ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (3,404)
  • Aerodynamics
  • FLUID MECHANICS AND HEAT TRANSFER
  • Fluid Mechanics and Thermodynamics
  • Witterung
  • 1995-1999  (3,023)
  • 1950-1954  (1,776)
Collection
Keywords
Publisher
Years
Year
  • 101
    Publication Date: 2017-10-02
    Description: Experimental results are presented for drops and bubbles levitated in a liquid host, with particular attention given to the effect of shape oscillations and capillary waves on the local flow fields. Some preliminary results are also presented on the use of streaming flows for the control of evaporation rate and rotation of electrostatically levitated droplets in 1 g. The results demonstrate the potential for the technological application of acoustic methods to active control of forced convection in microgravity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 497-502; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2017-10-02
    Description: We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 510-515; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2017-10-02
    Description: The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 370-378; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2017-10-02
    Description: The present work is aimed at the experimental studies and numerical modeling of the bubble growth mechanisms of a single bubble attached to a heating surface and of a bubble sliding along an inclined heated plate. Single artificial cavity of 10 microns in diameter was made on the polished Silicon wafer which was electrically heated at the back side in order to control the surface nucleation superheat. Experiments with a sliding bubble were conducted at different inclination angles of the downward facing heated surface for the purpose of studying the effect of magnitude of components of gravity acting parallel to and normal to the heat transfer surface. Information on the bubble shape and size, the bubble induced liquid velocities as well as the surface temperature were obtained using the high speed imaging and hydrogen bubble techniques. Analytical/numerical models were developed to describe the heat transfer through the micro-macro layer underneath and around a bubble formed at a nucleation site. In the micro layer model the capillary and disjoining pressures were included. Evolution of the bubble-liquid interface along with induced liquid motion was modeled. As a follow-up to the studies at normal gravity, experiments are being conducted in the KC-135 aircraft to understand the bubble growth/detachment under low gravity conditions. Experiments have been defined to be performed under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide bubble growth and detachment data at microgravity and will lead to validation of the nucleate boiling heat transfer model developed from the preceding studies conducted at normal and low gravity (KC-135) conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 435-440; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-10-02
    Description: In this work, we study steady and oscillatory thermocapillary and natural convective flows generated by a bubble on a heated solid surface. The interaction between gas and vapor bubbles with the surrounding fluid is of interest for both space and ground-based processing. A combined numerical-experimental approach is adopted here. The temperature field is visualized using Mach-Zehnder and/or Wollaston Prism Interferometry and the flow field is observed by a laser sheet flow visualization technique. A finite element numerical model is developed which solves the transient two-dimensional continuity, momentum, and energy equations and includes the effects of temperature-dependent surface tension and bubble surface deformation. Below the critical Marangoni number, the steady state low-g and 1-g temperature and velocity fields predicted by the finite element model are in excellent agreement with both the visualization experiments in our laboratory and recently published experimental results in the literature. Above the critical Marangoni number, the model predicts an oscillatory flow which is also closely confirmed by experiments. It is shown that the dynamics of the oscillatory flow are directly controlled by the thermal and hydrodynamic interactions brought about by combined natural and thermocapillary convection. Therefore, as numerical simulations show, there are considerable differences between the 1-g and low-g temperature and flow fields at both low and high Marangoni numbers. This has serious implications for both materials processing and fluid management in space.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 88-93; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-02
    Description: The WIND code is a general-purpose, structured, multizone, compressible flow solver that can be used to analyze steady or unsteady flow for a wide range of geometric configurations and over a wide range of flow conditions. WIND is the latest product of the NPARC Alliance, a formal partnership between the NASA Lewis Research Center and the Air Force Arnold Engineering Development Center (AEDC). WIND Version 1.0 was released in February 1998, and Version 2.0 will be released in February 1999. The WIND code represents a merger of the capabilities of three existing computational fluid dynamics codes--NPARC (the original NPARC Alliance flow solver), NXAIR (an Air Force code used primarily for unsteady store separation problems), and NASTD (the primary flow solver at McDonnell Douglas, now part of Boeing).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2018-06-06
    Description: Two CD-ROMs contain experimental ice shapes and code prediction used for validation of LEWICE 2.0 (see NASA/CR-1999-208690, CASI ID 19990021235). The data include ice shapes for both experiment and for LEWICE, all of the input and output files for the LEWICE cases, JPG files of all plots generated, an electronic copy of the text of the validation report, and a Microsoft Excel(R) spreadsheet containing all of the quantitative measurements taken. The LEWICE source code and executable are not contained on the discs.
    Keywords: Aerodynamics
    Type: NASA/CR-1999-208690/SUPPL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: About half of all scientific and commercial spacecraft spin during some part of their mission. Although spinning has many benefits (increasing stability, controlling the location of liquid propellants, and distributing solar heat loads), it also creates problems because a precession (or wobble) motion is unavoidable. For modern spacecraft, by far the largest source of wobble is energy dissipation in the liquid of partially filled tanks. The liquid s energy dissipation cannot, however, be quantified adequately by any ground test. Current analytical models are also inadequate because fundamental data on fluid motion in low gravity are needed to validate them. Consequently, spacecraft attitude-control systems are designed and operated very conservatively. Nonetheless, spacecraft often still perform poorly in orbit, and some have been lost because of a rapid increase of the wobble rate. The Liquid Motion Experiment (LME) was designed to provide spacecraft designers accurate data on the wobble dynamics of spacecraft that contain large quantities of mobile liquids. LME, which was flown on the space shuttle mission STS-84, was built under contract to the NASA Lewis Research Center by the Southwest Research Institute of San Antonio, Texas. Major accomplishments for 1998 include reduction of the flight data and publication of the experimental results. LME was essentially a spin table that created a realistic nutation motion of scale-model tanks containing liquid. Two spherical and two cylindrical transparent tanks were tested simultaneously, and three sets of such tanks were employed to vary liquid viscosity, fill level, and propellant management device (PMD) design. All the tanks were approximately 4.5 in. in diameter. The primary test measurements were the radial and tangential torques exerted on the tanks by the liquid. These torques could not be measured on the ground because of the masking effects of gravity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2018-06-05
    Description: For the last several years, LeRC-HT, a three-dimensional computational fluid dynamics (CFD) computer code for analyzing gas turbine flow and convective heat transfer, has been evolving at the NASA Lewis Research Center. The code is unique in its ability to give a highly detailed representation of the flow field very close to solid surfaces. This is necessary for an accurate representation of fluid heat transfer and viscous shear stresses. The code has been used extensively for both internal cooling passage flows and hot gas path flows--including detailed film cooling calculations, complex tip-clearance gap flows, and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool (at least 35 technical papers have been published relative to the code and its application), but it should be useful for detailed design analysis. We now plan to make this code available to selected users for further evaluation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2018-06-05
    Description: The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is synchronized to the laser pulse rate; this allows it to capture images of seed particle position that are separated by a small increment in time. A crosscorrelation of a particle's position in two consecutive images provides an estimate of flow velocity and direction. Multiple image pairs obtained in rapid succession at a particular flow condition provide enough measurements for statistical significance. PIV provides simultaneous velocity measurements over the entire plane that is illuminated by the light sheet instead of at a single point, as is the case when LDV is used. PIV has a further advantage in that the laser light pulse can be triggered by an external source such as a high-response pressure transducer. This feature will allow PIV to synchronize flow imaging to physical phenomena such as rotating stall or stall precursor waves. We hope that this technique can be used to obtain images of the flow field during and just prior to stall.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2018-06-05
    Description: Recently, refractive secondary solar concentrator systems were developed for solar thermal power and propulsion (ref. 1). Single-crystal oxides-such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO), and sapphire (Al2O3)-are candidate refractive secondary concentrator materials. However, the refractive concentrator system will experience high-temperature thermal cycling in the solar thermal engine during the sun/shade transition of a space mission. The thermal mechanical reliability of these components in severe thermal environments is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions. In this research at the NASA Lewis Research Center, a controlled heat flux test approach was developed for investigating the thermal mechanical stability of the candidate oxide. This approach used a 3.0-kW continuous-wave (wavelength, 10.6 mm) carbon dioxide (CO2) laser (ref. 2). The CO2 laser is especially well-suited for single-crystal thermal shock tests because it can directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are opaque at the 10.6-mm wavelength of the laser beam, the light energy is absorbed at the surfaces rather than transmitting into the crystals, and thus generates the required temperature gradients within the specimens. The following figure is a schematic diagram of the test rig.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2018-06-05
    Description: The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Aircraft; Volume 36; No. 5; 898-90`
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2018-06-05
