease/etiology ; Peripheral Nervous System/physiology ; Receptors, Dopamine D1/genetics/metabolism ; Receptors, Dopamine D2/genetics/metabolism ; Receptors, Retinoic Acid/genetics/*physiology ; Retinoid X Receptors ; Schizophrenia/etiology ; *Signal Transduction ; Transcription Factors/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: The development of plant root systems is sensitive to the availability and distribution of nutrients within the soil. For example, lateral roots proliferate preferentially within nitrate (NO3-)-rich soil patches. A NO3--inducible Arabidopsis gene (ANR1), was identified that encodes a member of the MADS box family of transcription factors. Transgenic plants in which ANR1 was repressed had an altered sensitivity to NO3- and no longer responded to NO3--rich zones by lateral root proliferation, indicating that ANR1 is a key determinant of developmental plasticity in Arabidopsis roots.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, H -- Forde, B G -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):407-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, Herts AL5 2JQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9430595" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/growth & development/metabolism ; *Arabidopsis Proteins ; DNA-Binding Proteins/*genetics/physiology ; Gene Expression Regulation, Plant ; *Genes, Plant ; MADS Domain Proteins ; Molecular Sequence Data ; Nitrates/metabolism/*pharmacology ; Plant Proteins/*genetics/physiology ; Plant Roots/genetics/*growth & development/metabolism ; Plants, Genetically Modified ; Transcription Factors/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...