ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3,021)
  • Geophysics  (1,230)
  • Fluid Mechanics and Heat Transfer  (861)
  • Aerodynamics  (732)
  • AERODYNAMICS
  • Animals
  • Biochemistry and Biotechnology
  • Humans
  • 1995-1999  (2,701)
  • 1955-1959  (314)
  • 1925-1929
Collection
Source
Years
Year
  • 1
    Publication Date: 2011-10-14
    Description: The paper reviews a combined numerical and experimental activity on the Shuttle Orbiter, first performed at NASA Langley within the Orbiter Experiment (OEX) and subsequently at ESA, as part of the AGARD FDP WG 18 activities. The study at Langley was undertaken to resolve the pitch up anomaly observed during the entry of the first flight of the Shuttle Orbiter. The present paper will focus on real gas effects on aerodynamics and not on heating. The facilities used at NASA Langley were the 15-in. Mach 6, the 20-in, Mach 6, the 31-in. Mach 10 and the 20-in. Mach 6 CF4 facility. The paper focuses on the high Mach, high altitude portion of the first entry of the Shuttle where the vehicle exhibited a nose-up pitching moment relative to pre-flight prediction of (Delta C(sub m)) = 0.03. In order to study the relative contribution of compressibility, viscous interaction and real gas effects on basic body pitching moment and flap efficiency, an experimental study was undertaken to examine the effects of Mach, Reynolds and ratio of specific heats at NASA. At high Mach, a decrease of gamma occurs in the shock layer due to high temperature effects. The primary effect of this lower specific heat ratio is a decrease of the pressure on the aft windward expansion surface of the Orbiter causing the nose-up pitching moment. Testing in the heavy gas, Mach 6 CF4 tunnel, gave a good simulation of high temperature effects. The facilities used at ESA were the lm Mach 10 at ONERA Modane, the 0.7 m hot shot F4 at ONERA Le Fauga and the 0.88 m piston driven shock tube HEG at DLR Goettingen. Encouraging good force measurements were obtained in the F4 facility on the Orbiter configuration. Testing of the same model in the perfect gas Mach 10 S4 Modane facility was performed so as to have "reference" conditions. When one compares the F4 and S4 test results, the data suggests that the Orbiter "pitch up" is due to real gas effects. In addition, pressure measurements, performed on the aft portion of the windward side of the Halis configuration in HEG and F4, confirm that the pitch up is mainly attributed to a reduction of pressure due to a local decrease in gamma.
    Keywords: Aerodynamics
    Type: Hypersonic Experimental and Computational Capability, Improvement and Validation; Volume 2; AGARD-AR-319-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-14
    Description: This paper presents new trends in Particle Image Velocimetry and practical aspects relevant to the application of the technique to large scale wind tunnel testing. The various problems and their solutions to the operation of PIV in large scale wind tunnels are discussed. Application of the technique in mapping complex flows are also presented.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-13
    Description: A 3D CFD code, SCISEAL, has been developed and validated. Its capabilities include cylindrical seals, and it is employed on labyrinth seals, rim seals, and disc cavities. State-of-the-art numerical methods include colocated grids, high-order differencing, and turbulence models which account for wall roughness. SCISEAL computes efficient solutions for complicated flow geometries and seal-specific capabilities (rotor loads, torques, etc.).
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Seals Code Development Workshop; 159-190; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-14
    Description: Pressure and temperature sensitive paints have been utilized for the measurement of blade surface pressure and temperature distributions in a high speed axial compressor and an Allied Signal F109 gas turbine engine. Alternate blades were painted with temperature sensitive paints and then pressure sensitive paint. This combination allows temperature distributions to be accounted for when determining the blade suction surface pressure distribution. Measurements were taken and pressure maps on the suction surface of a blade were obtained over a range of rotational speeds. Pressure maps of the suction surface show-strong shock waves at the higher speeds.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-10-14
    Description: Optical pressure measurements have been made on a NACA 0012 airfoil coated with Pressure Sensitive Paint (PSP) at very low flow speeds (less than 50 m/s). Angle of attack was limited to 5 deg. for most measurements. Effects of temperature gradients and mis-registration errors on PSP response have been established and minimized. By reducing measurement error caused by these effects. PSP sensitivity has been enhanced. Acceptable aerodynamic data at flow speeds down to 20 m/s have been obtained and valid pressure paint response was observed down to 10 m/s. Measurement errors (in terms of pressure and pressure coefficient) using PSP with pressure taps as a reference are provided for the range of flow speeds from 50 m/s to 10 m/s.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-14
    Description: The oil film interferometry skin-friction technique is described and applied to flows in some of the NASA Ames large wind tunnel facilities. Various schemes for applying the technique are discussed. Results are shown for tests in several wind tunnels which illustrate the oil film's ability to measure a variety of flow features such as shock waves separation, and 3D flow.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-10-14
    Description: Only recently have large amounts of model deformation data been acquired in NASA wind tunnels. This acquisition of model deformation data was made possible by the development of an automated video photogrammetric system to measure the changes in wing twist and bending under aerodynamic load. The measurement technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed third dimensional coordinate, namely the spanwise location. A major consideration in the development of the measurement system was that use of the technique must not appreciably reduce wind tunnel productivity. The measurement technique has been used successfully for a number of tests at four large production wind tunnels at NASA and a dedicated system is nearing completion for a fifth facility. These facilities are the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley, and the 12-FT Pressure Tunnel at NASA Ames. A dedicated system for the Langley 16-Foot Transonic Tunnel is scheduled to be used for the first time for a test in September. The advantages, limitations, and strategy of the technique as currently used in NASA wind tunnels are presented. Model deformation data are presented which illustrate the value of these measurements. Plans for further enhancements to the technique are presented.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-09-13
    Description: The flow in a hydrostatic pocket is described by a mathematical model that uses the three dimensional Navier-Stokes equations written in terms of the primary variables, u, v, w, and p. Using a conservative formulation, a finite volume multi-block method is applied through a collocated, body fitted grid. The flow is simulated in a shallow pocket with a depth/length ratio of 0.02. The flow structures obtained and described by the authors in their previous two dimensional models are made visible in their three dimensional aspect for the Couette flow. It has been found that the flow regimes formed central and secondary vortical cells with three dimensional corkscrew-like structures that lead the fluid on an outward bound path in the axial direction of the pocket. The position of the central vortical cell center is at the exit region of the capillary restrictor feedline. It has also been determined that a fluid turn around zone occupies all the upstream space between the floor of the pocket and the runner, thus preventing any flow exit through the upstream port. The corresponding pressure distribution under the shaft presented as well. It was clearly established that for the Couette dominated case the pressure varies significantly in the pocket in the circumferential direction, while its variation is less pronounced axially.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Seals Code Development Workshop; 285-298; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: In March of 1994, the GSFC Stratospheric Ozone Lidar was deployed to the Network for the Detection of Stratospheric Change (NDSC) site at Lauder, NZ. This was in conjunction with a series of NASA ER-2 flights from Christchurch, NZ south to the Antarctic Circle. These flights were organized to study the chemistry of the stratosphere before, during and after the formation of the well-known 'ozone hole'. Lidar measurements were made at four different time periods corresponding to the times of the ER-2 flights. Lauder is situated nearly along the flight path as the aircraft flew south and so the lidar measurements provide a checkpoint for the ozone, aerosol and temperature instruments onboard the aircraft. Whenever the weather permitted, lidar measurements were made as near to dawn, prior to the flight, and as near to sunset, after the flight. This provided data as close to the aircraft transit time as possible. More than 70 individual lidar measurements were made, each consisting of a vertical profile of ozone, temperature, and aerosol. These were made over three different seasons and show seasonal variation. Of particular interest in the lidar data base is the wintertime stratospheric - mesospheric temperature profiles, which show large variations at the stratopause and also some significant wave activity.
    Keywords: Geophysics
    Type: Optical Remote Sensing of the Atmosphere, Volume 2; 191-192; LC-95-67220
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: The HALogen Occultation Experiment (HALOE) was launched on the Upper Atmosphere Research Satellite (UARS) by the Space Shuttle Discovery at 7:11:04 EDT on September 12, 1991. After allowing for a period of outgassing, HALOE began taking routine science observations on October 11. HALOE uses the experiment approach of solar occultation and the gas filter and broad band radiometer instruments techniques to measure vertical profiles of HCl, HF, CH4, NO, NO2, H2O, O3, aerosol, and temperature versus pressure. The measurements cover a broad altitude range from the upper troposphere in some cases to the lower thermosphere in the case of nitric oxide. Latitude coverage provided by the occultation geometry ranges from 80 deg S to 80 deg N over the course of one year. The experiment has operated essentially without flaw for more than three years. Instrument stability over this time, as judged by the maximum signal change when viewing the sun exoatmospherically is less than or equal to 2 to 3%.