    Description: Microscopic spheres suspended in liquid become highly ordered under the proper conditions. Such collections of particles, called colloidal suspensions or colloids, are the subject of a series of ongoing microgravity experiments at the NASA Lewis Research Center. By studying the way these colloidal suspensions order themselves, scientists can better understand how atoms of a liquid become ordered to form a solid. In addition, highly ordered colloids have special properties that may make them useful in future hightech applications. Work is underway at Lewis to develop an optical microscope to view these colloidal suspensions sphere by sphere in microgravity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2018-06-05
    Description: Under the Advanced Subsonic Technology (AST) Program, an aeroelastic analysis code (TURBO-AE) based on Navier-Stokes equations is currently under development at NASA Lewis Research Center s Machine Dynamics Branch. For a blade row, aeroelastic instability can occur in any of the possible interblade phase angles (IBPA s). Analyzing small IBPA s is very computationally expensive because a large number of blade passages must be simulated. To reduce the computational cost of these analyses, we used time shifted, or phase-lagged, boundary conditions in the TURBO-AE code. These conditions can be used to reduce the computational domain to a single blade passage by requiring the boundary conditions across the passage to be lagged depending on the IBPA being analyzed. The time-shifted boundary conditions currently implemented are based on the direct-store method. This method requires large amounts of data to be stored over a period of the oscillation cycle. On CRAY computers this is not a major problem because solid-state devices can be used for fast input and output to read and write the data onto a disk instead of storing it in core memory.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 1998; NASA/TM01999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-07-27
    Description: A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift con gurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-0537 , 37th AIAA Aerospace Sciences Meeting; 11-14 Jan. 19999; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2019-07-18
    Description: The objective of this study was to investigate compressibility effects on a high-lift flowfield by simulating the flow about a three-dimensional multi-element wing. The computations were performed by solving both the incompressible and compressible Navier-Stokes equations (using the INS3D and OVERFLOW codes) on structured, overset grids. Turbulence was modeled via the one-equation, fully turbulent Spalart-Allmaras model. The computational results were validated with surface pressure measurements acquired at the NASA Ames 7- by 10-Foot Wind Tunnel. The geometry used for all computations consisted of an unswept wing in a landing configuration with a half-span flap and a three-quarter-span slat mounted inside a rectangular duct approximating the wind tunnel walls. The solutions were carefully examined to account for effects due to differences in algorithms. Compressibility effects were demonstrated by comparing surface particle traces, sectional pressure coefficient and boundary layer profile plots. It was found that small regions of compressibility near the slat and main-element leading edge can largely impact the flow. Even small compressibility regions can have significant global effects on the circulation and separation of each of the high-lift elements.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-07-18
    Description: Development of HPF versions of NPB and ARC3D showed that HPF has potential to be a high level language for parallelization of CFD applications. The use of HPF requires an intimate knowledge of the applications and a detailed analysis of data affinity, data movement and data granularity. Since HPF hides data movement from the user even with this knowledge it is easy to overlook pieces of the code causing low performance of the application. In order to simplify and accelerate the task of developing HPF versions of existing CFD applications we have designed and partially implemented ADAPT (Automatic Data Distribution and Placement Tool). The ADAPT analyzes a CFD application working on a single structured grid and generates HPF TEMPLATE, (RE)DISTRIBUTION, ALIGNMENT and INDEPENDENT directives. The directives can be generated on the nest level, subroutine level, application level or inter application level. ADAPT is designed to annotate existing CFD FORTRAN application performing computations on single or multiple grids. On each grid the application can considered as a sequence of operators each applied to a set of variables defined in a particular grid domain. The operators can be classified as implicit, having data dependences, and explicit, without data dependences. In order to parallelize an explicit operator it is sufficient to create a template for the domain of the operator, align arrays used in the operator with the template, distribute the template, and declare the loops over the distributed dimensions as INDEPENDENT. In order to parallelize an implicit operator, the distribution of the operator's domain should be consistent with the operator's dependences. Any dependence between sections distributed on different processors would preclude parallelization if compiler does not have an ability to pipeline computations. If a data distribution is "orthogonal" to the dependences of an implicit operator then the loop which implements the operator can be declared as INDEPENDENT.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 3rd Annual HPF User Group Meeting; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.
    Keywords: Aerodynamics
    Type: Apr 08, 1999; Berkeley, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-07-17
    Description: In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We 〈〈 1a nd Re 〉〉 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re 〉〉 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction can be measured, from which the bubble phase pressure gradient can be obtained and compared to theory and numerical simulations. The presence of bounding walls further complicates the experiments, since the detailed interactions of the bubbles with bounding walls is not well understood, especially in the presence of gravity, where the momentum and energy exchange depends on the inclination of the wall.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 460; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-07-17
    Description: A two-phase test loop has been designed and constructed to generate the necessary data for two-phase pressure drop and Critical Heat Flux (CHF) under reduced gravity conditions. A series of airplane trajectory tests aboard NASA KC-135 were performed and the data was used to evaluate the applicability of the earth gravity models for prediction of the reduced gravity data. Several commonly used correlations for the two-phase friction multiplier and critical heat flux were used to predict the data. It was generally concluded that the two-phase pressure drop can be predicted by the earth gravity correlations. The critical heat flux under reduced gravity conditions did not show a strong dependence on mass flow rate and the measured CHF were generally lower than the equivalent 1g conditions. The earth gravity models need to be modified for application to reduced gravities.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 13; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-07-13
    Description: In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external meters. Thermal gradients can complicate the process, however. Thermal gradients on the balance cause differential expansion (or contraction) of various parts of the balance that induce a strain that is detected by the strain gages and is indistinguishable from an external applied force. The thermal gradients can result when testing is done at elevated temperatures or at cryogenic temperatures such as at the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-0309 , 37th AIAA Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-07-13
    Description: Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-3560 , 33rd AIAA Thermophysics Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-07-13
    Description: The effects of periodic excitation on the evolution of a turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit and excitation was introduced at the junction between the jet exit and the diffuser inlet. The introduction of high amplitude periodic excitation at the jet exit enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Vectoring is achieved by applying the excitation over a fraction of the circumference of the circular jet, enhancing its spreading rate on the excited side and its tendency to reattach to that side. Static deflection studies demonstrate that the presence of the wide-angle diffuser increases the effectiveness of the added periodic momentum due to a favorable interaction between the excitation, the jet shear-layer and the diffuser wall. This point was further demonstrated by the evolution of a wave packet that was excited in the jet shear-layer. Strong amplification of the wave packet was measured with a diffuser attached to the jet exit. The turbulent jet responds quickly (10-20 msec) to step changes in the level of the excitation input. The response scales with the jet exit velocity and is independent of the Reynolds number. Jet deflection angles were found to be highly sensitive to the relative direction between the excitation and the jet flow and less sensitive to the excitation frequency. The higher jet deflection angles were obtained for a diffuser length of about two diameters and for diffusers with half-angles greater than 15 degrees.
    Keywords: Aerodynamics
    Type: AIAA Paper 99-0672 , 37th AIAA Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-07-13
    Description: A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (1 -D) thermal finite element sizing code. This sizing code contained models to ac- count for coatings, fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) rocket-powered single-stage-to-orbit (SSTO) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a particular trajectory. Eight TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile systems and approaches blanket TPS weights for higher integrated heat loads.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-3459 , 33rd Thermophysics Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-07-13
    Description: A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-3267 , 14th AIAA CFD Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-07-13
    Description: This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-1262 , AIAA/ASME/ASCE/AHS/ASC; Apr 12, 1999 - Apr 15, 1999; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-07-13
    Description: The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.
    Keywords: Aerodynamics
    Type: AIAA Paper 99-0756 , 37th AIAA Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-07-13
    Description: A sensitivity study for the in-ground effect on aircraft wake vortices has been conducted using a validated large eddy simulation model. The numerical results are compared with observed data and show good agreement for vortex decay and lateral vortex transport. The vortex decay rate is strongly influenced by the ground, but appears somewhat insensitive to ambient turbulence. In addition, the results show that the ground can affect the trajectory and descent-rate of a wake vortex pair at elevations up to about 3 b(sub o) (where b(sub o) is the initial vortex separation). However, the ground does not influence the average circulation of the vortices until the cores descend to within about 0.6 b(sub o), after which time the ground greatly enhances their rate of demise. Vortex rebound occurs in the simulations, but is more subtle than shown in previous numerical studies.
