ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3,031)
  • SOLAR PHYSICS  (1,724)
  • SPACE RADIATION  (1,307)
  • 1995-1999  (208)
  • 1985-1989  (2,814)
  • 1955-1959  (9)
Collection
  • Other Sources  (3,031)
Source
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: We have studied the magnetic structure in AR 7150 (S09E06) observed on 29 April 1992 by the Soft X-Ray Telescope (SXT) on Yohkoh. The observed X-ray images are compared with force-free magnetic fields with different values of alpha, extrapolated from the Marshall Space Flight Center (MSFC) photospheric magnetogram observed at the same time. The results show that the magnetic field of the active region is not potential. Different groups of loops are characterized by different values of alpha. Bright loops correlation between the brightness of individual loops with the amount of twist. Further investigation of the magnetic state of the loop structure requires accurate nonlinear force-free calculations.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)205-(4/5)208
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: After its fly-by of the planet Jupiter in February 1992, the Ulysses spacecraft is now in a highly inclined heliocentric orbit that will bring it above the south polar regions of the Sun in September 1994. The high-latitude phenomena observed to date have been strongly influenced by the near-minimum solar activity conditions encountered during this phase of the mission. In late April 1993, when Ulysses was at approximately 29 deg S heliographic latitude, the recurrent high speed solar wind stream that had been observed at the location of the spacecraft for 11 consecutive solar rotation underwent a dramatic change. The wind speed in the valleys between successive peaks increased in a single step from approximately 420 km/s to aopproximately 560 km/s. This change in solar wind flow was accompanied by the disappearance at the spacecraft of the magnetic sector structure that had been observed until then. Both these finding are consistent with Ulysses having climbed beyond the latitude of the coronal streamer belt in which is embedded the heliospheric current sheet (HCS). In its subsequent poleward journey, no further evidence for an encounter with the HCS has been seen at Ulysses. Other phenomena observed include the evolution with latitude of corotating interaction region (CIRs) and their influence on the acceleration of energetic particles, and the characteristics of the solar wind flows emanating from the south polar coronal hole. In this paper, we present details of the above observations. Finally, while the polar passes of the prime mission will take place near solar minimum, an extended mission will bring Ulysses back over the poles near the maximum of the next cycle. A summary of scientific goals for Ulysses at solar maximum is given.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)293-(4/5)302
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-02
    Description: Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately conntected with the shield transport porperties and is a strong function of shield composition. The systematic behavior of the shield properites in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to convectional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H1OT1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 17; 2; p. (2)31-(2)36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-04-02
    Description: Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 17; 2; p. (2)151-158
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-04-02
    Description: It has been known for some time that adequate assessment of spacecraft requirements and concomitant estimates of astronaut radiation exposures from galactic cosmic radiation requires accurate, quantitative methods for characterizing these radiation fields as they pass through thick absorbers. The main nuclear interaction processes involved are nuclear elastic an inelastic collisions, and nuclear breakup (fragmentation) and electromagnetic dissociation (EMD). Nuclear fragmenation and EMD are important because they alter the elemental and isotopic composition of the transported radiation fields. At present, there is no suitable accurate theory for predicting nuclear fragmentation cross sections for all collision pairs and energies of interest in space radiation protection. Typical cross-section differences between theory and experiment range from about 25 percent to a factor of two. The resulting errors in transported flux, for high linear energy transfer (LET) particles, are compared to these cross-sections errors. In this overview, theoretical models of heavy ion fragmentation currently used to generate input data bases for cosmic-ray transport and shielding codes are reviewed. Their shortcomings are discussed. Further actions needed to improve their accuracy and generality are presented.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 17; 2; p. (2)59-(2)68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-30
    Description: Both man and technological equipment must survive the near-earth space radiation environment, which can, under specific conditions, be extremely severe. This conference produced 17 papers on the dynamic space radiation environment covering: galactic, solar and trapped particles; nuclear fragmentation; nuclear interactions and transport theory; solar proton events; radiation shielding; and heavy ion fluences. Several papers present results from the recent SAMPEX mission.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 17; 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-02
    Description: The fragmenting of high energy, heavy ions (HZE particles) by hydrogen targets is an important, physical process in several areas of space radiation research. In this work quantum mechanical optical model methods for estimating cross sections for HZE particle fragmentation by hydrogen targets are presented. The cross sections are calculated using a modified abrasion-ablation collision formalism adapted from a nucleus-nucleus collision model. Elemental and isotopic production cross sections are estimated and compared with reported measurements for the breakup of neon, sulphur, and iron, nuclei at incident energies between 400 and 910 Mev/nucleon. Good agreement between theory and experiment is obtained.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 17; 2; p. (2)109-(2)112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-02
    Description: Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 17; 2; p. (2)77-(2)86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-04-02
    Description: A model for the differential energy spectra of galactic cosmic radiation as a function of solar activity is described. It is based on the standard diffusion-convection theory of solar modulation. Estimates of the modulation potential based on fitting this theory to observed spectral measurements from 1954 to 1989 are correlated to the Climax neutron counting rates and to the sunspot numbers at earlier times taking into account the polarity of the interplanetary magnetic field at the time of observations. These regression lines then provide a method for predicting the modulation at later times. The results of this model are quantitatively compared to a similar Moscow State University (MSU) model. These model cosmic ray spectra are used to predict the linear energy transfer spectra, differential energy spectra of light (charge less than or = 2) ions, and single event upsets rates in memeory devices. These calculations are compared to observations made aboard the Space Shuttle.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 17; 2; p. (2)7-(2)17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Extensive hard X-ray (HXR)/gamma-ray (GR) observations of solar flares, performed during solar cycles 21 and 22 have led to important new discoveries. These data, combined with observations obtained in other parts of the electromagnetic spectrum (soft X-ray, Hard X-ray, optical, and radio) largley contributed to get a better understanding and to develop new ideas on particle acceleration and transport during solar flares. This review presents new observational facts relevant to hard X-ray/gamma-ray producing flares. Among these are the frequent presence of sub-second time structure in the hard X-ray emission, the variability in hard X-ray and radio spatial distributions during a flare and from flare to flare, the evidence for strong gamma-ray line emission from the Corona and the existence of extended phases of the gamma-ray emission lasting for several hours after the flare onset. This ensemble of observations indicates that particle acceleration takes place at different sites in a complex and dynamic magnetic field environment.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)71-(4/5)80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A flood of new observations of the solar corona have been made with high spatial resolution, good temporal coverage and resolution, and large linear dynamic range by the Soft X-ray Telescope (SXT) on Yohkoh. These data are changing our fundamental understanding of how solar magnetic fields emerge, interact, and dissipate. This paper reviews some of the results from Yohkoh in the context of earlier results from the Solar Maximum Mission (SMM) and in comjunction with ground-based optical and radio observations.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)179-(4/5)188
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: We have studied the relation between flux emergence and flare activity in the active region NOAA 7260, using images from the Soft X-ray Telescope (SXT) aboard the Yohkoh spacecraft and other supporting ground-based data. It is found that microflares start around the time of flux emergence as recorded in white-light data, which generally precedes a major flare by several hours. We interpret the microflares as due to fast reconnection that takes place intermittently in the slow reconnection stage while more energy is accumulated in preparation for a larger flare.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)201-(4/5)204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-27