    Keywords: Geophysics
    Type: ; 22-23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: Measurements of wing buffeting, using root strain gages, were made in the NASA Langley 0.3 m cryogenic wind tunnel to refine techniques which will be used in larger cryogenic facilities such as the United States National Transonic Facility (NTF) and the European Transonic Wind Tunnel (ETW). The questions addressed included the relative importance variations in frequency parameter and Reynolds number, the choice of model material (considering both stiffness and damping) and the effects of static aeroelastic distortion. The main series of tests was made on three half models of slender 65 deg delta wings with a sharp leading edge. The three delta wings had the same planform but widely differing bending stiffnesses and frequencies (obtained by varying both the material and the thickness of the wings). It was known that the steady flow on this configuration would be insensitive to variations in Reynolds number. On this wing at vortex breakdown the spectrum of the unsteady excitation is unusual, having a sharp peak at particular frequency parameter. Additional tests were made on one unswept half-wing of aspect ratio 1.5 with an NPL 9510 aerofoil section, known to be sensitive to variations in Reynolds number at transonic speeds. The test Mach numbers were M = 0.21 and 0.35 for the delta wings and to M = 0.30 for the unswept wing. On this wing the unsteady excitation spectrum is fairly flat (as on most wings). Hence correct representation of the frequency parameter is not particularly important.
    Keywords: AERODYNAMICS
    Type: Aeronautical Journal (ISSN 0001-9240); 99; 981; p. 1-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: An experimental program was conducted at NASA Langley Research Center that included development and evaluation of an operational facility for wall drag measurement of potential scramjet fuel injection or wall cooling configurations. The facility consisted of a supersonic tunnel, with one wall composed of a series of interchangeable aluminum plates attached to an air bearing suspension system. The system was equipped with load cells that measured drag forces of 115 psia (793 kPa). This flow field contained a train of weak, unsteady, reflecting shock waves that were produced in the Mach 2 nozzle flows, the effect of reflecting shocks (which are to be expected in scramjet combustors) in internal flows has not previously been documented.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: JANNAF Combustion Subcommittee Meeting; Volume 1; 37-48; CPIA-Publ-653-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: The wall drag test tunnel at NASA Langley Research Center was used to evaluate simulated scramjet fuel injection into a wall cavity. In this tunnel, one wall consists of interchangeable aluminum plates attached to an air bearing suspension system. The plates were equipped with load cells to measure drag forces and static taps to determine pressure distributions. The plates were exposed to a Mach 2 air stream at a total pressure of 115 psia (793 kPa). This flow field contained a train of weak unsteady, reflecting shock waves that were produced in the nozzle assembly located upstream of the test section.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: The JANNAF Combustion Subcommittee Meeting; Volume 1; 25-36; CPIA-Publ-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: To model radiative transfer through the atmosphere with high accuracy, one must resort to the calculation of spectral absorption coefficients on a line-by-line basis. The calculation of these coefficients is computationally expensive for three reasons: (1) thousands of spectral lines can contribute to absorption at a single frequency; (2) the tails of spectral line profiles are long (i.e., a given line can contribute to absorption over a wide range of frequencies); and (3) the sampling frequencies at which monochromatic radiances are to be calculated must be spaced sufficiently close together to resolve the thinnest lines of interest (e.g., those that arise in the stratosphere). We have developed a new algorithm to accelerate the calculation of spectral absorption coefficients while retaining high numerical accuracy.
    Keywords: Geophysics
    Type: ; 68-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.
    Keywords: Geophysics
    Type: ; 24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: The Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) experiment has been selected for flight on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission expected to fly in the latter part of this decade. The primary science goal of SABER is to achieve fundamental and important advances in understanding of the energetics, chemistry, and dynamics, in the atmospheric region extending from 60 km to 180 km altitude, which has not been comprehensively observed on a global basis. This will be accomplished using the space flight proven experiment approach of broad spectral band limb emission radiometry. SABER will scan the horizon in 12 selected bands ranging from 1.27 microns to 17 microns wavelength. The observed vertical horizon emission profiles will be mathematically inverted in ground data processing to provide vertical profiles with 2 km vertical resolution, of temperature, O3, H2O, NO, NO2, CO, and CO2. SABER will also observe key emissions needed for energetics studies at 1.27 microns (O2((sup 1)delta)), 2 microns (OH(v = 7,8,9)) 1.6 microns (OH(v = 3,4,5)), 4.3 microns (CO2(v(sub 3))) 5.3 microns (NO) 9.6 microns (O3), and 15 microns (CO2(v(sub 2))). These measurements will be used to infer atomic hydrogen and atomic oxygen, the latter inferred three different ways using only SABER observations. Measurements will be made both night and day over the latitude range from the southern to northern polar regions.
    Keywords: Geophysics
    Type: ; 5-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: The work to be described was performed at the NASA Langley UPWT (4-ft supersonic), test section #2, during 21-24 May 1996. The configuration being tested was the 1.675% Ref H controls model; test conditions were Ma = 2.40, Re = 3 million/ft. This was an exploration of a new technique, and it was not intended to provide definitive comparison of measured and computed skin friction results. It is, however, hoped that the experience gained will make such a rigorous comparison possible in the future.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance; Volume 1; Part 2; 1478-1499; NASA/CP-1999-209691/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: To summarize the significant highlights in this report: (1) Data quality, determined by multiple repeat runs performed on the TCA baseline configuration, and long-term repeatability, determined by comparing baseline Reference H data from this test to a previous test, have been shown to be good. (2) The longitudinal stability of the TCA is more non-linear than for the Reference H, and while it is similar at normal lift values, the TCA has considerably more pitch-up at higher lift. (3) Longitudinal control effectiveness of the TCA is similar to the Reference H and the ratio of elevator effectiveness to horizontal tail effectiveness is approximately 0.3. 4) The directional stability of the TCA is improved relative to Reference H at higher angles-of attack. The chine is effective for improving directional stability. (5) The directional control effectiveness 'of the TCA rudder is the same as that of the Reference H rudder at low angles-of-attack, after taking factors, such as number of rudder panels deflected and vertical tail volume into account. However, rudder effectiveness was shown to be reduced at higher angles-of-attack. (6) The lateral stability was shown to be reduced relative to the Reference H, which may be beneficial at low speeds for alleviating lateral control saturation. (7) Lateral control effectiveness for the TCA was shown to be similar to the Reference H for negative trailing-edge flap deflections and was reduced by approximately 25% for positive trailing-edge flap deflections.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 612-668; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: This paper gives the results of a grid study, a turbulence model study, and a Reynolds number effect study for transonic flows over a high-speed aircraft using the thin-layer, upwind, Navier-Stokes CFL3D code. The four turbulence models evaluated are the algebraic Baldwin-Lomax model with the Degani-Schiff modifications, the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, and Menter's two-equation Shear-Stress-Transport (SST) model. The flow conditions, which correspond to tests performed in the NASA Langley National Transonic Facility (NTF), are a Mach number of 0.90 and a Reynolds number of 30 million based on chord for a range of angle-of-attacks (1 degree to 10 degrees). For the Reynolds number effect study, Reynolds numbers of 10 and 80 million based on chord were also evaluated. Computed forces and surface pressures compare reasonably well with the experimental data for all four of the turbulence models. The Baldwin-Lomax model with the Degani-Schiff modifications and the one-equation Baldwin-Barth model show the best agreement with experiment overall. The Reynolds number effects are evaluated using the Baldwin-Lomax with the Degani-Schiff modifications and the Baldwin-Barth turbulence models. Five angles-of-attack were evaluated for the Reynolds number effect study at three different Reynolds numbers. More work is needed to determine the ability of CFL3D to accurately predict Reynolds number effects.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1185-1214; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: The NASA High Speed Research (HSR) Program is intended to establish a technology base enabling industry development of an economically viable and environmentally acceptable second generation high speed civil transport (HSCT). The HSR program consists of work directed towards several broad technology areas, one of which is aerodynamic performance. The objective of the Configuration Aerodynamics task of the Aerodynamic Performance technology area is the development of aerodynamic drag reduction, stability and control, and propulsion airframe integration technologies required to support the HSCT development process. Towards this goal, computational and empirical based aerodynamic design tools are being developed, evaluated, and validated through ground based experimental testing. In addition, methods for ground to flight scaling are being developed and refined. Successful development of validated design and scaling methodologies will result in improved economy of operation for an HSCT and reduce uncertainty in full-scale flight predictions throughout the development process.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 539-569; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.
    Keywords: Geophysics
    Type: Models and Measurements Intercomparison 2; 190-306; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: It is not unusual when comparing CFD data to experimental data to find discrepancies between the results. Sometimes forces and moments compare well, while surface pressures do not, and vice versa. It is commonplace for the researcher to believe that the flow field has been accurately simulated when these types of measurements compare well. However, being able to routinely predict boundary layer transition and separated flows are not guaranteed. In fact accurate simulation of these types of flow physics has been a challenge to the CFD community. In order to improve Navier-Stokes predictions for complex vortical flow fields, more detailed information about the flow physics is necessary. Unfortunately, the many wind-tunnel tests performed in Langley's NTF and 14x22 facilities as well as in the Ames' 12 ft. Tunnel provided little information about the detailed flow physics, and no priority was given to obtaining any CFD measurements. Using the latest experimental techniques, this information can and should be obtained for present and future use.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 2; Part 2; 913-948; NASA/CP-1999-209704/VOL2/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).
    Keywords: Geophysics
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 147-150; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-12-03
    Description: The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.