    Keywords: Aerodynamics
    Type: AIAA Paper 99-0754 , 37th AIAA Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-13
    Description: USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flows. We have implemented two modified versions of the original Jones and Launder k-epsilon two-equation turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for two flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those of empirical formulae, theoretical results and the existing Spalart-Allmaras one-equation model.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-0156 , 37th AIAA Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-07-13
    Description: The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using classical, and minimax techniques are described. A unified general formulation and solution for the minimax approach, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.
    Keywords: Aerodynamics
    Type: International Forum on Aeroelasticity and Structural Dynamics 1999; Jun 22, 1999 - Jun 25, 1999; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-07-13
    Description: A review of compressibility effects on dynamic stall of pitching airfoils and unsteady separation control by manipulation of unsteady vorticity using a deformable leading edge airfoil design is presented.
    Keywords: Aerodynamics
    Type: 8th Asian Congress of Fluid Mechanics; Dec 06, 1999 - Dec 10, 1999; Shenzhen; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-07-13
    Description: This program has involved, first of all, a critical state-of-the-art assessment of vortex-body interactions. Then, efforts were focused on experimental investigation on coupled-wake instabilities and turbulence occurring in a two-cylinder system. An extensive review was undertaken on the effect of incident vortices on various types of bodies. These incident vortices have a length scale of the same order of magnitude as the scale of the body. The body can take on various forms, including, for example, a circular cylinder, a blade or a wing. The classes of vortex-body interaction that were critically assessed include: (1) Periodic distortion of the incident (primary) vortex and shedding of secondary vorticity from the surface of the body. (2) Modulated vortex distortion and shedding at a leading-edge or surface due to incidence of a complex system of vortices. (3) Vortex distortion and shedding in presence of body oscillation. (4) Three-dimensional vortex interaction and shedding. For all of these classes of vortex-body interaction, quantitative topologies of the vorticity distributions and streamline patterns were found to be central to a unified description of mechanisms of vortex distortion and shedding. In most cases, it was possible to define relationships between vortex interactions and unsteady loading at the body surface. This phase of the program was an experimental investigation of a two-cylinder system, which simulated a central aspect of a four-wheel bogie on a large-scale commercial aircraft. The overall aim of this experimental research program was to determine the crucial elements of the unsteadiness in the gap and near-wake regions as a function of time using cinema-based techniques. During the research program, various image evaluation techniques were employed. They involved assessment of instantaneous velocity fields, streamline topology and patterns of vorticity. Experiments were performed in a large-scale water channel using a high-resolution version of digital particle image velocimetry. The program has focused on acquisition of images of velocity and vorticity for varying gap widths between the two-cylinder system. As a result of analysis of a relatively large number of images, it is demonstrated that low frequency instabilities can occur in the gap region between the cylinder. These low frequency instabilities are hypothesized to influence the near-wake structure of the entire two-cylinder system. The nature of the unstable shear layers in the gap region involves generation of small-scale Kelvin-Helmholtz instabilities. These unsteady shear layers then impinge upon the upper and lower surfaces of the cylinders, thereby influencing both the unsteady structure and the time-averaged patterns of the near-wake. Initial efforts have focused on characterization of the patterns of instantaneous and averaged streamlines using topological concepts. The end result of this investigation is a series of documented instantaneous images. They will serve as a basis for various types of post-processing, which will lead to a fuller understanding of the instantaneous and time-averaged unstable-turbulent fields in the gap region and downstream of the two-cylinder system. This further assessment is the focus of a subsequent program.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019-07-13
    Description: DARWIN is a web-based system for presenting the results of wind-tunnel testing and computational model analyses to aerospace designers. DARWIN captures the data, maintains the information, and manages derived knowledge (e.g. visualizations, etc.) of large quantities of aerospace data. In addition, it provides tools and an environment for distributed collaborative engineering. We are currently constructing the third version of the DARWIN software system. DARWN's development history has, in some sense, tracked the development of web applications. The 1995 DARWIN reflected the latest web technologies--CGI scripts, Java applets and a three-layer architecture--available at that time. The 1997 version of DARWIN expanded on this base, making extensive use of a plethora of web technologies, including Java/JavaScript and Dynamic HTML. While more powerful, this multiplicity has proven to be a maintenance and development headache. The year 2000 version of DARWIN will provide a more stable and uniform foundation environment, composed primarily of Java mechanisms. In this paper, we discuss this evolution, comparing the strengths and weaknesses of the various architectural approaches and describing the lessons learned about building complex web applications.
    Keywords: Aerodynamics
    Type: Applied Computing; Mar 19, 2000 - Mar 21, 2000; Como; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-13
    Description: A design optimization procedure for improved sonic boom and aerodynamic performance of high speed aircraft is presented. The multiobjective optimization procedure simultaneously minimizes the sonic boom at a given distance from the aircraft and the drag-to-lift ratio (C(sub D)/C(sub L)) Of the aircraft. Upper and lower bounds are also imposed on the lift coefficient. The Kreisselmeier - Steinhauser function is used for the multiobjective optimization formulation. A discrete semi-analytical aerodynamic sensitivity analysis procedure coupled with an analytical grid sensitivity analysis technique is used for evaluating design sensitivities. The use of the semi-analytical sensitivity analysis techniques results in significant computational savings. The flow equations are solved using a three-dimensional parabolized Navier-Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. A nonlinear programming technique and an approximate analysis procedure are used for the optimization. The optimization procedure developed is applied to the design of two high speed configurations, namely, a doubly swept wing-body configuration and a delta wing-body configuration. For the two sweep case only, minimization of the first peak in the pressure signature is performed first by optimizing only the nose radius and length of the aircraft. Minimization of the second peak in the pressure signature is performed next by optimizing only the wing geometric parameters. Significant improvements are obtained in the sonic boom characteristics and the aerodynamic performance of the wing-body configurations.
    Keywords: Aerodynamics
    Type: 1995 NASA High-Speed Research Program Sonic Boom Workshop; 2; 18-46; NASA/CP-1999-209520/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2019-07-13
    Description: The spreading characteristics of jets from several asymmetric nozzles, and a set of rectangular orifices are compared, covering a jet Mach number range of 0.3-2.0. The effect of 'tabs' for a rectangular and a round nozzle is also included in the comparison. Compared to a round jet, the jets from the asymmetric nozzles spread only slightly more at subsonic conditions whereas at supersonic conditions, when 'screech' occurs, they spread much more. The dynamics of the azimuthal vortical structures of the jet, organized and intensified under the screeching condition, are thought to be responsible for the observed effect at supersonic conditions. Curiously, the jet from a 'lobed' nozzle spreads much less at supersonic condition compared to all other cases; this is due to the absence of screech with this nozzle. Screech stages inducing flapping, rather than varicose or helical, flow oscillation cause a more pronounced jet spreading. At subsonic conditions, only a slight increase in jet spreading with the asymmetric nozzles contrasts previous observations by others. The present results show that the spreading of most asymmetric jets is not much different from that of a round jet. This inference is further supported by data from the rectangular orifices. In fact, jets from the orifices with small aspect ratio (AR) exhibit virtually no increase in the spreading. A noticeable increase commences only when AR is larger than about 10. Thus, 'shear layer perimeter stretching', achieved with a larger AR for a given cross-sectional area of the orifice, by itself, proves to be a relatively inefficient mechanism for increasing jet spreading. In contrast, the presence of streamwise vortices or 'natural excitation' can cause a significant increase - effects that might explain the observations in the previous investigations. Thus far, the biggest increase in jet spreading is observed with the tabs. This is true in the subsonic regime, as well as in the supersonic regime, in spite of the fact that screech is eliminated by the tabs. The characteristic spreading of the tabbed jets is explained by the induced motion of the tab-generated streamwise vortex pairs. The tabs, however, incur thrust loss; the flow blockage and loss in thrust coefficient, vis-a-vis the spreading increase, are evaluated for various configurations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Fluid Mechanics; 383; 197-228
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-07-13
    Description: The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CP-1999-208695 , E-11411 , NAS 1.55:208695 , Ninth Thermal and Fluids Analysis Workshop Proceedings; NASA/CP-1999-208695|Ninth Thermal and Fluids Analysis Workshop Proceedings; Aug 31, 1998 - Sep 04, 1998; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-13
    Description: A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.