    Description: The large solar energetic particle (SEP) events and simultaneous large geomagnetic disturbances observed during October 1989 posed a significant, rapidly evolving space radiation hazard. Using data from the GOES-7, NOAA-10, IMP-8 and LDEF satellites, we determined the geomagnetic transmission, heavy ion fluences, mean Fe ionic charge state, and effective radiation hazard observed in low Earth orbit (LEO) for these SEPs. We modeled the geomagneitc transmission by tracing particles through the combination to the internal International Geomagnetic Reference Field (IGRF) and the Tsyganenko (1989) magnetospheric field models, extending the modeling to large geomagnetic disturbances. We used our results to assess the radiation hazard such very large SEP events would pose in the anticipated 52 deg inclination space station orbit.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 17; 2; p. (2)121-(2)125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-27
    Description: The paper lists US solar missions, both those planned and funded by NASA alone as well as those carried out in collaboration with other space agencies. Soe of the missions are now in operation, the others are either planned and approved or under active discussion. The paper also describes the principal scientific objects of the missions and gives some orbital characteristics.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)363-(4/5)368
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-28
    Description: Interplanetary scintillation (IPS) measurements of the 'disturbance factor' g, obtained with the Cambridge (UK) array can be used to explore the heliospheric density structure. We have used these data to construct synoptic (Carrington) maps, representing the large-scale enhancements of the g-factor in the inner heliosphere. These maps emphasize the stable corotating, rather than the transient heliospheric density enhancements. We have compared these maps with Carrington maps of Fe XIV observations National Solar Observatory ((NSO), Sacramento Peak) and maps based on Yohkoh Soft X-Ray Telescope (SXT) X-ray observations. Our results indicate that the regions of enhanced g tend to map to active regions rather than the current sheet. The implication is that act ve regions are the dominant source of the small-scale (approximately equal 200 km) density variations present in the quiet solar wind.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)311-(4/5)314
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-28
    Description: The large-scale structure of the solar corona is investigated using synoptic maps produced from Fe XIV (530.3 nm), Fe X (637.4 nm) and Ca XV (569.4 nm) data obtained at National Solar Observatory (NSO/SP), Yohkoh/Soft X-ray Telescope (SXT) X-ray data and Wilcox Solar Observatory (WSO) 'source surface' maps. We find that the Fe XIV data are an excellent proxy for spatially-average Yohkoh/SXT data. Isolated emission features and large-scale structures are nearly identical in SXT and Fe XIV maps. In addition, coronal holes and other low-emission regions are very similar. Synoptic temperature maps, calculated from the Fe X/Fe XIV ratio, show a tendency for the highest temperatures to occur where the large-scale magnetic fields change polarity at high latitudes, while lower-latitude features, including active regions, have lower apparent tempertures. Regions of enhanced temperature generally follow the helisopheric current sheet (HCS) as defined by the WSO maps. Further, emission in Ca XV (formed at T is approximately equal to 3 MK), generally occurs only over low-latitude regions that are bright in both FE X (T approximately equal to 1 MK) and Fe XIV (T approximately equal to 2 MK). Thus, there is evidence for low (approximately equal to 1 MK), moderate (approximately equal to 2 MK) and high (approximately 3 MK) temperatures in close proximity in the low corona.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)235-(4/5)238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-28
    Description: Coronal mass ejections (CME's) are thought to result from the loss of stability within a magnetically confined coronal structure leading to its radial expansion into interplanetary space. As the CME expands into the corona current sheets will form between the expanding CME and surrounding field lines in the ambient wind. This configuration may lead to reconnection between the CME and adjacemt field lines. Such reconnection may produce double ion beams as has been observed in the terrrestrial magnetosphere. We examine all 24 distinct signatures of CME's observed by Ulysses during the in-ecliptic portion of the mission. In 5 of these 24 cases the ion spectra were not clear and thus the presence of double ion beams could not be determined. In 13 of the remaining 19 CME's double ion beams were found on the leading and/or trailing edge of the CME but not in the interior of the CME. In 3 of the CME's double ion beams were found throughout the CME while in the remaining 3 CME's double ion beams were not present near or just inside of the CME. In contrast in a control sample of 19 randomly chosen intervals, double ion beams were present at the leading and/or trailing edges of the random intervals in only 3 of the 19 cases. There appears to be no correlation between probability of occurrence of double ion beams and a magnetic cloud or non-cloud configuration of the CME and no correlation between the presence of the double ion beams at the edges of the CME and the CME being a fast or slow CME.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)303-(4/5)306
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-28
    Description: Observations aboard Cosmos satelites discovered trapped anomalous cosmic rays (ACRs), tracked the variation in their intensity in 1986-1988, and measured their fluence, spectrum, and composition at solar minimum in the previous solar cycle. The MAST instrument aboard the SAMPEX satellite has observed trapped anomalous cosmic rays in the present solar cycle, confirmed the general features of the Cosmos data, and provided the first detailed observations of trapped ACRs. In this paper we apply theoretical modeling of trapped ACRs, which is shown to provide a reasonably good description of both the Cosmos and SAMPEX data, to calculate the integral linear-energy-transfer (LET) spectra due to trapped ACRs in typical low-Earth orbits. We compare these calculations with the LET spectra produced by galactic cosmic rays (GCRs) and non-trapped ACRs in order to assess the relative radiation hazard posed by trapped ACRs.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 17; 2; p. (2)47-(2)51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-27
    Description: Imaging observations of solar flare hard X-ray sources with the Hard X-ray Telescope (HXT) aboard the Yohkoh satellite have revealed that hard X-ray emissions (greater than 30 ke V) originate most frequently from double sources. The double sources are located on both sides of the magnetic neutral line, suggesting that the bulk of hard X-rays is emitted from footpoints of flaring magnetic loops. We also found that hard X-rays from the double sources are emitted simultaneously within a fraction of second and that the weaker source tends to be located in the stronger magnetic field region, showing a softer spectrum. Physcial implications on the observed characteristics of the hard X-ray double sources are discussed.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)67-(4/5)70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: The scaling properties of a time series of Doppler images obtained in good visibility conditions are studied. A 28 cm vacuum telescope and a vacuum spectroheliograph in video spectra-spectroheliograph mode, are used. Sixty line-of-sight Doppler images of an area of the quiet sun are investigated. They were taken at 60 sec intervals over a one hour span and have a 2 arcsec resolution. After the removal of the five-minute oscillations, the time-spatial spectrum is calculated. To study the turbulence of photospheric flows, two scaling parameters in the spectra, are estimated: the exponent of the spatial part of the power spectrum, and the exponent governing the scaling of time correlations. The implied diffusive behavior is discussed. This includes the estimation of a diffusion coefficient and the type of diffusion involved.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 249-252
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: The nonlocal non-diffusive transport of passive scalars in turbulent magnetohydrodynamic (MHD) convection is investigated using transilient matrices. These matrices describe the probability that a tracer particle beginning at one position in a flow will be advected to another position after some time. A method for the calculation of these matrices from simulation data which involves following the trajectories of passive tracer particles and calculating their transport statistics, is presented. The method is applied to study the transport in several simulations of turbulent, rotating, three dimensional compressible, penetrative MDH convection. Transport coefficients and other diagnostics are used to quantify the transport, which is found to resemble advection more closely than diffusion. Some of the results are found to have direct relevance to other physical problems, such as the light element depletion in sun-type stars. The large kurtosis found for downward moving particles at the base of the convection zone implies several extreme events.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 253-258