    Keywords: Geophysics
    Type: 11th International Conference on Atmospheric Electricity; 583-586; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: Eight months of differential potential measurements from the POLAR satellite were used to study the electron density distribution in the magnetosphere and its dependence on the level of geomagnetic activity identified by the Kp index. The differential potential measurement is directly proportional to the electron density, and this technique can be used for detecting fast electron density variation in low-density plasmas with a good accuracy. The inner magnetospheric regions are particularly investigated in this study. The cusp is found to be denser during low Km, and it moves equator-ward with increasing Km. The plasmapause is quite asymmetric, as expected. In particular, on the nightside, the plasmapause is compressed closer to the earth with increasing Kp. While the density gradients at the dayside plasmapause are usually not very steep, they can be quite large at other time sectors. A particularly pronounced sharpening of the plasmapause occurs at the dusk sector with increasing Kp. The density in the region between the dayside plasmapause and magnetopause is relatively high during all Kp levels; the average densities are several electrons per cubic meter. During disturbed periods, the density in the near-earth plasma sheet near midnight increases and becomes higher than the densities towards the flanks of the plasma sheet.
    Keywords: Geophysics
    Type: Proceedings of the 31st ESALB Symposium on Correlated Phenomena at the Sun, in the Heliosphere and in Geospace; 53-58; ESA-SP-415
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: This paper focuses on the parallel computation of aerodynamic derivatives via automatic differentiation of the Euler/Navier-Stokes solver CFL3D. The comparison with derivatives obtained by finite differences is presented and the scaling of the time required to obtain the derivatives relative to the number of processors employed for the computation is shown. Finally, the derivative computations are coupled with an optimizer and surface/volume grid deformation tools to perform an optimization to reduce the drag of a three-dimensional wing.
    Keywords: Aerodynamics
    Type: HPCCP/CAS Workshop Proceedings 1998; 219-224; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-12-03
    Description: This paper provides an overview of the NASA High-Speed Research (HSR) Program dedicated to establishing the technology foundation to support the US transport industry's decision for an environmentally acceptable, economically viable 300 passenger, 5000 n.mi., Mach 2.4 aircraft. The HSR program, begun in 1990, is supported by a team of US aerospace companies. The international economic stakes are high. The projected market for more than 500 High-Speed Civil Transport (HSCT) airplanes introduced between the years 2000 and 2015 translates to more than $200 billion in aircraft sales, and the potential of 140,000 new jobs. The paper addresses the history of supersonic commercial air transportation beginning with the Concorde and TU-144 developments in the early 1960 time period. The technology goals for the HSR program are derived from market study results, projections on environmental requirements, and technical goals for each discipline area referenced to the design and operational features of the Concorde. Progress since the inception of the program is reviewed and a summary of some of the lessons learned will be highlighted. An outline is presented of the remaining technological challenges. Emphasis in this paper will be on the traditional aeronautical technologies that lead to higher performance to ensure economic viability. Specific discussion will center around aerodynamic performance, flight deck research, materials and structures development and propulsion systems. The environmental barriers to the HSCT and that part of the HSR program that addresses those technologies are reviewed and assessed in a companion paper.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-12-03
    Description: Current parallel computational approaches involve distributed and shared memory paradigms. In the distributed memory paradigm, each processor has its own independent memory. Message passing typically uses a function library such as MPI or PVM. In the shared memory paradigm, such as that used on the SGI Origin 2000 machine, compiler directives are used to instruct the compiler to schedule multiple threads to perform calculations. In this paradigm, it must be assured that processors (threads) do not simultaneously access regions of memory in such away that errors would occur. This paper utilizes the latest version of the SGI MPI function library to combine the two parallelization paradigms to perform aerodynamic shape optimization of a generic wing/body.
    Keywords: Aerodynamics
    Type: HPCCP/CAS Workshop Proceedings 1998; 207-212; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-12-03
    Description: Minuscule amounts (e.g., 1 part in 10,000) of a surface-active material in a liquid can drastically affect the surface behavior of the liquid, influencing how the material flows and mixes with other liquid and solid materials. In many respects, the science of surfactants has been empirical, with trial and error dominating over the ability to predict how surfactant type and concentration influence surface behavior. A program for the modeling of surfactant behavior has been established at Yale. This program combines experimental work performed both on the ground and in space, and theoretical and numerical modeling. By levitating a drop of liquid in air, away from solid container surfaces, and by manipulating the drop with acoustic radiation forces, we have been able to establish idealized conditions for surface behavior studies. The primary experiments involve the study of the free oscillations of initially deformed drops. In STS-73, the USML-2 mission of the Space Shuttle, we performed the following measurements: 1) the oscillation of a spherical drop in its quadrupole mode; 2) the oscillation of a drop about a deformed (oblate) shape; 3) the slow static squeezing of the drop from spherical to nearly flat; and 4) the superoscillations of drops when the radiation forces maintaining the drop in a flattened state are suddenly reduced. Analytic and numerical studies have enabled us to understand the physics of these oscillations and to extract material properties such as the dynamic surface tension and the surface viscosities (shear and dilatational). The relation to ground-based studies is essential, because the knowledge and understanding gleaned from our space studies enable us to interpret ground-based data.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Second United States Microgravity Laboratory: One Year Report; Volume 1; 5.137-5.145; NASA/TM-1998-208697/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-12-03
    Description: The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.
    Keywords: Geophysics
    Type: Nineteenth International Laser Radar Conference; 11-14; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-12-03
    Description: The instrumentation and the observations performed by four identically instrumented sounding rockets, designed to investigate the mesosphere and lower thermosphere, are reported. The four sounding rockets were launched from the Brazilian equatorial range Alcantara in August 1994. The instruments were capable of determining ion and electron densities. The results of data processing showed discrepancies hitherto unnoticed by other experiments.
    Keywords: Geophysics
    Type: ; 381-386
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-12-03
    Description: Progress, significant results, and future plans regarding the following project objectives are presented: (a) Develop techniques for optimizing structural analysis of basement trends in arid regions with extremely subdued topography and/or thin aeolian cover. b) Apply results of (a) to map the southern extension of the Hamisana Shear Zone and the western extension of Nakasib Suture. c) Apply results of (b) to constrain the roles of terrane accretion and strike-slip re-organization for late Precambrian crustal evolution in NE Africa.
    Keywords: Geophysics
    Type: Science Results from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR): Progress Report; 170-178; NASA/CR-97-206707
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-12-03
    Description: Progress and future plans for the following objectives are presented: (1) To develop a technique to obtain values of aeolian roughness for geologic surfaces from values of surface roughness determined from calibrated L- and C-band, like- and cross-polarized, multiple incidence angle radar data from SIR-C; (2) To define the optimal combination of radar parameters from which aeolian roughness can be derived; and (3) To gain an understanding of the physical processes behind the empirical relationship.
    Keywords: Geophysics
    Type: Science Results from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR): Progress Report; 68-70; NASA/CR-97-206707
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-12-03
    Description: A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 299-310; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2004-12-03
    Description: The following are conclusions and recomendations from the study. Primary wake effect is linear reduction in (eta) with St. Secondary wake effect is skewing of suction/pressure side cooling. Steady computations match experimental Nu, but overpredict (eta). Unsteady computations elucidate wake/film interaction. Model may be used to estimate wake passing effect. Need boundary layer and full stage experiments. Need resolved film hole and full stage unsteady computations. Need validated turbulence models for film cooling.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 225-237; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-12-03
    Description: The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 191-198; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-12-03
    Description: A tab placed on the leeward side of the nozzle was expected to increase jet penetration into the cross-flow. An experiment at UTRC showed insignificant effect. The primary objective of the present study was to confirm and explain the ineffectiveness. The overall approach of the study was to conduct experiments in a low-speed wind tunnel and to conduct hot-wire measurements for mean velocity and streamwise vorticity fields.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 181-190; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2004-12-03
    Description: Testing is currently in progress to acquire simple geometry surface heat transfer data for internal channels with trips and bleed holes which can be used in the development and validation of models. The transient liquid crystal technique is used on a simple multipass model with rectangular channels and normal ribs. Normal bleed holes are located on the floor of the model in the first channel. Each hole is attached to a flow meter, allowing various bleed flow rates to simulate external pressures on the blade.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 97-102; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2004-12-03
    Description: Reasonable heat transfer prediction can be achieved in complex geometries. Multi-block grid allows efficient placement of grid points, and efficient use of computer resources. Wilcox k-(omega) turbulence model predicts heat transfer well, and has good numerical behavior.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 33-45; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2004-12-03