    Keywords: Aerodynamics
    Type: NASA/TM-1999-209654 , NAS 1.15:209654 , AIAA Paper 2000-0889 , E-12010 , 38th Aerospace Sciences Meeting; Jan 10, 2000 - Jan 13, 2000; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-07-13
    Description: This paper reviews the effects of 'screech', 'asymmetric nozzle shaping', 'tabs' and 'overexpansion' on the spreading of free jets. Corresponding thrust penalty for the tabs and overexpanded condition are also evaluated. The asymmetric shapes include rectangular ones with varying aspect ratio. Tabs investigated are triangular shaped 'delta-tabs' placed at the exit of a convergent circular nozzle. The effect of overexpansion is examined with circular convergent-divergent (C-D) nozzles. Tabs and overexpansion are found to yield the largest increase in jet spreading. Each, however, involves a performance penalty, i.e., a loss in thrust coefficient. Variation of the size of four delta-tabs show that there exists an optimum size for which the gain in jet spreading is the maximum per unit loss in thrust coefficient. With the C-D nozzles, the minimum in thrust coefficient is expected near the beginning of the overexpanded regime based on idealized flow calculations. The maximum increase in jet spreading, however, is found to occur at higher pressure ratios well into the overexpanded regime. The optimum benefit with the overexpanded flow, in terms of gain in spreading for unit penalty, is found to be comparable to the optimum tab case.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-3505 , Fluid Dynamics Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The primary objective of this paper is to demonstrate that the field of aeroelasticity continues to play a critical role in the design of modern aerospace vehicles, and several important problems are still far from being well understood. Furthermore, the emergence of new technologies, such as the use of adaptive materials (sometimes denoted as smart structures technology), providing new actuator and sensor capabilities, has invigorated aeroelasticity, and generated a host of new and challenging research topics that can have a major impact on the design of a new generation of aerospace vehicles.
    Keywords: Aerodynamics
    Type: Journal of Aircraft; 36; 1; 105-121
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019-07-13
    Description: Compressible and incompressible versions of a three-dimensional unstructured mesh Reynolds-averaged Navier-Stokes flow solver have been differentiated and resulting derivatives have been verified by comparisons with finite differences and a complex-variable approach. In this implementation, the turbulence model is fully coupled with the flow equations in order to achieve this consistency. The accuracy demonstrated in the current work represents the first time that such an approach has been successfully implemented. The accuracy of a number of simplifying approximations to the linearizations of the residual have been examined. A first-order approximation to the dependent variables in both the adjoint and design equations has been investigated. The effects of a "frozen" eddy viscosity and the ramifications of neglecting some mesh sensitivity terms were also examined. It has been found that none of the approximations yielded derivatives of acceptable accuracy and were often of incorrect sign. However, numerical experiments indicate that an incomplete convergence of the adjoint system often yield sufficiently accurate derivatives, thereby significantly lowering the time required for computing sensitivity information. The convergence rate of the adjoint solver relative to the flow solver has been examined. Inviscid adjoint solutions typically require one to four times the cost of a flow solution, while for turbulent adjoint computations, this ratio can reach as high as eight to ten. Numerical experiments have shown that the adjoint solver can stall before converging the solution to machine accuracy, particularly for viscous cases. A possible remedy for this phenomenon would be to include the complete higher-order linearization in the preconditioning step, or to employ a simple form of mesh sequencing to obtain better approximations to the solution through the use of coarser meshes. An efficient surface parameterization based on a free-form deformation technique has been utilized and the resulting codes have been integrated with an optimization package. Lastly, sample optimizations have been shown for inviscid and turbulent flow over an ONERA M6 wing. Drag reductions have been demonstrated by reducing shock strengths across the span of the wing. In order for large scale optimization to become routine, the benefits of parallel architectures should be exploited. Although the flow solver has been parallelized using compiler directives. The parallel efficiency is under 50 percent. Clearly, parallel versions of the codes will have an immediate impact on the ability to design realistic configurations on fine meshes, and this effort is currently underway.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-07-13
    Description: Transition to turbulence in swept-wing flows has resisted correlation with linear theory because of its sensitivity to freestream conditions and 3-D roughness and because one of the principal instability modes quickly 'becomes nonlinear. In the face of such a formidable problem, two rather long-term fundamental efforts have been underway at DLR Gottinberg and Arizona State University that address swept-wing transition. These efforts have been recently reviewed by Bippes (1997) and Reibert and Saric (1997). Thus, the present work is a continuation of a series of studies on swept-wing boundary layers which have led to a better understanding of the transition process. In particular, we have taken advantage of the sensitivity to 3-D roughness and the modal nature of the instability in order to propose a particular control strategy. Complementing the two aforementioned reviews, general reviews of the swept-wing transition problem are found in Arnal (1997) and Kachanov (1996). Other recent reviews include Reshotko (t997), Crouch (1997), and Herbert (1997a,b). The failure of linear theory is discussed in Reed et al. (1996). The historical work is found in Reed and Sar-ic (1989). The basic idea is that the combination of sweep and chordwise pressure gradient within the boundary layer creates a velocity component perpendicular to the inviscid streamline. This crossflow profile is inflectional and exhibits both traveling and stationary unstable waves called crossflow vortices that are (approximately) aligned along the inviscid streamlines. Under conditions of low freestream turbulence levels, the dominant crossflow wave is stationary (Reibert and Saric t997) while moderate to high turbulence levels initiate dominant traveling waves (Dehle and Bippes 1996; Bippes 1997). 'Me mechanism is relatively insensitive to sound and 2-D surface roughness (Radeztsky et al. 1993) but very sensitive to 3-D roughness near the attachment line. We concentrate our work on low-turbulence freestream flows and stationary crossflow waves. Although the v' and w' components of the disturbances are very small, by convecting streamwise momentum in the wall-normal direction, they produce 0(l) changes inu'.Thus the mean flow is highly distorted with localized inflection points. Transition is then triggered by a high-frequency secondary instability of the distorted mean profile.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-07-13
    Description: The concept of "numerical speed of sound" is proposed in the construction of numerical flux. It is shown that this variable is responsible for the accurate resolution of' discontinuities, such as contacts and shocks. Moreover, this concept can he readily extended to deal with low speed and multiphase flows. As a results, the numerical dissipation for low speed flows is scaled with the local fluid speed, rather than the sound speed. Hence, the accuracy is enhanced the correct solution recovered, and the convergence rate improved. We also emphasize the role of mass flux and analyze the behavior of this flux. Study of mass flux is important because the numerical diffusivity introduced in it can be identified. In addition, it is the term common to all conservation equations. We show calculated results for a wide variety of flows to validate the effectiveness of using the numerical speed of sound concept in constructing the numerical flux. We especially aim at achieving these two goals: (1) improving accuracy and (2) gaining convergence rates for all speed ranges. We find that while the performance at high speed range is maintained, the flux now has the capability of performing well even with the low: speed flows. Thanks to the new numerical speed of sound, the convergence is even enhanced for the flows outside of the low speed range. To realize the usefulness of the proposed method in engineering problems, we have also performed calculations for complex 3D turbulent flows and the results are in excellent agreement with data.
    Keywords: Aerodynamics
    Type: NASA/TM-1999-209286 , NAS 1.15:209286 , E-11755 , AIAA Paper 99-3268 , Computational Fluid Dynamics; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2019-07-13
    Description: This paper examines flight-measured subsonic lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle prototype. Lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats unify the data and allow a greater understanding than studying the vehicles individually allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio planforms. The proper definition of reference area was critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to-drag ratio, and, where available, base pressure coefficients. The effects of fineness ratio on forebody drag were also considered. The influence of forebody drag on afterbody (base) drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.
    Keywords: Aerodynamics
    Type: H-2287 , AIAA Paper 99-0383 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2019-07-18
    Description: Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 8th International Symposium on Computational Fluid Dynamics; Sep 05, 1999 - Sep 10, 1999; Bremen; Germany|8th International Symposium on Computational Fluid Dynamics; Aug 30, 1999; Stockholm; Sweden|8th International Symposium on Computational Fluid Dynamics; Sep 03, 1999; Aachen; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-18
    Description: The overall objective of this work is to characterize the flow to rough showerheads by deriving pressure drop versus velocity correlations to at can be then used in reactor scale simulations where the showerhead is approximated as a porous medium. At relatively low Reynolds numbers (less than 1-10 based on the hole length scale) and in the absence of slip flow, Darcy's Law, grad P = mu U/k, can be used to express the relation between the pressure drop and velocity where @mu@ is the fluid viscosity and it is the permeability that can be theoretically predicted as k= e R^2 /8, where e is the porosity. However, at sufficiently small hole diameters and decreased pressures (less than 5 Torr), the Knudsen number based on showerhead tube radius increases, and the flow may be in a transition regime. Different expressions have been proposed to account for this effect in the permeability by expressing k as a function of either pressure or Knudsen number. But at even higher Knudsen numbers, the pressure drop - velocity dependence is non-linear, and Darcy's Law no longer holds such that a permeability cannot be defined. The direct simulation Monte Carlo method is used along side conventional CFD techniques to determine the extent to which the CFD technique is appropriate and helps to derive correlations for the more rarefied cases of interest in these showerhead flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 46th American Vacuum Society International Symposium; Oct 01, 1999; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-07-17
    Description: This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CP-1999-208526 , E-11280 , NAS 1.55:208526 , Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; Aug 12, 1998 - Aug 14, 1998; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-17
    Description: Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 251; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-07-17
    Description: A sailplane is currently being developed at NASA's Dryden Flight Research Center to support a high altitude flight experiment. The purpose of the experiment is to measure the performance characteristics of an airfoil at altitudes between 100,000 and 70,000 feet at Mach numbers between 0.65 and 0.5. The airfoil lift and drag are measured from pilot and static pressures. The location of the separation bubble and vortex shedding are measured from a hot film strip. The details of the flight experiment are presented. A comparison of several estimates of the airfoil performance is also presented. The airfoil, APEX-16, was designed by Drela (MIT) with his MSES code. A two dimensional Navier-Stokes analysis has been performed by Tatineni and Zhong (UCLA) and another at the Dryden Flight Research Center. The role these analysis served to define the experiment is discussed.