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: Long uninterrupted sequences of solar magnetograms from the global oscillations network group (GONG) network and from the solar and heliospheric observatory (SOHO) satellite will provide the opportunity to study the proper motions of magnetic features. The possible use of multiscale regularization, a scale-recursive estimation technique which begins with a prior model of how state variables and their statistical properties propagate over scale. Short magnetogram sequences are analyzed with the multiscale regularization algorithm as applied to optical flow. This algorithm is found to be efficient, provides results for all the spatial scales spanned by the data and provides error estimates for the solutions. It is found that the algorithm is less sensitive to evolutionary changes than correlation tracking.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 227-232
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: Ulysses has collected data between 1 and 5 AU during, and just following solar maximum, when the heliospheric current sheet (HCS) can be thought of as reaching its maximum tilt and being subject to the maximum amount of turbulence in the solar wind. The Ulysses solar wind plasma instrument measures the vector velocity and can be used to estimate the flow speed and direction in turbulent 'eddies' in the solar wind that are a fraction of an astronomical unit in size and last (have either a turnover or dynamical interaction time of) several hours to more than a day. Here, in a simple exercise, these solar wind eddies at the HCS are characterized using Ulysses data. This character is then used to define a model flow field with eddies that is imposed on an ideal HCS to estimate how the HCS will be deformed by the flow. This model inherently results in the complexity of the HCS increasing with heliocentric distance, but the result is a measure of the degree to which the observed change in complexity is a measure of the importance of solar wind flows in deforming the HCS. By comparison with randomly selected intervals not located on the HCS, it appears that eddies on the HCS are similar to those elsewhere at this time during the solar cycle, as is the resultant deformation of the interplanetary magnetic field (IMF). The IMF deformation is analogous to what is often termed the 'random walk' of interplanetary magnetic field lines.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 12,261-12,273
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-24
    Description: Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 157; 1-2; p. 185-197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A semianalytic method is derived for dealing simultaneously with large numbers of linear stellar oscillation modes trapped in a cavity (a shell) of fluid which is rotating and convecting. A simple generalization of mixing-length theory shows how convection is modulated by weak rotational effects and by the horizontal wind fields of linear r-mode oscillations. The modulated convection is then used to compute the energy lost to turbulent viscosity by a family of nondegenerate oscillations. Viscosity terms of fourth degree in the wind shear can be included if they are a perturbation affecting only a small portion of the r-mode. Viscous energy loss strenghthens convection in a narrow layer near the base of the H and He ionization zone. In the Sun, this layer is about 7 Mm thick and centered at 0.932 of a solar radius where convection cells have a typical size of about 20 Mm and a lifetime of 0.3 Ms, both similar to what is observed in supergranules. If the rms velocity of r-modes at the surface exceeds 5 m/s, then energy is deposited inside the Sun at a sufficient rate to power the supergranulation and impose on it a weak latitude dependence.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 1; p. 423-433
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: We present observational evidence that eruptions of quiescent filaments and associated coronal mass ejections (CMEs) occur as a consequence of the destabilization of large-scale coronal arcades due to interactions between these structures and new and growing active regions. Both statistical and case studies have been carried out. In a case study of a 'bulge' observed by the High-Altitude Observatory Solar Maximum Mission coronagraph, the high-resolution magnetograms from the Big Bear Solar Observatory show newly emerging and rapidly changing flux in the magnetic fields that apparently underlie the bugle. For other case studies and in the statistical work the eruption of major quiescent filaments was taken as a proxy for CME eruption. We have found that two thirds of the quiescent-filament-associated CMEs occurred after substantial amounts of new magnetic flux emerged in the vicinity of the filament. In addition, in a study of all major quiescent filaments and active regions appearing in a 2-month period we found that 17 of the 22 filaments that were associated with new active regions erupted and 26 of the 31 filaments that were not associated with new flux did not erupt. In all cases in which the new flux was oriented favorably for reconnection with the preexisting large-scale coronal arcades; the filament was observed to erupt. The appearance of the new flux in the form of new active regions begins a few days before the eruption and typically is still occurring at the time of the eruption. A CME initiation scenario taking account of these observational results is proposed.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A3; p. 3355-3367
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: Total solar irradiance measurements from the 1984-1993 Earth Radiation Budget Satellite (ERBS) active cavity radiometer and 1978-1993 Nimbus 7 transfer cavity radiometer spacecraft experiments are analyzed to detect the presence of 11-, 22-, and 80-year irradiance variability components. The analyses confirmed the existence of a significant 11-year irradiance variability component, associated with solar magnetic activity and the sunspot cycle. The analyses also suggest the presence of a 22- or 80-year variability component. The earlier Nimbus 7 and Solar Maximum Mission (SMM) spacecraft irradiance measurements decreased approximately 1.2 and 1.3 W/sq m, respectively, between 1980 and 1986. The Nimbus 7 values increased 1.2 W/sq m between 1986 and 1989. The ERBS irradiance measurements increased 1.3 W/sq m during 1986-1989, and then decreased 0.4 W/sq m (at an annual rate of 0.14 W/sq. m/yr) during 1990-1993. Considering the correlations between ERBS, Nimbus 7, and SMM irradiance trends and solar magnetic activity, the total solar irradiance should decrease to minimum levels by 1997 as solar activity decreases to minimum levels, and then increase to maximum levels by the year 2000 as solar activity rises. The ERBS measurements yielded 165.4 +/- 0.7 W/sq m as the mean irradiance value with measurement accuracies and precisions of 0.2% and 0.02%, respectively. The ERBS mean irradiance value is within 0.2% of the 1367.4, 1365.9, and 1366.9 W/sq m mean values for the SMM, Upper Atmosphere Research Satellite (UARS), and Space Shuttle Atmospheric Laboratory for Applications and Science (ATLAS 1) Solar Constant (SOLCON) active cavity radiometer spacecraft experiments, respectively. The Nimbus 7 measurements yielded 1372.1 W/sq m as the mean value with a measurement accuracy of 0.5%. Empirical irradiance model fits, based upon 10.7 -cm solar radio flux (F10) and photometric sunspot index (PSI), were used to assess the quality of the ERBS, Numbus 7, SMM, and the UARS irradiance data sets and to identify irradiance variability trends which may be caused by drifts or shifts in the spacecraft sensor responses. Comparisons among the fits and measured irradiances indicate that the Nimbus 7 radiometer response shifted by a total of 0.8 W/sq m between September 1989 and April 1990 and that the ERBS and UARS radiometers each drifted approximately 0.5 W/sq m during the first 5 months in orbit.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A2; p. 1667-1675
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: Compressible MHD simulations in one dimension with three-dimensional vectors are used to investigate a number of processes relevant to problems in interplanetary physics. The simulations indicate that a large-amplitude nonequilibrium (e.g., linearly polarized) Alfvenic wave, which always starts with small relative fluctuations in the magnitude B of the magnetic field, typically evolves to flatten the magnetic profile in most regions. Under a wide variety of conditions B and the density rho become anticorrelated on average. If the mean magnetic field is allowed to decrease in time, the point where the transverse magnetic fluctuation amplitude delta B(sub T) is greater than the mean field B(sub 0) is not special, and large values of delta B(sub T)/B(sub 0) do not cause the compressive thermal energy to increase remarkably or the wave energy to dissipate at an unusually high rate. Nor does the 'backscatter' of the waves that occurs when the sound speed is less than the Alfven speed result, in itself, in substantial energy dissipation, but rather primarily in a phase change between the magnetic and velocity fields. For isolated wave packets the backscatter does not occur for any of the parameters examined; an initial radiation of acoustic waves away from the packet establishes a stable traveling structure. Thus these simulations, although greatly idealized compared to reality, suggest a picture in which the interplanetary fluctuations should have small deltaB and increasingly quasi-pressure balanced compressive fluctuations, as observed, and in which the dissipation and 'saturation' at delta B(sub T)/B(sub 0) approximately = 1 required by some theories of wave acceleration of the solar wind do not occur. The simulations also provide simple ways to understand the processes of nonlinear steepening and backscattering of Alfven waves and demonstrate the existence of previously unreported types of quasi-steady MHD states.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A3; p. 3405-3415