    Description: The flow through a plane asymmetric diffuser is a good test case for assessing the capability of LES since it contains features such as large scale unsteady separation and strong intermittency which are difficult to capture using conventional modeling approaches. Previous attempts to simulate this flow (Kaltenbach, 1994) have significantly underpredicted the extent of separation. The objective of the present research is to understand why the previous simulations did not predict the flow separation correctly. This study focuses on mesh refinement and matching of the inlet velocity profile. In order to perform this study, the flow solver of Kaltenbach (1994) was modified to increase its accuracy and efficiency. The improved algorithm allows for better resolution at affordable CPU cost.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Center for Turbulence Research; 249-255; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The objective of the present research is to assess the usefulness of large-eddy simulation (LES) methodology for flows in complex geometries. Flow past a circular cylinder has been calculated using a central-difference based solver, and the results have been compared to those obtained by a solver that employs higher-order upwind biased schemes (Beaudan & Moin, 1994). This comparison allows us to assess the suitability of these schemes for LES in complex geometry flows.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Annual Research Briefs-1996; 233-241; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2004-12-03
    Description: Accurate SGS models must be capable of correctly representing the energy transfer between GS and SGS. Recent direct assessment of the energy transfer carried out using direct numerical simulation (DNS) data for wall-bounded flows revealed that the energy exchange is not unidirectional. Although GS kinetic energy is transferred to the SGS (forward scatter (F-scatter) on average, SGS energy is also transferred to the GS. The latter energy exchange (backward scatter (B-scatter) is very significant, i.e., the local energy exchange can be backward nearly as often as forward and the local rate of B-scatter is considerably higher than the net rate of energy dissipation.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Center for Turbulence Research; 211-224; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2004-12-03
    Description: An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Seventh Copper Mountain Conference on Multigrid Methods; Part 1; 109-121; NASA-CP-3339
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2004-12-03
    Description: The role of unsteady flow processes in establishing the performance of axial flow turbomachinery was investigated. The development of the flow model, as defined by the time average flow equations associated with the passage of the blade row embedded in a multistage configuration, is presented. The mechanisms for unsteady momentum and energy transport is outlined. The modeling of the unsteady momentum and energy transport are discussed. The procedure for simulating unsteady multistage turbomachinery flows is described.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2004-12-03
    Description: A mathematical model for closing or mathematically completing the system of equations is proposed. The model describes the time average flow field through the blade passages of multistage turbomachinery. These average-passage equation systems govern a conceptual model useful in turbomachinery aerodynamic design and analysis. The closure model was developed to insure a consistency between these equations and the axisymmetric through-flow equations. The closure model was incorporated into a calculation code for use in the simulation of the flow field about a high-speed counter rotating propeller and a high-speed fan stage.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2004-12-03
    Description: The primary objectives of this study were to expand the data base showing the effects of LE radius distribution and corresponding sensitivity to Rn at subsonic and transonic conditions, and to assess the predictive capability of CFD for these effects. Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements to enable a viable HSCT, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds , and 3) limited data. A test of a modified Reference H model with the TCA planform and 2 LE radius distributions was performed in the NTF, in addition to Navier-Stokes analysis for an additional 3 LE radius distributions. Results indicate that there is a tremendous potential to improve high-lift performance through the use of a blunt LE across the span given an integrated, fully optimized design, and that low Rn data alone is probably not sufficient to demonstrate the benefit.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 588-611; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2004-12-03
    Description: This paper presents results of a study which attempted to provide some understanding of the relationship between skin friction drag estimates produced by flat plate methods and those produced by Navier-Stokes computations. A brief introduction is followed by analysis, including a flat plate grid study, analysis of the wing flow, an analysis of the fuselage flow. Other results of interest are then presented, including turbulence model sensitivities, and brief analysis of other configurations.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance; Volume 1; Part 2; 1452-1477; NASA/CP-1999-209691/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2004-12-03
    Description: Efforts towards understanding boundary layer transition characteristics on a High Speed Civil Transport (HSCT)-class configuration in the National Transonic Facility (NTF) are ongoing. The majority of the High Speed Research (HSR) data base in the NTF has free transition on the wing, even at low Reynolds numbers (Rn) attainable in conventional facilities. Limited data has been obtained and is described herein showing the effects of a conventional, Braslow method based wing boundary-layer trip on drag. Comparisons are made using force data polars and surface flow visualization at selected angles-of-attack and Mach number. Minimum drag data obtained in this study suggest that boundary layer transition occurred very near the wing leading edge by a chord Rn of 30 million. Sublimating chemicals were used in the air mode of operation only at low Rn and low angles-of-attack with no flap deflections; sublimation results suggest that the forebody and outboard wing panel are the only regions with significant laminar flow. The process and issues related to the sublimating chemical technique as applied in the NTF are discussed. Beyond the existing experience, status of efforts to develop a production transition detection system applicable to both air and cryogenic nitrogen environments is presented.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 579-596; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2004-12-03
    Description: Model deformation measurement techniques have been investigated and developed at NASA's Langley Research Center. The current technique is based upon a single video camera photogrammetric determination of two dimensional coordinates of wing targets with a fixed (and known) third dimensional coordinate, namely the spanwise location. Variations of this technique have been used to measure wing twist and bending at a few selected spanwise locations near the wing tip on HSR models at the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel. Automated measurements have been made at both the Transonic Dynamics Tunnel and at Unitary Plan Wind Tunnel during the past year. Automated measurements were made for the first time at the NTF during the recently completed HSR Reference H Test 78 in early 1996. A major problem in automation for the NTF has been the need for high contrast targets which do not exceed the stringent surface finish requirements. The advantages and limitations (including targeting) of the technique as well as the rationale for selection of this particular technique are discussed. Wing twist examples from the HSR Reference H model are presented to illustrate the run-to-run and test-to-test repeatability of the technique in air mode at the NTF. Examples of wing twist in cryogenic nitrogen mode at the NTF are also presented.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 561-578; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2004-12-03
    Description: To develop full scale flight performance predictions an understanding of Reynolds number effects on HSCT-class configurations is essential. A wind tunnel database utilizing a 2.2% scale Reference H model in NASA Langley Research Centers National Transonic Facility is being developed to assess these Reynolds number effects. In developing this database temperature and aeroelastic corrections to the wind tunnel data have been identified and are being analyzed. Once final corrections have been developed and applied, then pure Reynolds number effects can be determined. In addition, final corrections will yield the data required for CFD validation at q = 0. Presented in this report are the results of seven tests involving the wing/body configuration. This includes summaries of data acquired in these tests, uncorrected Reynolds number effects, and temperature and aeroelastic corrections. The data presented herein illustrates the successes achieved to date as well as the challenges that will be faced in obtaining full scale flight performance predictions.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1073-1107; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2004-12-03
    Description: Experience with afterbody closure effects and accompanying test techniques issues on a High Speed Civil Transport (HSCT)-class configuration is described. An experimental data base has been developed which includes force, moment, and surface pressure data for the High Speed Research (HSR) Reference H configuration with a closed afterbody at subsonic and transonic speeds, and with a cylindrical afterbody at transonic and supersonic speeds. A supporting computational study has been performed using the USM3D unstructured Euler solver for the purposes of computational fluid dynamics (CFD) method assessment and model support system interference assessment with a focus on lower blade mount effects on longitudinal data at transonic speeds. Test technique issues related to a lower blade sting mount strategy are described based on experience in the National Transonic Facility (NTF). The assessment and application of the USM3D code to the afterbody/sting interference problem is discussed. Finally, status and plans to address critical test technique issues and for continuation of the computational study are presented.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 529-560; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2004-12-03
    Description: The Boeing Reference H configuration was tested in the NASA Ames 9x7 Supersonic Wind Tunnel. A simulated unstarted inlet was evaluated as well as the aerodynamic performance of the configuration with and without nacelle and diverter components. These experimental results were compared with computational results from the unstructured grid Euler flow solver AIRPLANE. The comparisons between computational and experimental results were good, and demonstrated that the Euler code is capable of efficiently and accurately predicting the changes in the aerodynamic coefficients associated with inlet unstart and the effects of the nacelle and diverter components.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1285-1325; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2004-12-03
    Description: This presentation will describe the organization and conduct of the workshops, list the topics discussed, and conclude with a more-detailed examination of a related set of issues dear to the presenters heart. Because the current HSCT configuration is expected to have (mostly) turbulent flow over the wings, and because current CFD predictions assume fully-turbulent flow, the wind tunnel testing to date has attempted to duplicate this condition at the lower Reynolds numbers attainable on the ground. This frequently requires some form of artificial boundary layer trip to induce transition near the wing's leading edge. But this innocent-sounding goal leads to a number of complications, and it is not clear that present-day testing technology is adequate to the task. An description of some of the difficulties, and work underway to address them, forms the "Results" section of this talk. Additional results of the testing workshop will be covered in presentations by other team members.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 515-537; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This paper presents The Propulsion Airframe Integration Advisory report in viewgraph form. The approach of the advisory group is to identify and prioritize technology elements (1.0 Inlet Issues, 2.0 Nozzle Issues, 3.0 Nacelle Design, and 4.0 Airframe Integration).