    Keywords: Aerodynamics
    Type: Applied Aerodynamics; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2019-07-17
    Description: Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.
    Keywords: Aerodynamics
    Type: Space Planes and Hypersonic Systems and Technologies; Nov 04, 1999 - Nov 09, 1999; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-08-17
    Description: Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AD-A380196 , MIT/WHOI-99-03
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-08-16
    Description: Turbulence attenuation by greater than a factor of two has been observed in many practical gas flows carrying volume fractions as small as 0.01% of dispersed particles. Particles which cause such attenuation usually are smaller than the smallest scales of the turbulence and have time constants 5 to 10 times greater than the time scale of a typical turbulent eddy. That is, strongly attenuating particles usually have Stokes numbers in the range of 5 to 10, indicating that they do not respond to the turbulent fluctuations, but instead just fall through the flow responding only to the mean flow. There are two mechanisms by which free falling particles may attenuate turbulence. First, the unresponsive particles act as a drag on the turbulent eddies, passing energy from the turbulent eddies to the small scale wakes of the particles where it is quickly dissipated by viscosity. The second mechanism is more complicated. Particles falling under gravity convert gravitational potential energy to turbulent velocity fluctuations. If the particles are large, this mechanism increases the overall turbulence level. However, with moderate size particles, the small scale turbulence generated apparently distorts the turbulent eddies leading to more rapid dissipation. Unfortunately, this conclusion is supported only by circumstantial evidence to date. The objectives of the experiment are to use microgravity to separate the two mechanisms. A region of nearly-isotropic decaying turbulence with zero mean flow will be formed in a box in the microgravity environment. Different sets of particles with Stokes numbers in the range of 2 to 20 will be dispersed in the flow. With zero gravity and no mean fluid velocity the particles will have zero mean velocity. With the large Stokes numbers, the fluctuating velocities will also be small. Therefore, the only attenuation mechanism will be the direct action of the particles on the turbulence. Control experiments will also be done in which the particles fall through the measurement volume. Measurements will be acquired using a high resolution image velocimetry (PIV) system being developed specifically for work in particle-laden flows. The measurements will include the decay of the turbulence kinetic energy under various particle loadings. The spatial spectra of the turbulence will also be measured. In a second set of experiments, the interaction of a single eddy with a collection of nearly stationary particles will be examined. The eddy will be a vortex ring emitted by a jet pulse through an orifice. The distortion of the vortex under the influence of the particles will be examined to gain a better understanding of how fine particles can cause such large reductions in turbulence levels. This experiment could not be conducted in terrestrial gravity because the high particle velocities would overwhelm the relatively low speed motion of the vortex ring. This experimental program is just getting underway. The initial challenge is to build a closed facility containing reasonably homogeneous and isotropic turbulence with zero mean velocity. Our approach is to use a set of synthetic jets mounted on the periphery of a transparent plexiglass box to create the turbulence. A synthetic jet is a plenum chamber with an orifice open to the volume of interest. The volume of the chamber fluctuates periodically so alternately a jet is ejected from the volume or flow is drawn back in as a sink. The asymmetry of this situation results in a net transport of momentum and kinetic energy into the volume of interest. The present apparatus includes eight synthetic jets each powered independently by a six inch loudspeaker. The synthetic jets discharge through ejector tubes to increase the scale of the turbulence. Construction of the apparatus is now complete and preliminary flow visualization studies have been conducted. The PIV system is also under development. A compact dual-pulse YAG laser has been acquired as the light source and special software is under development to allow simultaneous measurements of both the particle phase and the fluid phase (marked by fine tracers).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 326-332; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-07-12
    Description: The Aeroelasticity Task is intended to provide demonstrated technology readiness to predict and improve flutter characteristics of an HSCT configuration. This requires aerodynamic codes that are applicable to the wide range of flight regimes in which the HSCT will operate, and are suitable to provide the higher fidelity required for evaluation of aeroservoelastic coupling effects. Prediction of these characteristics will result in reduced airplane weight and risk associated with a highly flexible, low-aspect ratio supersonic airplane with narrow fuselage, relatively thin wings, and heavy engines. This Task is subdivided into three subtasks. The first subtask includes the design, fabrication, and testing of wind-tunnel models suitable to provide an experimental database relevant to HSCT configurations. The second subtask includes validation of candidate unsteady aerodynamic codes, applicable in the Mach and frequency ranges of interest for the HSCT, through analysis test correlation with the test data. The third subtask includes efforts to develop and enhance these codes for application to HSCT configurations. The wind tunnel models designed and constructed during this program furnished data which were useful for the analysis test correlation work but there were shortcomings. There was initial uncertainty in the proper tunnel configuration for testing, there was a need for higher quality measured model geometry, and there was a need for better measured model displacements in the test data. One of the models exhibited changes in its dynamic characteristics during testing. Model design efforts were hampered by a need for more and earlier analysis support and better knowledge of material properties. Success of the analysis test correlation work was somewhat muted by the uncertainties in the wind tunnel model data. The planned extent of the test data was not achieved, partly due to the delays in the model design and fabrication which could not be extended due to termination of the HSR program.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-13589
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2019-07-10
    Description: The local viscous-inviscid interaction field generated by a wall temperature jump on a flat plate in supersonic flow and on the windside of a Reusable Launch Vehicle in hypersonic flow is studied in detail by both a Navier-Stokes numerical code and an analytical triple-deck model. Treatment of the rapid heat transfer changes both upstream and downstream of the jump is included. Closed form relationships derived from the triple-deck theory are presented. The analytically predicted pressure and heating variations including upstream influence are found to be in generally good agreement with the Computational Fluid Dynamic (CFD) predictions. These analyses not only clarify the interactive physics involved but also are useful in preliminary design of thermal protection systems and as an insertable module to improve CFD code efficiency when applied to such small-scale interaction problems. The analyses only require conditions at the wall and boundary-layer edge which are easily extracted from a baseline, constant wall temperature, CFD solution.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-4836
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2019-07-10
    Description: The Line Integral Convolution (LIC) algorithm has received a lot of attention and interest. Yet, only a few of the current LIC related algorithms deal specifically with color textures for automatic detection of flow features. This paper provides an overview of research in this area.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2019-07-10
    Description: A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.
    Keywords: Aerodynamics
    Type: NASA/TM-1999-208791 , NAS 1.15:208791 , A-99V0041
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-07-12
    Description: The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The system may be configured to operate passively with no moving parts or in a self-pressurizing manner with the inclusion of a pressure controlling device or valve in the gas outlet of the anode reservoir. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019-08-17
    Description: An investigation was performed to evaluate leading-and trailing-edge flap deflections for optimal aerodynamic performance of a High-Speed Civil Transport concept during takeoff and approach-to-landing conditions. The configuration used for this study was designed by the Douglas Aircraft Company during the 1970's. A 0.1-scale model of this configuration was tested in the Langley 30- by 60-Foot Tunnel with both the original leading-edge flap system and a new leading-edge flap system, which was designed with modem computational flow analysis and optimization tools. Leading-and trailing-edge flap deflections were generated for the original and modified leading-edge flap systems with the computational flow analysis and optimization tools. Although wind tunnel data indicated improvements in aerodynamic performance for the analytically derived flap deflections for both leading-edge flap systems, perturbations of the analytically derived leading-edge flap deflections yielded significant additional improvements in aerodynamic performance. In addition to the aerodynamic performance optimization testing, stability and control data were also obtained. An evaluation of the crosswind landing capability of the aircraft configuration revealed that insufficient lateral control existed as a result of high levels of lateral stability. Deflection of the leading-and trailing-edge flaps improved the crosswind landing capability of the vehicle considerably; however, additional improvements are required.
