ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: The objective of this study was to investigate compressibility effects on a high-lift flowfield by simulating the flow about a three-dimensional multi-element wing. The computations were performed by solving both the incompressible and compressible Navier-Stokes equations (using the INS3D and OVERFLOW codes) on structured, overset grids. Turbulence was modeled via the one-equation, fully turbulent Spalart-Allmaras model. The computational results were validated with surface pressure measurements acquired at the NASA Ames 7- by 10-Foot Wind Tunnel. The geometry used for all computations consisted of an unswept wing in a landing configuration with a half-span flap and a three-quarter-span slat mounted inside a rectangular duct approximating the wind tunnel walls. The solutions were carefully examined to account for effects due to differences in algorithms. Compressibility effects were demonstrated by comparing surface particle traces, sectional pressure coefficient and boundary layer profile plots. It was found that small regions of compressibility near the slat and main-element leading edge can largely impact the flow. Even small compressibility regions can have significant global effects on the circulation and separation of each of the high-lift elements.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...