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 31-39; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2004-12-03
    Description: Preliminary human acceptability studies of sonic booms indicate that supersonic flight is unlikely to be acceptable even at noise levels significantly below 1994 low boom designs (reference 1, p. 288). Further, these low boom designs represent considerable changes to baseline configurations, and changes translate into additional effort and uncertain structural weight penalties that may provide no annoyance benefit, increasing the risk of including low boom technology. Since over land sonic boom designs were so risky (and yet the acceptability studies highlight how annoying sonic booms are), boom softening studies were undertaken to reduce the boom of baseline configurations using minor modifications that would not significantly change the designs. The goal of this work is to reduce boom levels over water. Even though Concorde over water boom has not been found to have any adverse environmental impact, boom levels for baseline HSCT designs are 50% higher in overpressure than the Concorde (due to a doubling in configuration weight with only a 50% increase in length),
    Keywords: Aerodynamics
    Type: 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 2; 162-174; NASA/CP-1999-209520/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2004-12-03
    Description: Officially, the Tu-144 was the first supersonic-cruise, passenger-carrying aircraft to enter commercial service. Design, construction, and testing were carried out by the Soviet Union, flight certification was by the Soviet Union, and the only regular passenger flights were scheduled and flown across the territory of the Soviet Union. Although it was not introduced to international passenger service, there were many significant engineering accomplishments achieved in the design, production, and flight of this aircraft. Development of the aircraft began with a prototype stage. Systematic testing and redesign led to a production aircraft in discrete stages that measurably improved the performance of the aircraft from the starting concept to final aircraft certification. It flew in competition with the English-French Concorde for a short time, but was withdrawn from national commercial service due to a lack of interest by airlines outside the Soviet Union. NASA became interested in the Tu- 144 aircraft when it was offered for use as a flying "testbed" in the study of operating characteristics of a supersonic-cruise commercial airplane. Since it had been in supersonic-cruise service, the Tu- 144 had operational characteris'tics similar to those anticipated in the conceptual aircraft designs being studied by the United States aircraft companies. In addition to the other operational tests being conducted on the Tu-144 aircraft, it was proposed that two sets of sonic-boom pressure signature measurements be made. The first set would be made on the ground, using techniques and devices similar to those in reference I and many other subsequent studies. A second set would be made in the air with an instrumented aircraft flying close under the Tu-144 in supersonic flight. Such in-flight measurements would require pressure gages that were capable of accurately recording the flow-field overpressures generated by the Tu- 144 at relatively close distances under the vehicle. Therefore, an analysis of the Tu-144 was made to obtain predictions of pressure signature shape and shock strengths at cruise conditions so that the range and characteristics of the required pressure gages could be determined well in advance of the tests. Cancellation of the sonic-boom signature measurement part of the tests removed the need for these pressure gages. Since CFD methods would be used to analyze the aerodynamic performance of the Tu-144 and make similar pressure signature predictions, the relatively quick and simple Whitham-theory pressure signature predictions presented in this paper could be used for comparisons. Pressure signature predictions of sonic-boom disturbances from the Tu- 144 aircraft were obtained from geometry derived from a three-view description of the production aircraft. The geometry was used to calculate aerodynamic performance characteristics at supersonic-cruise conditions. These characteristics and Whitham/Walkden sonic-boom theory were employed to obtain F-functions and flow-field pressure signature predictions at a Mach number of 2.2, at a cruise altitude of 61000 feet, and at a cruise weight of 350000 pounds.
    Keywords: Aerodynamics
    Type: 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 2; 1-16; NASA/CP-1999-209520/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2004-12-03
    Description: This document contains the details of the thermal analysis of the X-38 aft fin during re-entry. This analysis was performed in order to calculate temperature response of the aft fin components. This would be provided as input to a structural analysis and would also define the operating environment for the electromechanical actuator (EMA). The calculated structural temperature response would verify the performance of the thermal protection system (TPS). The geometric representation of the aft fin was derived from an I-DEAS finite element model that was used for structural analysis. The thermal mass network model was derived from the geometric representation.
    Keywords: Aerodynamics
    Type: Ninth Thermal and Fluids Analysis Workshop Proceedings; 91-106; NASA/CP-1999-208695
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2004-12-03
    Description: In recent years, the role of PSCs in the ozone depletion process has become better understood. PSCs provide the surfaces upon which heterogeneous reactions take place that affect the gas phase partitioning between active and reservoir chlorine and nitrogen species. Present methods of PSC detection include in situ measurements by lidar and various satellite-borne instruments such as the Stratospheric Aerosol Measurement II (SAM II) on the Nimbus 7 spacecraft, which produced PSC measurements from 1978 to 1994 and several instruments onboard the Upper Atmospheric Research Satellite (UARS) such as the Cryogenic Limb Array Etalon Spectrometer (CLAES) which provided measurements for 1991-1993. All of the PSC-detection methods devised so far have been hampered by incomplete sampling of the places and times in which PSCs are likely to form. There is a need to understand the climatology of PSCS, in particular the timing of their onset and duration, their vertical distribution, geographic extent, annual variability and responses to volcanic aerosol forcing. Poole and Pitts [1994] assembled a PSC climatology based on SAM II data, but this climatology is incomplete, as it is limited to the edge of the polar night due to the limitations of the solar occultation scan geometry. The Advanced Very High Resolution Radiometer (AVHRR) five- channel sensors onboard the NOAA polar-orbiting satellites have been collecting data over the polar regions continuously since 1979. These operational satellites provide unmatched coverage in space and time of both polar regions, but were not designed for the detection of optically-thin PSCS. However, the AVHRR data archive would be an invaluable source for the construction of a long-term climatology of PSCs if techniques can be developed and tested to detect PSCs in AVHRR data. In the last few years, the members of our group at San Francisco State University and NASA Ames Research Center have been engaged in the development of various PSC detection methods using AVHRR data. There is strong evidence that a subset of PSCS, those that are optically thick, can be readily identified in the AVHRR data set. Our group has also made significant progress in the identification of optically thinner PSCs using a variety of techniques.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2004-12-03
    Description: While turbulence models are being developed which show promise for simulating the transition region on a turbine blade or vane, it is believed that the best approach with the greatest potential for practical use is the use of models which incorporate the physics of turbulent spots present in the transition region. This type of modeling results in the prediction of transition region intermittency which when incorporated in turbulence models give a good to excellent prediction of the transition region heat transfer. Some models are presented which show how turbulent spot characteristics and behavior can be employed to predict the effect of pressure gradient and Mach number on the transition region. The models predict the spot formation rate which is needed, in addition to the transition onset location, in the Narasimha concentrated breakdown intermittency equation. A simplified approach is taken for modeling turbulent spot growth and interaction in the transition region which utilizes the turbulent spot variables governing transition length and spot generation rate. The models are expressed in terms of spot spreading angle, dimensionless spot velocity, dimensionless spot area, disturbance frequency and Mach number. The models are used in conjunction with a computer code to predict the effects of pressure gradient and Mach number on the transition region and compared with VKI experimental turbine data.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines; 435-449; NASA/CP-1998-206958
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2004-12-03
    Description: Lidar backscattering profiles available from the LITE data set have been used to estimate the optical depths of the Saharan dust layer over West Africa and E. Atlantic regions, in the context of validating the 3-D conceptual model of the Saharan dust plume proposed by Karyampudi and Carlson. The aerosol extinction profiles and optical depths were retrieved from LITE using the Fernald et al. (1972) method. An extinction-to-backscattering ratio, S(sub a), of 25 was selected for optical depth calculations. The spatial analysis of total column and Saharan dust layer optical depths show higher optical depths over W. Africa that decrease westward over E. Atlantic. The higher optical depths over W. Africa, in general, are associated with heavy dust being raised from the surface in dust source regions. Rapid depletion of these heavy dust particles, perhaps due to sedimentation, appear to decrease the dust loading within the dust layer as the plume leaves the west African continent. Higher optical depths are generally confined to the southern edge of the dust layer, where the middle level jet appears to transport the heavy dust concentrations that tend to mix downward from vertical mixing associated with the strong vertical shears underneath the middle jet. Thus, LITE measurements although, in general, validate the Saharan dust plume conceptual model, show maximum values of optical depths near the southern edge of the dust plume over the E. Atlantic region instead of near the center of the dust plume as described in the conceptual model.
    Keywords: Geophysics
    Type: Nineteenth International Laser Radar Conference; Part 2; 685-690; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2004-12-03
    Description: NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.
    Keywords: Aerodynamics
    Type: Nineteenth International Laser Radar Conference; Part 2; 681-684; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2004-12-03
    Description: The purpose of the balloon flights performed in March 1993 from Aire-sur-Adour (France) was to measure trace gases in the polar vortex during a dynamically active period. These balloon flights revealed coincident layering in long-lived tropospheric source gases. A layer of mid-latitude air, enriched in trace gases, was detected at sampled levels near 15 mbar. High resolution advection models, fine scale distributions of ozone, nitrous oxide, methane, and halocarbons were constructed. The calculations showed how air enriched in trace gases is sampled near 15 mbar when a filament of such air is drawn into the outer portion of the vortex.
    Keywords: Geophysics
    Type: ; 187-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2004-12-03
    Description: Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth's hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source, as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio (g kg(exp -l)), is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere's dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly-resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage. The data were obtained at the Atmospheric Radiation Measurement Site (CART) by the groundbased Department of Energy/Sandia National Laboratories lidar (CART Raman lidar or CARL) and Goddard Space Flight Center Scanning Raman Lidar (SRL). A detailed discussion of the SRL and CARL performance during the IOPs is given by others in this meeting.
    Keywords: Geophysics
    Type: Nineteenth International Laser Radar Conference; 403-406; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2004-12-03
    Description: The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system participated in the Subsonic Assessment, Ozone and Nitrogen Oxide Experiment (SONEX) mission from October 13 to November 12, 1997. The purpose of the mission was to study the upper troposphere/lower stratosphere in and near the North Atlantic flight corridor to better understand this region of the atmosphere and how civilian air travel in the corridor might be affecting the atmospheric chemistry. Bases of operations included NASA Ames, California (37.4 deg N, 122.1 deg W); Bangor, Maine (44.8 deg N, 68.8 deg W); Shannon, Ireland (52.7 deg N, 8.9 deg W); and Lajes, Terceira Island, Azores (38.8 deg N, 27.1 deg W). Since the UV DIAL system observes in the nadir as well as the zenith, aerosol and ozone data were obtained from near the Earth's surface to the lower stratosphere. A number of interesting features were noted relating to both chemistry and dynamics of the troposphere, which are reported here.