    Keywords: Aerodynamics
    Type: NASA/TP-1999-209539 , NAS 1.60-209539 , L-17537
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019-08-16
    Description: Gas bubbles driven in radial oscillations are subject to an instability of the spherical shape that is opposed by surface tension and viscosity. An exact linear formulation for the study of the phenomenon has been available for many years, but its complexity has discouraged a detailed investigation. With the recent theory of sonoluminescence of Lohse and co-workers, there has been a renewed interest in the problem and new data have become available. This paper presents a numerical method for the solution of the pertinent equations and compares the theory with these new data. The coupling of the strong nonlinearity of the bubble radial oscillations with the parametric mechanism of the surface instability results in a very complex structure for the stability boundary. Nevertheless, a good agreement between theory and data is found. A comparison with earlier approximate models is also made.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Physics of Fluids (ISSN 1070-6631); 11; 6; 1309-1317
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-08-16
    Description: A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 228-233; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019-08-16
    Description: Foams are extremely important in a variety of industrial applications. Foams are widely used in fire-fighting applications, and are especially effective in fighting flammable liquid fires. In fact the Fire Suppression System aboard the Space Shuttle utilizes cylinders of Halon foam, which, when fired, force a rapidly expanding foam into the convoluted spaces behind instrument panels. Foams are critical in the process of enhanced oil recovery, due to their surface-active and highly viscous nature. They are also used as drilling fluids in underpressurized geologic formations. They are used as transport agents, and as trapping agents. They are also used as separation agents, where ore refinement is accomplished by froth flotation of the typically lighter and hydrophobic contaminants. The goal of the proposed investigation is the determination of the mechanical and rheological properties of foams, utilizing the microgravity environment to explore foam rheology for foams which cannot exist, or only exist for a short time, in 1g.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 353-358; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-08-13
    Description: The third High-Speed Research Sonic Boom Workshop was held at NASA Langley Research Center on June 1-3, 1994. The purpose of this workshop was to provide a forum for Government, industry, and university participants to present and discuss progress in their research. The workshop was organized into sessions dealing with atmospheric propagation; acceptability studies; and configuration design, and testing. Attendance at the workshop was by invitation only. The workshop proceedings include papers on design, analysis, and testing of low-boom high-speed civil transport configurations and experimental techniques for measuring sonic booms. Significant progress is noted in these areas in the time since the previous workshop a year earlier. The papers include preliminary results of sonic boom wind tunnel tests conducted during 1993 and 1994 on several low-boom designs. Results of a mission performance analysis of all low-boom designs are also included. Two experimental methods for measuring near-field signatures of airplanes in flight are reported.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209699 , L-17435 , NAS 1.55:209699 , Jun 01, 1994 - Jun 03, 1994; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-08-13
    Description: The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209704/VOL2/PT1 , L-17911C , NAS 1.55:209704/VOL2/PT1 , 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Feb 08, 1999 - Feb 12, 1999; Anaheim, CA; United States|1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; NASA/CP/1999-209704/VOL2/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019-08-13
    Description: NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209692/VOL2 , L-17758C , NAS 1.55:209692/VOL2 , Aerodynamic Performance; Feb 09, 1998 - Feb 13, 1998; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019-08-13
    Description: These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209136/PT1 , L-17863A , NAS 1.55:209136/PT1 , CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Jun 22, 1999 - Jun 25, 1999; Williamsburg, VA; United States|CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019-08-13
    Description: The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209136/PT2 , L-17863B , NAS 1.55:209136/PT2 , CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Jun 22, 1999 - Jun 25, 1999; Williamsburg, VA; United States|CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-08-15
    Description: Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural model. Conductances for temperature varying materials are accommodated. This capability both streamlines the process of developing the thermal model from the finite element model, and also makes the structural and thermal models compatible in the sense that each structural node is associated with a thermal node. This is particularly useful when the purpose of the analysis is to predict structural deformations due to thermal loads. The steady state solver uses a restricted step size Newton method, and the transient solver is an adaptive step size implicit method applicable to general differential algebraic systems. Temperature dependent conductances and capacitances are accommodated by the solvers. In addition to discussing the modeling and solution methods. applications where the thermal modeling is "in the loop" with sensitivity analysis, optimization and optical performance drawn from our experiences with the Space Interferometry Mission (SIM), and the Next Generation Space Telescope (NGST) are presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Ninth Thermal and Fluids Analysis Workshop Proceedings; 167-179; NASA/CP-1999-208695
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019-07-10
    Description: An instrument development program aimed at using Projection Moire Interferometry (PMI) for acquiring model deformation measurements in large wind tunnels was begun at NASA Langley Research Center in 1996. Various improvements to the initial prototype PMI systems have been made throughout this development effort. This paper documents several of the most significant improvements to the optical hardware and image processing software, and addresses system implementation issues for large wind tunnel applications. The improvements have increased both measurement accuracy and instrument efficiency, promoting the routine use of PMI for model deformation measurements in production wind tunnel tests.
    Keywords: Aerodynamics
    Type: Rept-1999-01-5598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019-07-10
    Description: The application of an unstructured grid methodology on a three-dimensional high-lift configuration is presented. The focus of this paper is on the grid generation aspect of an integrated effort for the development of an unstructured-grid computational fluid dynamics (CFD) capability at the NASA Langley Research Center. The meshing approach is based on tetrahedral grids generated by the advancing-front and the advancing-layers procedures. The capability of the method for solving high-lift problems is demonstrated on an aircraft model referred to as the energy efficient transport configuration. The grid generation issues, including the pros and cons of the present approach, are discussed in relation to the high-lift problems. Limited viscous flow results are presented to demonstrate the viability of the generated grids. A corresponding Navier-Stokes solution capability, along with further computations on the present grid, is presented in a companion SAE paper.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Rept-1999-01-5557
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-07-10
    Description: The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be modeled with either the full geometry or the reduced geometry attempts.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019-08-28
    Description: A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2020-01-23
    Description: A research project is underway at NASA Lewis to produce a computer code which can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive amount of effort undertaken to compare the results in a quantified manner against the database of ice shapes which have been generated in the NASA Lewis Icing Research Tunnel (IRT). The results of the shape comparisons are analyzed to determine the range of meteorological conditions under which LEWICE 2.0 is within the experimental repeatability. This comparison shows that the average variation of LEWICE 2.0 from the experimental data is 7.2% while the overall variability of the experimental data is 2.5%.
    Keywords: Aerodynamics
    Type: NASA/CR-1999-208690 , E-11479 , NAS 1.26:208690
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019-07-13
    Description: A fractional step method for the solution of steady and unsteady incompressible Navier-Stokes equations is outlined. The method is based on a finite volume formulation and uses the pressure in the cell center and the mass fluxes across the faces of each cell as dependent variables. Implicit treatment of convective and viscous terms in the momentum equations enables the numerical stability restrictions to be relaxed. The linearization error in the implicit solution of momentum equations is reduced by using three subiterations in order to achieve second order temporal accuracy for time-accurate calculations. In spatial discretizations of the momentum equations, a high-order (3rd and 5th) flux-difference splitting for the convective terms and a second-order central difference for the viscous terms are used. The resulting algebraic equations are solved with a line-relaxation scheme which allows the use of large time step. A four color ZEBRA scheme is employed after the line-relaxation procedure in the solution of the Poisson equation for pressure. This procedure is applied to a Couette flow problem using a distorted computational grid to show that the method minimizes grid effects. Additional benchmark cases include the unsteady laminar flow over a circular cylinder for Reynolds Numbers of 200, and a 3-D, steady, turbulent wingtip vortex wake propagation study. The solution algorithm does a very good job in resolving the vortex core when 5th-order upwind differencing and a modified production term in the Baldwin-Barth one-equation turbulence model are used with adequate grid resolution.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 96-2089 , 27th AIAA Fluid Dynamics Conference; Jun 17, 1996 - Jun 20, 1996; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2019-07-13
    Description: This paper analytically examines the unsteady fluid dynamics of a vortex filament subsequent to a normal collision of the vortex with a solid body. In particular, the breakdown or reconnection phenomena, post-collision, for a vortex filament is studied. The paper does not investigate the collision dynamics process itself. The derived exact solution is based upon the laminar viscous form of the Helmholtz equations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 30th AIAA Fluid Dynamics Conference: Vortex Dynamics; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2019-07-13
    Description: In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Physics of Fluids (ISSN 1070-6631); 11; 8; 2008-2019
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2019-07-13
    Description: Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Visualization; Oct 24, 1999 - Oct 29, 1999; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2019-07-13
    Description: This paper describes an experiment in which a large-scale scientific application development for tightly-coupled parallel machines is adapted to the distributed execution environment of the Information Power Grid (IPG). A brief overview of the IPG and a description of the computational fluid dynamics (CFD) algorithm are given. The Globus metacomputing toolkit is used as the enabling device for the geographically-distributed computation. Modifications related to latency hiding and Load balancing were required for an efficient implementation of the CFD application in the IPG environment. Performance results on a pair of SGI Origin 2000 machines indicate that real scientific applications can be effectively implemented on the IPG; however, a significant amount of continued effort is required to make such an environment useful and accessible to scientists and engineers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Frontiers; Feb 21, 1999 - Feb 25, 1999; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2019-07-13
    Description: A multidisciplinary sensitivity analysis technique that has been shown to be independent of step-size selection is examined further. The accuracy of this step-size independent technique, which uses complex variables for determining sensitivity derivatives, has been previously established. The primary focus of this work is to validate the aero-structural analysis procedure currently being used. This validation consists of comparing computed and experimental data obtained for an Aeroelastic Research Wing (ARW-2). Since the aero-structural analysis procedure has the complex variable modifications already included into the software, sensitivity derivatives can automatically be computed. Other than for design purposes, sensitivity derivatives can be used for predicting the solution at nearby conditions. The use of sensitivity derivatives for predicting the aero-structural characteristics of this configuration is demonstrated.