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Frequency shifts of high frequency p-modes during the solar cycle are calculated for a non-magnetic polytrope convection zone model. An isothermal chromospheric atmosphere threaded by a uniform horizontal magnetic field is correlated to this model. The relevant observations of such frequency changes are discussed. The calculated simultaneous changes in the field strength and chromospheric temperature result in the frequency shifts that are similar to those of the observations.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 69-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: The specific attraction and, in large part, the significance of solar magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 deg ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 deg ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local `preferred' direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar (beta) (gamma) (delta)-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA/sq m and have a linear decreasing distribution to a diameter of 30 Mn.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 445; 2; p. 982-998
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: Relative abundances of oxygen, neon, and magnesium have been derived for a sample of nine solar active regions, flares, and an erupting prominance by combining plots of the ion differential emission measures. The observations were photographed in the 300-600 A range by the Naval Research Laboratory (NRL) spectroheliograph on Skylab. Methods for deriving the Mg/Ne abundance ratio-which measures the separation between the low- first ionization potential (FIP) and high-FIP abundnace plateaus-have been described in previous papers. In this paper we describe the spectroscopic methods for deriving the O/Ne abundance ratio, which gives the ratio between two high-FIP elements. The plot of the O/Ne ratio versus the Mg/Ne ratio in the sample of nine Skylab events is shown. The variation in the Mg/Ne ratio by a factor of 6 is associated with a much smaller range in the O/Ne ratio. This is broadly consistent with the presence of the standard FIP pattern of abundances in the outer atmosphere of the Sun. However, a real change in the relative abundances of oxygen and neon by a factor of 1.5 cannot be excluded.
    Keywords: SOLAR PHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 442; 1; p. 446-450
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: We use the ray description of acoustic-gravity modes to calculate time-distance diagrams for the quiet Sun and for regions in the vicinity of a sunspot with a monolithic flux-tube structure. Time-distance curves for the quiet Sun match the observations of Duvall et al. In the vicinity of a sunspot these quiet Sun curves split into a family of closely spaced curves. The structure of this bandlike feature is found to be sensitive to the sunspot model and can be a diagnostic of the subsurface geometry of the sunspot flux tube.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 438; 1; p. 454-462
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The signature of the solar cycle appears in helioseismic frequencies and splittings. It is known that the changing outer superadiabatic region of the sun is responsible for this. The deeper solar-cycle mechanism from the surface changes, and, in particular, how magnetic fields perturb the global modes, the solar irradiance and the luminosity, is discussed. The irradiance and helioseismic changes are described. The interpretation of seismic and photometric data is discussed, considering current one-dimensional models and phenomenology. It is discussed how the long term solar-cycle luminosity effect could be caused by changes occurring near the base of the convection zone (CZ). It is shown that a thin toroidal flux sheath at the top of the radiative zone changed the thermal stratification immediately below the CZ over a solar-cycle timescale in two ways: the temperature of the magnetized fluid becomes hotter than the surrounding fluid, and the temperature gradient steepens above the magnetized region. The testing of CZ dynamics and extension of numerical experiments to global scales are considered.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 1: Invited Reviews and Working Group Reports; p 145-149
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: The chromospheric bright points are the sites where intense heating occurs in three minute period waves. The bright points are grouped into three classes depending on the amount of intensity enhancement and the pattern of their dynamical evolution. A 35-minute time series of photographic spectra in the Ca(II) H line on a quiet region ofthe center of the solar disk was used to show that the period of intensity oscillations seen at sites of the bright points is independent of their intensity enhancements. The series was also used to show that the period may not depend on the strength of the magnetic fields with which they are associated. A linear regression equation was fitted to a curve representing the variation of the period of intensity oscillations with the peak value of I(sub H2V). The correlation coefficient was found to be 0.19.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 525-527
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: The preliminary results of the photometry of CaII K spectroheliograms are presented. From the spectrograms for 1992, plages, the magnetic network, intranetwork elements and the chromospheric background were separated using the histogram method. The intensity and area of these separated features, as well as the full disk intensity, were derived. The spatial K index was compared to the spectral CaII K index derived from line profiles. It was found that the spatial K index and intensity of plages, the network elements and the intranetwork and background regions were highly correlated with the MgII h and k c/w ratio.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 429-435
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: The observations made in July 1994 on the impact of fragment A of the comet P/Shoemaker-Levy 9 with Jupiter are described. The instrumentation used was a magneto-optical filter, acting as a two-channel filter. The data showed a double-peak transient which occurred after the impact, and whose general properties indicated a true jovian origin. The peaks appear in absorption. A numerical simulation can explain the main characteristics of the observed signal where the two peaks have the same polarity and appear only in the channel at shorter wavelengths. The simulation carried out appeared to indicate that the observed signal could be produced by the combination of shock waves and the expanding material with a velocity of 13 +/- 8 km/s. This implies that two separate impacts may have been observed. The developed simulation can be extended to predict long term effects.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 345-350
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: Both weak magnetic fields and latitudinally dependent acoustic perturbations remove the degeneracy of the azimuthal quantum number, m, of acoustic modes of otherwise spherically symmetrical solar model. In the case of acoustic perturbations, the degeneracy is removed because the range of latitude in which a mode propagates depends on m, and therefore modes of like principle order n and degree l sample the aspherical scalar sound speed distribution differently. In the magnetic case, the removal of the degeneracy is caused by the same geometrical effect, and is influenced by the anisotropy of the Lorentz forces. Asymptotic analysis is used to show that the frequency splittings cannot be unambiguously attributed to the direct effect of a magnetic field, and that the effect of such a field on frequency splittings can be reproduced by a perturbation to the sound speed.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 73-76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The central intensities of Na(I) D1 and D2 linear profiles at the sites of the chromospheric bright points in the interior of the supergranulation cells were derived from photographic spectra. The observation scheme sampled spectra simultaneously in seven lines at a repetition rate of 12 sec. It is shown that the Na(I) D1 and D2 lines exhibit a four minute periodicity in their intensity oscillations. It is seen that the period of intensity oscillations decreases outwardly from the photosphere to the corona. It is surmised that the spatial and temporal relationships between intensity and/or velocity in the photosphere and chromosphere may explain the physical mechanisms of the underlying oscillations.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 521-524
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: The dependence of the brightness of chromospheric network elements on latitude was investigated for quiet solar regions. Calibrated photographic CaII K-spectroheliograms were used to compare the variation in brightness at the center of the disk with higher latitude of chromospheric network elements in a quiet region as a function of solar activity. It was found that there was no significant difference in brightness between the center of the solar disk and higher latitude. It is concluded that the brightness of the chromospheric network elements in a quiet region does not depend on the latitude, but that the variation in the intensity enhancement is related to the level of solar activity.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 437-438