    Keywords: Geophysics
    Type: Nineteenth International Laser Radar Conference; 379-381; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2004-12-03
    Description: Worldwide, about ten Differential Absorption Lidars are used for long-term monitoring of stratospheric ozone. These systems are an important component of the Network for the Detection of Stratospheric Change. Although DIALs are self-calibrating in principle, regular intercomparisons with other ozone-lidars, microwave radiometers or ozone-sondes are highly desirable to ensure high data quality at a well known level. The Network for the Detection of Stratospheric Change (NDSC) validation policy suggests that such intercomparisons be "blind", meaning all participants submit their data to an impartial referee, without seeing results from the other participants. Here we report on the "blind" intercomparison taking place from January 20th to February 10th 1998 at Ny-Alesund, Spitsbergen (78.92 deg N, 11.95 deg E). Participating groups were from the Alfred Wegener Institute, Potsdam, operating the NDSC DIAL system at Ny-Alesund, from the University of Bremen operating the NDSC microwave radiometer for ozone profiling at Ny-Alesund, and the NASA Goddard Space Flight Center group with the "NDSC travelling standard" STROZ-LITE. The first author acted as the impartial referee. Also used for the intercomparison were data from ECC-6A/Vaisala RS80 ozone sondes routinely launched at Ny-Alesund by the AWI group. A 1% KI solution (3 ml) and the 1986 ECC pump correction (1.092 at 5 hPa) are used. The ECC-data were available to all participants during the campaign and thus were not "blind". Table 1 summarizes the expected performance of the instruments participating in the ozone intercomparison reported in this paper.
    Keywords: Geophysics
    Type: Nineteenth International Laser Radar Conference; 347-350; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2004-12-03
    Description: A research is performed: to define wake non-encounter & hazard, to provide requirements for sensors, and to obtain input from the user community. This research includes: validating wake encounter simulation models, establishing a metric to quantify the upset potential of a wake encounter, applying hazard metric and simulation models to the commercial fleet for development of candidate acceptable encounter limits, and applying technology to near term problems to evaluate current status of technology. The following lessons are learned from this project: technology is not adequate to determine absolute spacing requirements; time, not distance, determines the duration of the wake hazard; Optimum standards depend on the traffic; Wing span is an important parameter for characterizing both generator and follower; and Short span "biz jets" are easily rolled.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 342-350; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2004-12-03
    Description: The overall approach should be to: (1) Seek simplest, sufficiently robust, integrated ground based sensor systems (wakes and weather) for AVOSS; (2) Expand all sensor performance cross-comparisons and data mergings in on-going field deployments; and (3) Achieve maximal cost effectiveness through hardware/info sharing. An effective team is in place to accomplish the above tasks.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 324-332; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2004-12-03
    Description: In the overview, a description of the LaRC trailer facility, lasers and transceivers, scanners, data systems and deployment are presented.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 247-260; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2004-12-03
    Description: Included in the overview is a discussion of the 1.5 micron laser specifications, eye safety and cost, scan rates, pulselength, range capability issues, Raman beam cleanup, receiver layout, and the real-time processor and display.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 292-298; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2004-12-03
    Description: Results from parametric runs using two-dimensional TASS are presented. First, a set of experiments are presented that examine the sensitivity of the aircraft initiation height for an "in ground effect" case with weak crosswind. Interaction between the ground and the wake vortex produces an oscillatory rebound whose phase and amplitude are a function of the generation height. A second set of experiments are presented which examine the influence on crosswind shear. Shear layers, such as may be found between the nocturnal stable layer and the residual layer, can act to deflect vortices upward. Further investigation reveals that the second derivative of the crosswind can differentially reduce the descent speed of each member of a vortex pair, causing tilting of the vortex pair. If sufficiently large, the second derivative of crosswind can deflect the vortex pair upwards, with the sign of the second derivative determining which of the two vortices rises to a higher altitude. Linear shear, on the other hand, caused no change in the descent speed of the vortices; thus having no effect on the orientation of the vortices. Observed and model data from an actual case are presented in support of the conclusion regarding the influence of shear on rising vortices.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 93-108; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2004-12-03
    Description: Crow instability can develop in most atmospheric turbulence levels, however, the ring vortices may not form in extremely strong turbulence cases due to strong dissipation of the vortices. It appears that strong turbulence tends to accelerate the occurrences of Crow instability. The wavelength of the most unstable mode is estimated to be about 5b(sub 0), which is less than the theoretical value of 8.6b(sub 0) (Crow, 1970) and may be due to limited domain size and highly nonlinear turbulent flow characteristics. Three-dimensional turbulence can decay wake vortices more rapidly. Axial velocity may be developed by vertical distortion of a vortex pair due to Crow instability or large turbulent eddy motion. More experiments with various non-dimensional turbulence levels are necessary to get useful statistics of wake vortex behavior due to turbulence. Need to investigate larger turbulence length scale effects by enlarging domain size or using grid nesting.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 131-144; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2004-12-03
    Description: The vortices produced by an aircraft in flight are a complex phenomena created from a 'sheet of vorticity' leaving the trailing edge of the aircraft surfaces. This sheet tends to roll-up into two counter-rotating vortices. After a few spans downstream of the aircraft, the roll-up process is complete and the vortex pair may be characterized in a simple manner for modeling purposes. Our research will focus on what happens to these post roll-up vortices in the vicinity of an airport terminal. As the aircraft wake vortices descend, they are transported by the air mass which they are embedded and are decayed by both internal and external processes. In the vicinity of the airport, these external influences are usually due to planetary boundary layer (PBL) turbulence. Using large-eddy simulation (LES), one may simulate a variety of PBL conditions. In the LES method, turbulence is generated in the PBL as a response to surface heat flux, horizontal pressure gradient, wind shear, and/or stratification, and may produce convective or unstably stratified, neutral, or stably stratified PBL's. Each of these PBL types can occur during a typical diurnal cycle of the PBL. Thus it is important to be able to characterize these conditions with the LES method. Once this turbulent environment has been generated, a vortex pair will be introduced and the interactions are observed. The objective is to be able to quantify the PBL turbulence vortex interaction and be able to draw some conclusions of vortex behavior from the various scale interactions. This research is ongoing, and we will focus on what has been accomplished to date and the future direction of this research. We will discuss the model being used, show results that validate its use in the PBL, and present a nested-grid method proposed to analyze the entire PBL and vortex pair simultaneously.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 109-130; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The purpose of the modelling effort at NASA Langley, including goals, is outlined in this presentation. Included, is a description of the numerical model that is used for the NASA wake vortex modeling effort and the approach that is taken in order to achieve the stated goals. Also shown are: 1) a demonstration of using the model in a fog environment; 2) preliminary results from a 3-D simulation in a nonturbulent and thermally-stable environment with comparison to a comparable 2-D simulation of the same event; and 3) several validation cases from the Idaho-Falls and Memphis field studies where results from the 2-D version of the model are compared with Lidar and tower data.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 75-92; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2004-12-03
    Description: The activities and aims of the Inter-Agency Consultative Group (IACG) for space science are reported on. The principle aim is to enhance the scientific return among the members through the coordination of their fleets of current and future spacecraft. The four current campaigns are: magnetotail energy flow and nonlinear dynamics; boundaries in the collisionless plasma; solar events and their manifestations in interplanetary space and geoscience, and solar sources of heliospheric structure observed out of the ecliptic. The first of these campaigns and its implementation are reviewed.
    Keywords: Geophysics
    Type: Third International Conference on Substorms (ICS-3); 707-711; ESA-SP-389
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2004-12-03
    Description: The characteristics of traveling compression regions (TCRs) in the midtail lobes are examined. Through the use of the AL index, isolated substorm events with well developed expansion phases are selected. The TCR events which feature a field compression coincident with modified Bz variations are categorized into different types, and the magnetic variations are interpreted in terms of the relative location of the point of observation to the plasmoid at the time of release and the effects of tail flaring. In order to understand the relationship between the plasmoid release time and the substorm onset time, the time difference between the different types of TCR and the substorm onset determined by Pi 2 pulsations at mid-latitude ground stations, is examined. The results suggest that the downtail release of most of the plasmoids created earthwards of -38 earth radii occurs at almost the same distance as the substorm onset.
    Keywords: Geophysics
    Type: ; 603-607
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2004-12-03
    Description: The Global Geospace Science (GGS) program's Polar satellite is reported on. The satellite aims to measure: the plasma flux in the polar magnetosphere and the geomagnetic tail; the plasma flux to and from the ionosphere, and the deposition of particle energy in the upper atmosphere. To accomplish these objectives, the satellite was placed on a 86 deg inclination, elliptical orbit whose apogee is located over the northern polar region. The spacecraft carries instruments for observing and measuring the magnetic field and charged particles as well as the imaging instruments.