    Keywords: Aerodynamics
    Type: AIAA Paper 99-3101
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-07-13
    Description: A compact modulated birefringence-measurement system has been developed for use in microgravity fluid physics applications with non-Newtonian fluids such as polymer solutions. This instrument uses a dual-crystal transverse electro-optical modulator capable of modulation frequencies in excess of 100 MHz. The two crystals are modulated 180 deg. out of phase from each other, The theoretical framework governing the development of this instrument using the Mueller-Stokes polarization matrices is discussed. Several ground-based experiments are performed to compare this system with the theoretical results. Results from this transverse electro-optical modulator-based birefringence-measurement system agree well with the theory. The instrument is also very stable and robust, making it suitable for the extreme acceleration environment to be encountered in a NASA Black Brandt sounding rocket.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Measurement Science and Technology (ISSN 0957-0233); 10; 946-955
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2019-07-13
    Description: The creeping flow of a dilute (0.025 wt%) monodisperse polystyrene/polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion is experimentally observed for a wide range of Deborah numbers. Pressure drop measurements across the orifice plate show a large extra pressure drop that increases monotonically with Deborah number above the value observed for a similar Newtonian fluid at the same flow rate. This enhancement in the dimensionless pressure drop is not associated with the onset of a flow instability, yet it is not predicted by existing steady-state or transient numerical computations with simple dumbbell models. It is conjectured that this extra pressure drop is the result of an additional dissipative contribution to the polymeric stress arising from a stress-conformation hysteresis in the strong non-homogeneous extensional flow near the contraction plane. Such a hysteresis has been independently measured and computed in recent studies of homogeneous transient uniaxial stretching of PS/PS Boger fluids. Flow visualization and velocity field measurements using digital particle image velocimetry (DPIV) show large upstream growth of the corner vortex with increasing Deborah number. At large Deborah numbers, the onset of an elastic instability is observed, first locally as small amplitude fluctuations in the pressure measurements, and then globally as an azimuthal precessing of the upstream corner vortex accompanied by periodic oscillations in the pressure drop across the orifice.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Non-Newtonian Fluid Mechanics (ISSN 0377-0257); 86; 61-88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Scale-similar models employ multiple filtering operations to identify the smallest resolved scales, which have been shown to be the most active in the interaction with the unresolved subgrid scales. They do not assume that the principal axes of the strain-rate tensor are aligned with those of the subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses in regions that are well correlated with the locations where large Reynolds stress occurs. In this paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations without models or with the Smagorinsky model are unable to predict nonequilibrium effects. Dynamic models provide an improvement of the results: the adjustment of the coefficient results in more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach [Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging, gave results in the best agreement with the direct simulation and experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Physics of Fluids (ISSN 1070-6631); 11; 6; 1596- 1607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-07-13
    Description: NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209692/VOL1/PT2 , L-17758B , NAS 1.55:209692/VOL1/PT2 , 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; NASA/CP-1999-209692/VOL1/PT2|1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Feb 09, 1998 - Feb 13, 1998; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019-07-13
    Description: Experiments were designed, implemented, and evaluated in the thermal and fluid sciences at the NASA Langley Research Center. This research was conducted cooperatively with NASA employees using, where necessary, equipment and facilities provided by the U.S. Government. The research fell within the scope of the University Agreement between the NASA Langley Research Center and The George Washington University for Joint Research and Education Projects dated June 7, 8, 1994, which continues the Joint Institute for the Advancement of Flight Sciences (JIAFS).
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Interpretation of some flight test data suggests the presence of a 'dynamic ground effect'. The lift of an aircraft approaching the ground depends on the rate of descent and is lower than the aircraft steady state lift at a same height above the ground. Such a lift deficiency under dynamic conditions could have a serious impact on the overall aircraft layout. For example, the increased pitch angle needed to compensate for the temporary loss in lift would reduce the tail strike margin or require an increase in landing gear length. Under HSR2 an effort is under way to clarify the dynamic ground effect issue using a multi-pronged approach. A dynamic ground effect test has been run in the NASA Langley 14x22 ft wind tunnel. Northup-Grumman is conducting time accurate CFD (Computational Fluid Dynamics) Euler analyses on the National Aerodynamic Simulator facility. Boeing has been using linear potential flow methodology which are thought to provide much needed insight in, physics of this very complex problem. The present report summarizes the results of these potential flow studies.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aeodynamic Performance Workshop; 2; 2299-2385; NASA/CP-1999-209692/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-13
    Description: The TCA-2 wind-tunnel test was the second in a series of planned tests utilizing the 5% Technology Concept Airplane (TCA) model. Each of the tests was planned to utilize the unique capabilities of the NASA Langley 14'x22' and the NASA Ames 12' test facilities, in order to assess specific aspects of the high lift and stability and control characteristics of the TCA configuration. However, shortly after the completion of the TCA-1 test, an early projection of the Technology Configuration (TC) identified the need for several significant changes to the baseline TCA configuration. These changes were necessary in order to meet more stringent noise certification levels, as well as, to provide a means to control dynamic structural modes. The projected changes included a change to the outboard wing (increased aspect ratio and lower sweep) and a reconfiguration of the longitudinal control surfaces to include a medium size canard and a reduced horizontal tail. The impact of these proposed changes did not affect the TCA-2 test, because it was specifically planned to address power effects on the empennage and a smaller horizontal tail was in the plan to be tested. However, the focus of future tests was reevaluated and the emphasis was shifted away from assessment of TCA specific configurations to a more general assessment of configurations that encompass the projected design space for the TC.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aeodynamic Performance Workshop; 2; 2161-2186; NASA/CP-1999-209692/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-13
    Description: This paper presents a TCA (Technology Concept Airplane) High lift Preliminary Assessment. The topics discussed are: 1) Model Description; 2) Data Repeatability; 3) Effect of Inboard L.E. (Leading Edge) Flap Span; 4) Comparison of 14'x22' TCA-1 With NTF (National Transonic Facility) Modified Ref. H; 5) Comparison of 14'x22' and NTF Ref. H Results; 6) Effect of Outboard Sealed Slat on TCA; 7) TCA Full Scale Build-ups; 8) Full Scale L/D Comparisons; 9) TCA Full Scale; and 10) Touchdown Lift Curves. This paper is in viewgraph form.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aeodynamic Performance Workshop; 2; 1897-1931; NASA/CP-1999-209692/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This presentation is broken into 5 logical sections. The Background Information section describes the technical issues being address by this study. The Approach section describes the organization of the contract effort which was laid out as the most effective means of quantifying, with validated methods, the magnitude of dynamic ground effects for the TCA (Technology Concept Aircraft) configuration. The Validation Case section describes the analysis of the XB-70 configuration in both static and dynamic ground effect, with comparisons to wind tunnel and flight test data. The TCA Analysis section then describes the application of the same codes and methodologies to the TCA in both static and dynamic ground effect. Comparisons are made between the static and dynamic, as well as to early static data from a recent wind tunnel test on the TCA configuration. Finally, the work to date is summarized and the future direction of this study is outlined.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aeodynamic Performance Workshop; 2; 2388-2469; NASA/CP-1999-209692/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019-07-13
    Description: A numerical study of centerline and off-centerline power deposition at a point upstream of a two-dimensional blunt body at Mach 6.5 at 30 km altitude are presented. The full Navier-Stokes equations are used. Wave drag, lift, and pitching moment are presented as a function of amount of power absorbed in the flow and absorption point location. It is shown that wave drag is considerably reduced. Modifications to the pressure distribution in the flow field due to the injected energy create lift and a pitching moment when the injection is off-centerline. This flow control concept may lead to effective ways to improve the performance and to stabilize and control hypersonic vehicles.