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: The preliminary analysis of a 69 day observation run taken at the JPL using the magneto-optical filter is presented. The aim is to estimate the rotational splitting of l = 1 modes. A value of Delta nu = 0.44 +/- 0.09 micro-Hz is found. In a second, more accurate analysis, it is planned to investigate the low frequency part of the power spectrum. The observational statistics are presented.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 311-313
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: The plane-wave decomposition of the acoustic-gravity wave effects observed in the photosphere provides a computationally efficient technique that probes the structure of the upper convective zone and boundary. In this region, the flat sun approximation is considered as being reasonably accurate. A technique to be used for the systematic plane-wave analysis of Michelson Doppler imager data, as part of the solar oscillations investigation, is described. Estimates of sensitivity are presented, and the effects of using different planar mappings are discussed. The technique is compared with previous approaches to the three dimensional plane-wave problem.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 147-150
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: It was observed that the p-mode power is substantially suppressed in magnetic regions. One possible explanation is that the upper turning point, the acoustic cut-off point of the solar p-modes is lowered in the presence of a magnetic field. A related possibility is that the attenuation length scale in the evanescent region is reduced in the presence of a magnetic field. It is likely that the observations sample a different position in the evanescent tails of the eigenfunctions in magnetic regions because of different temperature structures in these regions. A model is used to quantify the first of these effects.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 63-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The fluctuations in magnetic field and plasma velocity in solar wind, which possess many features of fully developed magnetohydrodynamic (MHD) turbulence, are discussed. Direct spacecraft observations from 0.3 to over 20 AU, remote sensing radio scintillation observations, numerical simulations, and various models provide complementary methods that show that the fluctuations in the wind parameters undergo significant dynamical evolution independent of whatever turbulence might exist in the solar photosphere and corona. The Cluster mission, with high time resolution particle and field measurements and its variable separation strategies, should be able to provide data for answering many questions on MHD turbulence.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of the Cluster Workshops on Data Analysis Tools, and Physical Measurements and Mission-Oriented Theory; p 137-147
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: Double ion beams are often observed in the solar wind, but little work has been done in relating these beams to structures within the solar wind. Double ion beams are observed as beams of a given ion species and charge state occurring at two different energies. We use the three-dimensional ion plasma instrument on board the Ulysses spacecraft to look for evidence of such beams associated with the heliospheric current sheet. In a subset chosen independently of plasma parameters consisting of 8 of cover 47 crossings of the current sheet made during the inecliptic phase of the Ulysses mission we find that these double ion beams are always present on either side of the current sheet. The double beams are present in both the proton and helium species. The secondary beam typically has a higher helium abundance, which suggests that these beams are formed in the helium-rich corona rather than in interplanetary space. The double beams are not present in the interior of the current sheet. Neither collisions nor effects of plasma beta can account for the disappearance of the double beams inside the current sheet in all eight cases. We postulate that these beams are formed by reconnection occurring near the Sun in the boundary region between the open field lines of the coronal holes and the closed field line region of the heliospheric current sheet. Such a scenario would be consistent with previous X ray measurements which suggect that reconnection is occurring in this region.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A5; p. 7881-7889
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: A global resistive, two-dimensional, time-dependent magnetohydrodynamic (MHD) model is used to introduce and support the hypothesis that the quiet solar middle chromosphere is heated by resistive dissipation of large-scale electric currents which fill most of its volume. The scale height and maximum magnitude of the current density are 400 km and 31.3 m/sq m, respectively. The associated magnetic field is almost horizontal, has the same scale height as the current density, and has a maximum magnitude of 153 G. The current is carried by electrons flowing across magnetic field lines at 1 m/s. The resistivity is the electron contribution to the Pedersen resitivity for a weakly ionized, strongly magnetized, hydrogen gas. The model does not include a driving mechanism. Most of the physical quantities in the model decrease exponentially with time on a resistive timescale of 41.3 minutes. However, the initial values and spatial; dependence of these quantities are expected to be essentially the same as they would be if the correct driving mechanism were included in a more general model. The heating rate per unit mass is found to be 4.5 x 10(exp 9) ergs/g/s, independent of height and latitude. The electron density scale height is found to be 800 km. The model predicts that 90% of the thermal energy required to heat the middle chromosphere is deposited in the height range 300-760 km above the temperature minimum. It is shown to be consistent to assume that the radiation rate per unit volume is proportional to the magnetic energy density, and then it follows that the heating rate per unit volume is also proportional to the energy from the photosphere into the overlying chromosphere are briefly discussed as possible driving mechanisms for establishing and maintaining the current system. The case in which part of or all of the current is carried by protons and metal ions, and the contribution of electron-proton scattering to the current are also considered, with the conclusion that these effects do not change the qualitative prediction of the model, but probably change the quantitative predictions slightly, mainly by increasing the maximum magntiude of the current density and magnetic field to at most approximately 100 mA/m and approximately 484 G, respectively. The heating rate per unit mass, current density scale height, magnetic field scale height, temperatures, and pressures are unchanged or are only slightly changed by including these additional effects due to protons and ions.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 1; p. 450-459
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: A number of different solar constant observations all made from space during the ATLAS 2 mission have been gathered and compared to each other. The Sun did not have a single sunspot during several days. As eight of the radiometric channels were all within 0.1%, the mean of the observations has been used to determine a set of adjustment factors providing de facto the definition of the Space Absolute Radiometric Reference (SARR). The differential absolute radiometers of Solar Constant (SOLCON) experiment and the Solar Variability-1 (SOVA 1) experiment, as well as the SOVA 2 and Active Cavity Radiometer (ACR) radiometers that have been brought back to the Earth may, if used in the same conditions, reproduce and maintain the SARR for the future.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 8; p. (8)17-(8)23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: The new information on galactic cosmic rays (GCR) derived from the Spacelab-3 cosmic ray experiment 'Anuradha' shows that at 25-125 MeV/N GCR sub-iron and iron (Z = 21-28) particles consists of a mixture of partially ionized and fully ionized ions. Computation of electron capture and loss cross sections in hydrogen in 1-50 MeV/N energy range are made for Fe, Cr, Ti and Ni. From these it is concluded that: (1) these GCR particles must have captured orbital electrons at energies of about 1-5 MeV/N and (2) these particles are then reaccelerated to 300-500 MeV/N most probably in interstellar medium by collision with SNR shock fronts. Some reacceleration may take place also in heliospheric boundary region. It is suggested that these observations of partially ionized GCR ions of about 100 MeV/N in Spacelab-3 provide a direct evidence of reacceleration of GCR.
    Keywords: SPACE RADIATION
    Type: Advances in Space Research (ISSN 0273-1177); 15; 1; p. (1)51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-31
    Description: The GAMCIT (Gamma-ray Astrophysics Mission, California Institute of Technology) payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the development and construction of the GAMCIT payload. In addition, this paper will reflect upon the unique challenges involved in bringing the payload close to completion, as the project has been designed, constructed, and managed entirely by undergraduate members of the Caltech SEDS (Students for the Exploration and Development of Space). Our experience will definitely be valuable to other student groups interested in undertaking a challenge such as a Get-Away-Special payload.