    Keywords: Geophysics
    Type: Third International Conference on Substorms (ICS-3); 721-724; ESA-SP-389
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2004-12-03
    Description: The objective of this study is to provide careful qualification and detailed measurements in a re-creation of the Obi experiment. The work will include extensive documentation of the flow two-dimensionality and detailed measurements required for testing of flow computations. Also important to this study is the close interaction of the experimental and computational groups to improve the utility of the data obtained and the accuracy of computation.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Annual Research Briefs-1996; 243-248; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2004-12-03
    Description: The control of vortical flows is gaining significance in the design of aeronautical and marine structures. While passive devices have been used effectively in the past, active control strategies have the potential of allowing a leap in the performance of future configurations. The efficiency of control schemes is strongly dependent on the development of accurate flow models that can be devised using information that is available not only from numerical solutions of the governing Navier-Stokes equations but also can be measured experimentally. In that context it is desirable to construct adaptive control schemes using information that can be measured at the wall.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Center for Turbulence Research; 165-181; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2004-12-03
    Description: Stability of the elliptic vortex attracted interest in the past decade. Cambon (1982), and Cambon, Teissedre and Jeandel (1985) have studied the stability of such flows with spatially uniform velocity gradient, and have provided RDT solutions for a wide range of the parameter S/Omega (where the strain rate S and the vorticity 2 Omega define the velocity gradient matrix). The range studied included those of hyperbolic streamlines (strain dominated, S/Omega is greater than 1), linear streamlines (simple shear, S/Omega = 1), and elliptical streamlines (vorticity dominated, S/Omega is less than 1). The latter class has more recently attracted interest and several studies appeared (Pierrehumbert 1986, Bayly 1986, Craik and Criminale 1986). These studies will be collectively referred to as PBCC.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Center for Turbulence Research; 151-163; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The objective is the development of a new theory which enables the algorithmic computation of all self-similar mean velocity profiles. The theory is based on Liegroup analysis and unifies a large set of self-similar solutions for the mean velocity of stationary parallel turbulent shear flows. The results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the middle of a Couette flow and in the middle of a rotating channel flow, and a new exponential mean velocity profile not previously reported. Experimental results taken in the outer parts of a high Reynolds number flat-plate boundary layer, strongly support the exponential profile. From experimental as well as from DNS data of a turbulent channel flow the algebraic scaling law could be confirmed in both the center region and in the near wall region. In the case of the logarithmic law of the wall, the scaling with the wall distance arises as a result of the analysis and has not been assumed in the derivation. The crucial part of the derivation of all the different mean velocity profiles is to consider the invariance of the equation for the velocity fluctuations at the same time as the invariance of the equation for the velocity product equations. The latter is the dyad product of the velocity fluctuations with the equation for the velocity fluctuations. It has been proven that all the invariant solutions are also consistent with similarity of all velocity moment equations up to any arbitrary order.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Annual Research Briefs-1996; 183-197; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2004-12-03
    Description: Nonpremixed combustion is the process whereby fuel and oxidizer species, which are each nonflammable in isolation, concurrently mix to burn a flammable mixture, and chemically react in the flammable mixture. In cases of practical industrial interest, the bulk of nonpremixed combustion occurs in a turbulent mixing regime where enhanced mass transfer rates flow the maximum power density to be achieved in any given thermochemical device.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Annual Research Briefs-1996; 85-99; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2004-12-03
    Description: Direct numerical simulation of turbulent reacting flows places extreme demands on computational resources. At the present time, simulations can be performed only for greatly simplified reaction systems and for very low Reynolds numbers. Direct simulation of more realistic cases occurring at higher Reynolds number and including multiple species and numerous chemical reactions will exceed available computational resources far into the future. Because of this, there is a clear need to develop the technique of large eddy simulation for reacting flows. Unfortunately this task is complicated by the fact that combustion arises from chemical reactions that occur at the smallest scales of the flow. Capturing the large-scale behavior without resolving the small-scale details is extremely difficult in combustion problems. Thus LES modeling for turbulent combustion encounters difficulties not present in modeling momentum transport, in which the main effect of the small scales is to provide dissipation. The difficulty is more pronounced in premixed combustion, where detailed chemistry plays an essential role in determining the flame speed (or overall burning rate); in nonpremixed combustion infinite rate chemistry can be assumed, eliminating the small scale features to a first approximation.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Annual Research Briefs-1996; 101-113; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2004-12-03
    Description: Many industrial applications in such fields as aeronautical, mechanical, thermal, and environmental engineering involve complex turbulent flows containing global separations and subsequent reattachment zones. Accurate prediction of this phenomena is very important because separations influence the whole fluid flow and may have an even bigger impact on surface heat transfer. In particular, reattaching flows are known to be responsible for large local variations of the local wall heat transfer coefficient as well as modifying the overall heat transfer. For incompressible, non-buoyant situations, the fluid mechanics have to be accurately predicted in order to have a good resolution of the temperature field.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Annual Research Briefs - 1996; 17-30; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2004-12-03
    Description: In simple flows, where the mean deformation rates are mild and the turbulence has time to come to equilibrium with the mean flow, the Reynolds stresses are determined by the applied strain rate. Hence in these flows, it is often adequate to use an eddy-viscosity representation. The modern family of kappa-epsilon models has been very useful in predicting near equilibrium turbulent flows, where the rms deformation rate S is small compared to the reciprocal time scale of the turbulence (epsilon/kappa). In modern engineering applications, turbulence models are quite often required to predict flows with very rapid deformations (large S kappa/epsilon). In these flows, the structure takes some time to respond and eddy viscosity models are inadequate. The response of turbulence to rapid deformations is given by rapid distortion theory (RDT). Under RDT the nonlinear effects due to turbulence-turbulence interactions are neglected in the governing equations, but even when linearized in this fashion, the governing equations are unclosed at the one-point level due to the non-locality of the pressure fluctuations.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Center for Turbulence Research; 31-51; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2004-12-03
    Description: Direct numerical simulation (DNS) was used to study homogeneous turbulence with a mean flow having elliptic streamlines. This flow combines the effects of rotation and strain on the turbulence. There are many important reasons for studying the elliptic streamline flow. This flow contains the effects of both rotation and strain and is therefore similar to the mean flow in a vortex strained in the plane perpendicular to its axis. Such flows provide insight into the fundamental vortical interactions within turbulence. A strained vortex also occurs in airplane wakes, in which each wingtip vortex induces a strain field on the other. The strain field can affect the stability of these vortices and thereby their turbulent structure downstream. The ability to understand and predict the turbulent structure of the vortices is important to the wake hazard problem which is of major concern for the safety of commercial aircraft.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2004-12-03
    Description: A combined experimental and computational effort to test the performance of turbulence models in prediction of three-dimensional separation is under way. The current phase pf the project is the acquisition of flow field data using laser Doppler velocimetry. Accomplishments for summer 1996 include development of the instrument and signal processing system and acquisition of mean velocity profiles.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The model is a replica of a modified MAX-103 kit aircraft that our Parks College of St. Louis University Student Design Group built and modified from a tail wheel to a tricycle configuration. A model was tested in the Parks College low-speed wind tunnel. I hope to initiate flight-testing upon my second return to. St. Louis. The combined data using wind tunnel, water tunnel, RC, flight-testing and analytical results will be very valuable for assessing the correlation between the different methods of analyses, since at present it is almost impossible to accurately predict flight characteristics from anything but in-situ tests. Unfortunately, political/financial reasons dictated using a generic wing rather than a specific model in the NASA-DFRC water tunnel.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2004-12-03
    Description: The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Seals Code Development Workshop; 211-222; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2004-12-03
    Description: Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Seals Code Development Workshop; 191-208; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2004-12-03
    Description: A hybrid boundary element finite volume method for unsteady transonic flow computation has been developed. In this method, the unsteady Euler equations in a moving frame of reference are solved in a small embedded domain (inner domain) around the airfoil using an implicit finite volume scheme. The unsteady full-potential equation, written in the same frame of reference and in the form of the Poisson equation. is solved in the outer domain using the integral equation boundary element method to provide the boundary conditions for the inner Euler domain. The solution procedure is a time-accurate stepping procedure, where the outer boundary conditions for the inner domain are updated using the integral equation -- boundary element solution over the outer domain. The method is applied to unsteady transonic flows around the NACA0012 airfoil undergoing pitching oscillation and ramp motion. The results are compared with those of an implicit Euler equation solver, which is used throughout a large computational domain, and experimental data.
    Keywords: Aerodynamics
    Type: Aeroelastic, CFD, and Dynamic Computation and Optimization for Buffet and Flutter Applications; NASA-CR-200634
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2004-12-03
    Description: In the design of an airframe, the effect of changing the geometry on resulting computations is necessary for design optimization. The geometry is defined in terms of a series of design variables, including design variables to define the wing planform, tail, canard, pylon, and nacelle. Design optimization in this research is based on how these design variable affect the potential flow. The potential flow is computed as a function of the geometry and location of a series of panels describing the airframe, which are in turn a function of the design variables. Multipole accelerated panel methods improve the computational complexity of the problem and thus are an attractive approach. To utilize the methods in design optimization, it was necessary to define the appropriate sensitivity derivatives. The overhead incurred from finding the sensitivity derivatives in conjunction with the original computation should be small. This research developed the background for multipole-accelerated panel methods and the framework for finding sensitivity derivatives in the methods. Potential flow panel codes are commonly used for powered-lift aerodynamic predictions for three dimensional geometries. Given an airframe which has been discretized into a series of panels to define the airframe geometry, potential is computed as a function of the influence of all panels on all other panels. This is a computationally intensive problem for which efficient solutions are desired to improve the computational time and to allow greater resolution by use of more panels. One such solution is the use of hierarchical multipole methods which entail approximations of the effects of far-field terms. Hierarchical multipole methods have become prevalent in molecular dynamics and gravitational physics, and have been introduced into the fields of capacitance calculations, computational fluid dynamics, and electromagnetics. The methods utilize multipole expansions to describe the effect of bodies (i.e. particles, astrophysical bodies, panels, etc.) within a sphere on points distant from the sphere, where the influence diminishes as a function of distance. The expansions are exact with infinite series, however, for practical computations, the series are truncated and accuracy is selected based on the number of terms retained in the expansions. A hierarchical tree structure groups bodies together based on proximity to allow definition of multipole expansions for each group. The multipole expansions are then used to compute the effect of the bodies in a group on distant bodies.