    Keywords: Aerodynamics
    Type: AIAA Paper 99-0898 , 37th Aerospace Sciences Meeting; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019-07-13
    Description: Aerodynamic performance calculations were performed using WIND on ten experimental ice shapes and the corresponding ten ice shapes predicted by LEWICE 2.0. The resulting data for lift coefficient and drag coefficient are presented. The difference in aerodynamic results between the experimental ice shapes and the LEWICE ice shapes were compared to the quantitative difference in ice shape geometry presented in an earlier report. Correlations were generated to determine the geometric features which have the most effect on performance degradation. Results show that maximum lift and stall angle can be correlated to the upper horn angle and the leading edge minimum thickness. Drag coefficient can be correlated to the upper horn angle and the frequency-weighted average of the Fourier coefficients. Pitching moment correlated with the upper horn angle and to a much lesser extent to the upper and lower horn thicknesses.
    Keywords: Aerodynamics
    Type: NASA/CR-1999-209417 , NAS 1.26:209417 , E-12057 , AIAA Paper 2000-0097 , 38th Aerospace Sciences Meeting; Jan 10, 2000 - Jan 13, 2000; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019-07-13
    Description: A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).
    Keywords: Aerodynamics
    Type: NASA/TM-1999-209632 , E-11959 , AIAA Paper 2000-0545 , NAS 1.15:209632 , 38th Aerospace Sciences Meeting and Exhibit; Jan 10, 2000 - Jan 13, 2000; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Cosmic Ray Conference; Aug 17, 1999 - Aug 25, 1999; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-07-13
    Description: NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209704/VOL1/PT2 , L-17911B , NAS 1.55:209704/VOL1/PT2 , 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Feb 08, 1999 - Feb 12, 1999; Anaheim, CA; United States|1999 NASA High-Speed Research Performance Workshop; NASA/CP-1999-209704/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-07-13
    Description: Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Propulsion; Nov 18, 1999 - Nov 19, 1999; University Park, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019-07-13
    Description: In this paper we describe the numerical analysis underlying our efforts to develop an accurate and reliable code for simulating flame propagation using complex physical and chemical models. We discuss our spatial and temporal discretization schemes, which in our current implementations range in order from two to six. In space we use staggered meshes to define discrete divergence and gradient operators, allowing us to approximate complex diffusion operators while maintaining ellipticity. Our temporal discretization is based on the use of preconditioning to produce a highly efficient linearly implicit method with good stability properties. High order for time accurate simulations is obtained through the use of extrapolation or deferred correction procedures. We also discuss our techniques for computing stationary flames. The primary issue here is the automatic generation of initial approximations for the application of Newton's method. We use a novel time-stepping procedure, which allows the dynamic updating of the flame speed and forces the flame front towards a specified location. Numerical experiments are presented, primarily for the stationary flame problem. These illustrate the reliability of our techniques, and the dependence of the results on various code parameters.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-1999-209305 , NAS 1.26:209305 , AIAA Paper 98-3246 , ICOMP-99-07 , E-11826 , Joint Propulsion; Jul 13, 1998 - Jul 15, 1998; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-07-13
    Description: We present an Abel-inversion algorithm to reconstruct mean and rms refractive-index profiles from spatially resolved statistical measurements of the beam-deflection angle in time-dependent, axisymmetric flows. An oscillating gas-jet diffusion flame was investigated as a test case for applying the algorithm. Experimental data were obtained across the whole field by a rainbow schlieren apparatus. Results show that simultaneous multipoint measurements are necessary to reconstruct the rms refractive index accurately.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Applied Optics (ISSN 0003-6935); o 38; 15; 3394-3398
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The interactions of lightweight flexible airframe structures, steady and unsteady aerodynamics, and wide-bandwidth active controls on modern airplanes lead to considerable multidisciplinary design challenges. More than 25 years of mathematical and numerical methods' development, numerous basic research studies, simulations and wind-tunnel tests of simple models, wind-tunnel tests of complex models of real airplanes, as well as flight tests of actively controlled airplanes, have all contributed to the accumulation of a substantial body of knowledge in the area of aeroservoelasticity. A number of analysis codes, with the capabilities to model real airplane systems under the assumptions of linearity, have been developed. Many tests have been conducted, and results were correlated with analytical predictions. A selective sample of references covering aeroservoelastic testing programs from the 1960s to the early 1980s, as well as more recent wind-tunnel test programs of real or realistic configurations, are included in the References section of this paper. An examination of references 20-29 will reveal that in the course of development (or later modification), of almost every modern airplane with a high authority active control system, there arose a need to face aeroservoelastic problems and aeroservoelastic design challenges.
    Keywords: Aerodynamics
    Type: Paper-97-1409 , Journal of Aircraft; 36; 1; 122-145|Structures, Structural Dynamics, and Materials; Apr 07, 1997 - Apr 10, 1997; Kissimmee, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019-07-13
    Description: Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
    Keywords: Aerodynamics
    Type: AIAA Paper 99-4162 , Atmospheric Flight Mechanics; Aug 09, 1999 - Aug 11, 1999; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019-07-13
    Description: An analytical study was performed as part of the NASA Lewis support of a National Transportation Safety Board (NTSB) aircraft accident investigation. The study was focused on the performance degradation associated with ice contamination on the wing of a commercial turbo-prop-powered aircraft. Based upon the results of an earlier numerical study conducted by the authors, a prominent ridged-ice formation on the subject aircraft wing was selected for detailed flow analysis using 2-dimensional (2-D), as well as, 3-dimensional (3-D) Navier-Stokes computations. This configuration was selected because it caused the largest lift decrease and drag increase among all the ice shapes investigated in the earlier study. A grid sensitivity test was performed to find out the influence of grid spacing on the lift, drag, and associated angle-of-attack for the maximum lift (C(sub lmax)). This study showed that grid resolution is important and a sensitivity analysis is an essential element of the process in order to assure that the final solution is independent of the grid. The 2-D results suggested that a severe stability and control difficulty could have occurred at a slightly higher angle-of-attack (AOA) than the one recorded by the Flight Data Recorder (FDR). This stability and control problem was thought to have resulted from a decreased differential lift on the wings with respect to the normal loading for the configuration. The analysis also indicated that this stability and control problem could have occurred whether or not natural ice shedding took place. Numerical results using an assumed 3-D ice shape showed an increase of the angle at which this phenomena occurred of about 4 degrees. As it occurred with the 2-D case, the trailing edge separation was observed but started only when the AOA was very close to the angle at which the maximum lift occurred.
    Keywords: Aerodynamics
    Type: NASA/TM-1999-208897 , NAS 1.15:208897 , AIAA Paper 99-0375 , ICOMP-99-03 , E-11496 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-07-13
    Description: A scale-invariant statistical theory of fields is presented that leads to invariant definition of density, velocity, temperature, and pressure, The definition of Boltzmann constant is introduced as k(sub k) = m(sub k)v(sub k)c = 1.381 x 10(exp -23) J x K(exp -1), suggesting that the Kelvin absolute temperature scale is equivalent to a length scale. Two new state variables called the reversible heat Q(sub rev) = TS and the reversible work W(sub rev) = PV are introduced. The modified forms of the first and second law of thermodynamics are presented. The microscopic definition of heat (work) is presented as the kinetic energy due to the random (peculiar) translational, rotational, and pulsational motions. The Gibbs free energy of an element at scale Beta is identified as the total system energy at scale (Beta-1), thus leading to an invariant form of the first law of thermodynamics U(sub Beta) = Q(sub Beta) - W(sub Beta) +N(e3)U(sub Beta-1).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Journal of Therm. Sci.; 38; 845-853
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019-07-13
    Description: The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209691/VOL2 , L-17916D , NAS 1.55:209691/VOL2 , Aerodynamic Performance; Feb 25, 1997 - Feb 28, 1997; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...