    Keywords: SPACE RADIATION
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 203-212
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-31
    Description: Data extraction and analysis of the LDEF Ultra Heavy Cosmic Ray Experiment is continuing. Almost twice the pre LDEF world sample has been investigated and some details of the charge spectrum in the region from Z approximately 70 up to and including the actinides are presented. The early results indicate r process enhancement over solar system source abundances.
    Keywords: SPACE RADIATION
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 129-133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-08-31
    Description: The current requirements for the Laboratory for Astronomy and Solar Physics, sends rocket satellites and in the near future will involve flights in the shuttle to the upper reaches of the Earth's atmosphere where they will be subjected to the atomic particles and electromagnetic radiation produced by the Sun and other cosmic radiation. It is therefore appropriate to examine the effect of neutrons, gamma rays, beta particles, and X-rays on the film currently being used by the Laboratory for current and future research requirements. It is also hoped by examining these particles in their effect that we will have simulated the space environment of the rockets, satellites, and shuttles. Several samples of the IIaO film were exposed to a neutron howitzer with a source energy of approximately 106 neutrons/steradians. We exposed several samples of the film to a 10 second blast of neutrons in both metal and plastic containers which exhibited higher density readings which indicated the possibility of some secondary nuclear interactions between neutrons and the aluminum container. The plastic container showed some variations at the higher densities. Exposure of the samples of IIaO film to a neutron beam of approximately 10 neutrons per steradians for eight minutes produces approximately a 13% difference in the density readings of the dark density grids. It is not noticeable that at the lighter density grid the neutrons have minimal effects, but on a whole the trend of the eight minute exposed IIaO film density grids at the darker end had a 7.1% difference than the control. Further analysis is anticipated by increasing the exposure time. Two sets of film were exposed to a beta source in a plastic container. The beta source was placed at the bottom so that the cone of rays striking the film would be conical for a period of seven days. It was observed in the films, designated 4a and 4b, a dramatic increase in the grid densities had occurred. The attenuation of beta particles due to the presence of air were observed. The darker density grids, whose positions were the furthest from the beta source, displayed minimal fluctuations as compared with the control. It is suspected that the orientation of the film in the cansister with the beta source is the key factor responsible for the dramatic increases of the lighter density grids. Emulsions 3a and 3b exposed for a period of six days with the grid orientation reserved produced substantial differences in the darker grids as shown in the graphs. There is a great deal of fluctuations in this sample between the beta exposed density grids and the control density grids. The lighter density grids whose orientations were reversed displays minimal fluctuations due to the presence of this beta source and the attenuation that is taking place.
    Keywords: SPACE RADIATION
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 247-253
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Detector packages were exposed on the European Retrievable Carrier (EURECA) as part of the Biostack experiment inside the Exobiology and Radiation Assembly (ERA) and at several locations around EURECA. The packages consist of different plastic nuclear track detectors, nuclear emulsions and thermoluminescence dosimeters (TLD's). Evaluation of these detectors yields data on absorbed dose and particle and LET spectra. Preliminary results of absorbed dose measurements in the EURECA dosimeter packages are reported and compared to results of the LDEF experiments. The highest dose rate measured on EURECA is 63.3 plus or minus 0.4 mGy d(exp -1) behind a shielding thickness of 0.09 g cm(exp -2) in front of the detector package.
    Keywords: SPACE RADIATION
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 37-42
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-29
    Description: We have used the Anglo-Australian Telescope imaging spectrometer IRIS to search for hot young stars which may ionize the thermal radio emission regions within the inner 40 pc of the Galaxy. Several hot stars were discovered based on their Br gamma (2.165 micron) and He I (2.058 micron) emission, including a cluster of possible WN 8-9 stars. Comparison of the spectra of the new stars with optically classified stars suggests a spectral classification of B(e) and WN7-9. Based on the calculated luminosity of the new stars and comparisons with radio data, the emission stars could be largely responsible for the ionization of the thermal radio emission regions.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 511-514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-29
    Description: Narrow band images of M82 at wavelengths of 6.63 microns (NiII) and 6.8 microns (continuum) are discussed in terms of new evidence for supernova activity in the nuclear region of the M82 starburst galaxy. Data were recorded using a 128x128 Si:Ga array in an infrared camera on the KAO Southern Expedition in April '94.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 437-440
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-29
    Description: The Low-Resolution Spectrometer (LRS) on the Infrared Astronomical Satellite (IRAS) produced a rich set of spectra from oxygen-rich circumstellar dust shells. Little-Marenin and Little found that in addition to the classic 10 micron emission feature due to silicate dust, many oxygen-rich shells also produce components at 11 and 13 microns. Some shells exhibit only a broad, low-contrast feature which peaks longward of 11 microns and has been attributed to alumina dust. We have modified the classification method of Little-Marenin and Little, applied it to a large sample of bright oxygen-rich variables on the asymptotic giant branch, and undertaken a study of the 13 micron emission feature and the sources which produce it. We present some of the results of these studies.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 425-428
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-29
    Description: New 4 to 8 micron infrared spectroscopic observations of two oxygen-rich stars are presented and combined with IRAS low resolution spectrometer (LRS) data to span the 4 to 24 micron wavelength range. In the 4 to 8 micron range, we observe a 7.15 micron (1400 cm(exp -1)) emission feature. This new feature is not uniquely correlated with any of the sharply defined 10, 11, 13.1, and 19.7 micron emission features that are known to be present in this class of circumstellar shells, but it does appear to be correlated with the spectrally broad dust emission in the 10 to 20 micron spectral region. The feature has not been reported previously in any other astronomical environment. A reinterpretation of prior 4 to 8 micron spectroscopy of alpha Ori and R Cas reveals the presence of the 7.15 micron emission in alpha Ori and possibly in R Cas. The spectrally narrow 19.7 micron emission, that is distinctly different than the relatively broad silicate 18 micron emission feature in oxygen-rich dust shells, is also observed to be present in the LRS spectrum of SAO 197549. The implication of these observations is that a universal astronomical silicate does not exist in oxygen-rich circumstellar shells.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 419-424
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-29
    Description: The 16-48 micron spectra of five carbon-rich post-asymptotic giant branch (post-AGB) objects known to have an unidentified 21 micron feature in their IRAS low resolution spectrometer (LRS) spectra have been obtained using the Kuiper Airborne Observatory. A broad emission band extending from 24 to approximately 45 microns is present in the spectra of these objects. The strength of this band is variable from source to source and is not correlated with the strength of the 21 micron band. The possible identifications for the emitting material of both the 21 and 30 micron emission bands is discussed.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 413-418
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-29
    Description: We have detected (O I) 63 micron and (Si II) 35 micron emission from the oxygen-rich, M supergiants alpha Orionis (Betelgeuse), alpha Scorpii (Antares), and alpha Herculis (Rasalgethi). The measured fluxes indicate that the emission originates in dense, warm gas in the inner envelope or transition region where molecules and dust are expected to form and the acceleration of the wind occurs. Mass-loss rates are derived, evidence for time variability is presented, and results for other evolved stars are included.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 397-404
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-29
    Description: We report the first observations of H15 alpha (169.4114 microns) and H10 alpha (52.5349 microns) in MWC 349 from the KAO. We obtain a 3 sigma upper limit of 2 x 10(exp -19) W/sq cm for H15 alpha and a flux of 3.6 +/- 1.3 x 10(exp -19) W/sq for H10 alpha. These fluxes are consistent with an appreciable excess due to laser amplification down to quantum numbers n approx. equals 10.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 271-274
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-29
    Description: The 158 micro m (CII) line has been mapped in the galaxies Centaurus A, M83, NGC 6946, and NGC 891. The emission exists over very large scales, peaking in the nuclei and extending beyond the spiral arms and molecular disks. While most of the (CII) emission from the nuclei and spiral arms originates in photodissociated gas, the diffuse atomic gas can account for much of the (CII) emission in the extended regions.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 181-184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2013-08-29
    Description: We present a study of the radio emission from rotating, charged dust grains immersed in the ionized gas constituting the thick, H alpha-emitting disk of many spiral galaxies.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 93-96
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2013-08-29
    Description: From 1981 to 1988 the KAO was used to measure the 30 to 670 micron continuum radiation from the Sun. The most significant result was te measurement of the limb brightness and extent during two total solar eclipses. The results clearly indicate a solar limb at 50 to 670 microns which is extended beyond that expected for an atmosphere in hydrostatic equilibrium. Unique measurements of far infrared solar oscillations and brightness of active regions were also carried out. A complete set of references is included.