    Keywords: Aerodynamics
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 90; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2004-12-03
    Description: To summarize the significant highlights in this report: (1) Data quality, determined by multiple repeat runs performed on the TCA baseline configuration, and long-term repeatability, determined by comparing baseline Reference H data from this test to a previous test, have been shown to be good. (2) The longitudinal stability of the TCA is more non-linear than for the Reference H, and while it is similar at normal lift values, the TCA has considerably more pitch-up at higher lift. (3) Longitudinal control effectiveness of the TCA is similar to the Reference H and the ratio of elevator effectiveness to horizontal tail effectiveness is approximately 0.3. (4) The directional stability of the TCA is improved relative to Reference H at higher angles-of attack. The chine is effective for improving directional stability.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 612-668; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2004-12-03
    Description: The NASA-industry team has sponsored several studies in the last two years to address the installed nozzle boattail drag issues. Some early studies suggested that nozzle boattail drag could be as much as 25 to 40 percent of the subsonic cruise. As part of this study tests have been conducted at NASA-Langley to determine the uninstalled drag characteristics of a proposed nozzle. The overall objective was to determine the effects of nozzle external flap curvature and sidewall boattail variations. This test would also provide data for validating CFD predictions of nozzle boattail drag.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 669-706; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2004-12-03
    Description: AIRPLANE (Jameson/Baker) is a steady inviscid unstructured Euler flow solver. It has been validated on many HSR geometries. It is implemented as MESHPLANE, an unstructured mesh generator, and FLOPLANE, an iterative flow solver. The surface description from an Intergraph CAD system goes into MESHPLANE as collections of polygonal curves to generate the 3D mesh. The flow solver uses a multistage time stepping scheme with residual averaging to approach steady state, but R is not time accurate. The flow solver was ported from Cray to IBM SP2 by Wu-Sun Cheng (IBM); it could only be run on 4 CPUs at a time because of memory limitations. Meshes for the four cases had about 655,000 points in the flow field, about 3.9 million tetrahedra, about 77,500 points on the surface. The flow solver took about 23 wall seconds per iteration when using 4 CPUs. It took about eight and a half wall hours to run 1,300 iterations at a time (the queue limit is 10 hours). A revised version of FLOPLANE (Thomas) was used on up to 64 CPUs to finish up some calculations at the end. We had to turn on more communication when using more processors to eliminate noise that was contaminating the flow field; this added about 50% to the elapsed wall time per iteration when using 64 CPUs. This study involved computing lift and drag for a wing/body/nacelle configuration at Mach 0.9 and 4 degrees pitch. Four cases were considered, corresponding to four nacelle mass flow conditions.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance; Volume 1; Part 2; 1605-1648; NASA/CP-1999-209691/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2004-12-03
    Description: The primary objectives of this study were to expand the data base showing the effects of LE radius distribution and corresponding . sensitivity to Rn at subsonic and transonic conditions, and to assess the predictive capability of CFD for these effects. Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements to enable a viable HSCT, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds , and 3) limited data. A test of a modified Reference H model with the TCA planform and 2 LE radius distributions was performed in the NTF, in addition to Navier-Stokes analysis for an additional 3 LE radius distributions. Results indicate that there is a tremendous potential to improve high-lift performance through the use of a blunt LE across the span given an integrated, fully optimized design, and that low Rn data alone is probably not sufficient to demonstrate the benefit.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 588-610; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2004-12-03
    Description: In cooperation with personnel from the Boeing ANP Laboratory and NASA Langley, a performance test was conducted using the Reference-H 1.675% model ("NASA Modular Model") without nacelles at the NASA Langley 16-Ft Transonic Tunnel. The main objective of the test was to determine the drag reduction achievable with leading-edge and trailing-edge flaps deflected along the outboard wing span at transonic Mach numbers (M = 0.9 to 1.2) for purpose of preliminary design and for comparison with computational predictions. The obtained drag data with flap deflections for Mach numbers of 1.07 to 1.20 are unique for the Reference H wing. Four leading-edge and two trailing-edge flap deflection angles were tested at a mean-wing chord-Reynolds number of about 5.7 million. An outboard-wing leading-edge flap deflection of 81 provides a 4.5 percent drag reduction at M = 1.2 A = 0.2), and much larger values at lower Mach numbers with larger flap deflections. The present results for the baseline (no flaps deflected) compare reasonably well with previous Boeing and NASA Ref-H tunnel tests, including high-Reynolds number NTF results. Viscous CFD simulations using the OVERFLOW thin-layer N.S. method properly predict the observed trend in drag reduction at M = 1.2 as function of leading-edge flap deflection. Modified linear theory properly predicts the flap effects on drag at subsonic conditions (Aero2S code), and properly predicts the absolute drag for the 40 and 80 leading-edge deflection at M = 1.2 (A389 code).
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1109-1141; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2004-12-03
    Description: Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a proposed high speed civil transport configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at Mach 2.4 for a range of angles-of-attack and sideslip. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex shock wave structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics are shown to correlate very well with the measured data across the examined range of angles-of-attack and sideslip. The results from the present effort have been documented into a NASA Controlled-Distribution report which is being presently reviewed for publication.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 287-308; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2004-12-03
    Description: The objectives of the Cycle 2 Nonlinear Design Optimization Anlaytical Cross Checks are to: 1) Understand the variability in the predicted performance levels of the nonlinear designs arising from the use of different inviscid (full potential/Euler) and viscous (Navier-Stokes) analysis methods; and 2) Provide the information required to allow the performance levels of all three designs to be validated using the data from the NCV (nonlinear Cruise Validation) model test.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 45-73; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2004-12-03
    Description: During the last cycle of concept design and wind-tunnel testing, the goal of the low-boom- shaped HSCT concepts (the B-935, the LB-16, and the LB- 1 8) was to meet mission requirements and generate shaped, ground-level pressure signatures with nose shock strengths of 1.0 psf or less. The wind-tunnel tests of these concepts produced results that were partially successful and encouraging although not fully up to expectations. In spite of this, however, these conceptual designs were overly optimistic and not acceptable because: the wing planforms had excessive area; the wing structural aspect ratio was too high; one concept had aft-fuselage rather than under-the-wing engines; and the gross takeoff weights were unrealistically low because of engines that were early, high-tech versions of later, revised, more-realistic engines. The need for reducing the ground-level overpressure shock strengths still existed; a need to be met within more restrictive guidelines of mission performance and gross takeoff weight limitations. Therefore, it was decided that the next conceptual design cycle would focus on decreased nose shock strengths, "boom softening," in the signatures of the Boeing and the McDonnell Douglas baseline concepts rather than low-boom concepts with shaped-signature designs. Overly-optimistic results were not the only problem with these low-sonic-boom concepts. Papers given at the 1994 Sonic-Boom Workshop had demonstrated that the problem of successful nacelle integration on HSCT concepts had only been partially solved. Wind-tunnel pressure signature data, from the HSCT-11B (a.k.a. the LB-18) wind-tunnel model, showed that the Langley HSCT design and analysis method had been successful in reducing the nacelle-volume disturbances in the flow field. This was due.to the engine nacelles mounted behind the wing trailing-edge on the aft fuselage so that no nacelle-wing interference-lift flow-field disturbances were generated. While acceptable from a sonic-boom research point of view, this concept was unacceptable from several practical and structural considerations. Preliminary wind-tunnel pressure signature data from the LB-16 wind-tunnel model, which had the engine nacelles mounted under the wings (the usual location), indicated that the application of the Langley nacelle-integration method had been only partially successful in the reduction of the nacelle-volume with nacelle-wing interference-lift pressure disturbances. So, "boom softening" had to also address the task of successful integration of the engine nacelles, with the engines in the required under-the-wing location. Unless this problem was solved, low-sonic-boom and low-drag modifications to the wing planform, the airfoil shape, and the fuselage longitudinal area distribution could be nullified if the nacelle disturbances added increments to the nose-shock strengths that were removed through component tailoring. In this paper, an arrow-wing boom-softened HSC7 concept which incorporated modifications to a baseline McDonnell Douglas concept is discussed. The analysis of the concept's characteristics will include estimates of weight, center of gravity, takeoff field length, mission range, and predictions of its ground-level sonic-boom pressure signature. Additional modifications which enhanced the softened-boom performance of this concept are also described as well as estimates of the performance penalties induced by these modifications.
    Keywords: Aerodynamics
    Type: 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 2; 121-136; NASA/CP-1999-209520/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2004-12-03
    Description: A 1:300 scale wind-tunnel model of a conceptual High-Speed Civil Transport (HSCT) designed to generate a shaped, low-boom pressure signature on the ground was tested to obtain sonic-boom pressure signatures in the Langley Research Center Unitary Plan Wind Tunnel at a Mach number of 1.8 and a separation distance of about two body lengths or four wing-spans from the model. Two sets of engine nacelles representing two levels of engine technology were used on the model to determine the effects of increased nacelle volume. Pressure signatures were measured for (model lift)/(design lift) ratios of 0.5, 0.63, 0.75, and 1.0 so that the effect of lift on the pressure signature could be determined. The results of these tests were analyzed and used to discuss the agreement between experimental data and design expectations.
    Keywords: Aerodynamics
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 59-71; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...