    Keywords: SOLAR PHYSICS
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 329-332
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-04-02
    Description: Since its launch in October 1990, Ulysses has provided good quality magnetic field data, practically covering the whole time interval until now. We have studied the very long time scale evolution of the interplanetary magnetic field, in particlular, we have search for recurrent disturbances in the magnetic field. The magnetic field vectors have been mapped back to the Sun along Parker spirals, in order to determine the Heliographic longitude of the source regions in the corona. It was found that the position of many high field sources drifts systematically relative to the corona assumed to rotate with the equatorial rotation period of the Sun. The results are compared to similar observations on the eastward drift of magnetic sectors observed after about June 1992. Changes associated with both the declining phase of the solar cycle and the latitudinal excursion of Ulysses are also discussed.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)339
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-03-30
    Description: The conference discussed the heliosphere during the declining solar cycle. Topics covered included: manifestations of solar activity, the solar wind, ion pick-up and anomalous cosmic rays, the interplanetary magnetic field, cosmic ray modulation, co-rotating interaction regions, and the heliosphere boundary, as well as several related topics.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1777); 16; 9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-04-02
    Description: Two intense heliospheric 2-3 kHz radio emission events have been observed by Voyagers 1 and 2, the first in 1983-84 and the second in 1992-93. These radio emission events occurred about 400 days after large Forbush decreases in mid-1982 and mid-1991. Since Forbush decreases are indicative of a strong interplanetary shock propagating outward through the heliosphere, this temporal relationship provides strong evidence that the radio emissions are triggered by the interaction of a shock with one of the outer boundaries of the heliosphere. From the travel time and the known speed of the shock, the distance to the interaction region can be estimated and is well beyond 100 AU. At this great distance the plasma frequency at the terminal shock (100 to 200 Hz) is believed to be too small to explain the observed emission frequencies, which extend up to 3.6 kHz. For this reason, we have proposed that the interaction takes place at or near the heliopause, where remote sensing measurements show that the plasma frequency is in a suitable range (approximately 3 kHz) for explaining the radio emission. From the travel time and shock propagation speed, the radial distance to the heliopause has been calculated for various candidate solar events. After taking into account the likely deceleration of the shock, the heliopause is estimated to be in the range from about 110 to 160 AU.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)279-(9)290
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-04-02
    Description: Milestones on our road to understanding the heliosphere between 1950 and 1988 are recalled. Among these are early studies of solar energetic particles suggesting a heliospheric boundary at 5 AU, the discovery of the solar wind and the sectored nature of the interplanetary magnetic field. Recent results, particularly from the Ulysses spacecraft, confirm the arrival of neutrals from interstellar space, the pick-up of singly charged ions by the solar wind and the acceleration of these ions to become anomalous cosmic rays. Two distinct solar wind regimes have been discovered. At low heliolatitudes a highly variable solar wind blows at an average speed around 450 km/s, while at high latitudes a relatively smooth 750 km/s flow is observed. No indicators of a dipole-like magnetic field have been seen by Ulysses in solar polar latitudes. The cosmic radiation increase with latitude is much smaller than predicted. The status of and plans for the Voyager 1 and 2, Pioneer 10 and 11, and Ulysses spacecraft are outlined.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)5-(9)23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-04-02
    Description: The radio receiver of the URAP (Unified Radio and Plasma Wave) experiment on Ulysses has recorded a heliospheric activity particularly intense between late May and early June 1991. Many solar radio emissions of types III and II were observed together with interplanetary (IP) shocks. In the same time, the radio spectrograph ARTEMIS at Nancay (France) observed several intense type II bursts. We investigate the association and/or interaction of these radio emissions, which are remotely observed, with some IP shocks detected in situ, in the context of a Coronal Mass Ejection (CME) induced scenario.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)345
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-04-02
    Description: A detailed analysis of small period (15-900 sec) magnetohydrodynamic (MHD) turbulences of the interplanetary magnetic field (IMF) has been made using Pioneer-11 high time resolution data (0.75 sec) inside a Corotating Interaction Region (CIR) at a heliocentric distance of 2.5 AU in 1973. The methods used are the hodogram analysis, the minimum variance matrix analysis and the cohenrence analysis. The minimum variance analysis gives evidence of linear polarized wave modes. Coherence analysis has shown that the field fluctuations are dominated by the magnetosonic fast modes with periods 15 sec to 15 min. However, it is also shown that some small amplitude Alfven waves are present in the trailing edge of this region with characteristic periods (15-200 sec). The observed wave modes are locally generated and possibly attributed to the scattering of Alfven waves energy into random magnetosonic waves.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)171-(9)174
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-04-02
    Description: Correlations between interplanetary magnetic fields (IMFs) at 0.72 AU and 1.0 AU have been examined using data sets obtained from the Pioneer Venus orbiter and Earth-orbiting spacecraft. While the two-sector structures are evident in long-term variations at these two heliocentric distances, the corresponding auto-correlation coefficients are consistently smaller at 1.0 AU than at 0.72 AU. This suggests that the IMF structures become less persistent at 1.0 AU due to the effects of changing solar wind dynamics between the Venus and Earth orbits. Short-term variations exhibit generally poor correlations between IMFs near Venus and those near Earth, though good correlations are sometimes obtained for well-defined structures when the Sun, Venus, and Earth are closely aligned. The rather poor correlations in the background streams indicate that the IMFs are still changing between the Venus and Earth orbits under the strong influence of solar wind dynamics.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)111-(9)114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-04-02
    Description: The Fe K-alpha and K-beta X-ray lines (wavelengths 1.94 and 1.76 A) in the solar X-ray spectrum are formed by fluoroescence of photospheric iron atoms, and the ratio of the intensity of either to the He-like iron (Fe XXV) resonance line at 1.85 A is a function of the photospheric-to-coronal abundance of iron. The temperature dependence of this ratio is weak as long as the flare temperature T(sub e) greater than or approximately equal to 15 x 10(exp 6)K. Comparison of the theoretical value of this intensity ratio with observations from crystal spectrometers on Yohkoh, Solar Maximum Mission (SMM) and P78-1 are consistent with the photospheric abundance of Fe being equal to the coronal.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 7; p. (7)33-(7)36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-04-02
    Description: Solar energetic particles (SEPs) provide a measurement of coronal element abundances that is highly independent of the ionization states and temperature of the ions in the source plasma. The most complete measurements come from large 'gradual' events where ambient coronal plasma is swept up by the expanding shock wave from a coronal mass ejection. Particles from 'impulsive' flares have a pattern of acceleration-induced enhancements superimposed on the coronal abundances. Particles accelerated from high-speed solar wind streams at corotating shocks show a different abundance pattern corresponding to material from coronal holes. Large variations in He/O in coronal material are seen for both gradual and impulsive-flare events but other abundance ratios, such as Mg/Ne, are remarkably constant. SEP measurements now include hundreds of events spanning 15 years of high-quality measurement.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 7; p. (7)41-(7)51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-01-25
    Description: LDEF-1 carried three experiments which are producing significant advances in our knowledge of ultra heavy and anomalous cosmic rays, solar flare particles, and heavy nuclei in the trapped belts. Nine other experiments made measurements on the radiation environments or performed dosmetric monitoring. Data from those experiments, and from measurements of induced radioactivity in LDEF components have significantly improved our knowledge of LEO radiation environment. Measurements at various locations shielding depths of radiation absorbed dose, linear energy transfer spectra, proton, neutron and heavy ion fluences, and induced radioactivity have been made, and many of these results have been compared to models. This has allowed the assessment of accuracy, and the potential for improvement, of the models. Serendipitous results from the radiation measurements include the discovery of atmospheric Be-7 plated on the front surface of LDEF, which has motivated a series of new investigations. A sample of measurements and modeling results will be presented, as well as the status of archiving the measurements and models.
    Keywords: SPACE RADIATION
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 89
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-04-02
    Description: A survey of the Pioneer Venus Orbiter (PVO) magnetometer and plasma data from 1979-1980, shows that the occurrence frequency of interplanetary shocks, coronal mass ejections (CMEs) and stream interactions observed at 0.7 AU exhibits a solar cycle variation. As previously found at 1 AU, the observed number of both interplanetary shocks and CMEs peaks during solar maximum (approximately 16 and approximately 27 per year, respectively) and reaches a low during solar minimum (approximately 0 and approximately 7 per year, respectively), in phase with the variation in smoothed sunspot number. The number of stream interactions observed varies in the opposite manner, having a minimum during solar maximum (approximately 15 per year) and a maximum during solar minimum (approximately 34 per year). The percentage of CMEs and stream interactions producing interplanetary shocks also varies during the solar-cycle and exhibits interesting behavior during the declining phase. While the number of CMEs observed during this phase is decreasing, the percentage of CMEs producing interplanetary shocks reaches a maximum. Also, while the number of stream interactions observed is increasing, but has not reached maximum during the declining phase, the percentage of stream interactions producing interplanety shocks is at a maximum.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)353
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-28
    Description: In relation to the understanding of the structure and dynamics of the solar atmosphere which requires realistic coronal magnetic field models, a horizontal current-current sheet (HCCS) coronal model was developed. The model includes large-scale, low altitude, horizontal currents and the effect of thin current sheets in the streamer belt of the field above cusp-type neutral points. The effect of the streamer current sheet on the field below the cusp points is accounted for. In order to suggest what can be anticipated from Michelson Doppler imager (MDI) photospheric magnetic field data calculations of the coronal magnetic field using low spatial resolution data, are presented, and results from the calculations of solar eclipses are compared with solar eclipse images.
    Keywords: SOLAR PHYSICS
    Type: NASA-CR-200367 , NAS 1.26:200367 , ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 509-514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-28
    Description: The dynamics of compressible convection within a curved local segment of a rotating spherical shell are considered in relation to the turbulent redistribution of angular momentum within the solar convection zone. Current supercomputers permit fully turbulent flows to be considered within the restricted geometry of local area models. By considering motions in a curvilinear geometry in which the Coriolos parameters vary with latitude, Rossby waves which couple with the turbulent convection are thought of as being possible. Simulations of rotating convection are presented in such a curved local segment of a spherical shell using a newly developed, sixth-order accurate code based on compact finite differences.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 245-248
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-06-28
    Description: Inversion results for the radial hydrostatic structure of the Sun, using six months of oscillation data obtained with the LOWL instrument, are presented. Both low and intermediate degree modes are used, thus avoiding the systematic errors that might have occurred in previous inversions by merging more than one data set. Using modes of between 0 deg and 90 deg and frequencies of between 1.5 mHz and 3.5 mHz, the variations with depth of the speed of sound, the density and the pressure were inferred for radii of between 0.05 and 0.85 stellar radius. It was found that in this region, the sound speed was within 0.15% of that of a model constructed using an equation of state that incorporated helium diffusion. The density difference between the Sun and the model was less than 0.8%. Given the small error bars on the inversion results, these differences are considered as being significant.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 25-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: One-dimensional hydrostatic models of quiet and active solar regions can be constructed that generally account for the observed intensities of lines and continue throughout the spectrum, except for the infrared CO lines. There is an apparent conflict between: (1) observations of the strongest infrared CO lines formed in LTE at low-chromospheric heights but at temperatures much cooler than the average chromospheric values; and (2) observations of Ca II, UV (ultraviolet), and microwave intensities that originate from the same chromospheric heights but at the much higher temperatures characteristic of the average chromosphere. A model M(sub CO) has been constructed which gives a good fit to the full range of mean CO line profiles (averaged over the central area of the solar disk and over time) but this model conflicts with other observations of average quiet regions. A model L(sub CO) which is approximately 100 K cooler than M(sub CO) combined with a very bright network model F in the proportions 0.6 L(sub CO) + 0.4 F is found to be generally consistent with the CO, Ca II, UV, and microwave observations. Ayres, Testerman, and Brault found that models COOLC and FLUXT in the proportions 0.925 and 0.075 account for the CO and Ca II lines, but these combined models give an average UV intensity at 140 nm about 20 times larger than observed. The 0.6 L(sub CO) + 0.4 F result may give a better description of the cool and hot components that produce the space- and time-averaged spectra. Recent observations carried out by Uitenbroek, Noyes, and Rabine with high spatial and temporal resolution indicate that the faintest intensities in the strong CO lines measured at given locations usually become much brighter within 1 to 3 minutes. The cool regions thus seem to be mostly the low-temperature portions of oscillatory waves rather than cool structures that are stationary.
    Keywords: SOLAR PHYSICS
    Type: PREPRINT-SERIES-4069 , NSO/Sacramento Peak Workshop; Sacramento, CA; United States|Smithsonian Astrophysical Observatory, Study of Magnetic Motions in the Solar Photosphere and Their Implications for Heating the Solar Atmosphere; 12 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-06-28
    Description: The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.
    Keywords: SPACE RADIATION
    Type: NASA-TM-111181 , NAS 1.15:111181 , NIPS-96-07107
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-06-28
    Description: In this work, we explore the effects of burst rate density evolution on the observed brightness distribution of cosmological gamma-ray bursts. Although the brightness distribution of gamma-ray bursts observed by the BATSE experiment has been shown to be consistent with a nonevolving source population observed to redshifts of order unity, evolution of some form is likely to be present in the gamma-ray bursts. Additionally, nonevolving models place significant constraints on the range of observed burst luminosities, which are relaxed if evolution of the burst population is present. In this paper, three analytic forms of density evolution are examined. In general, forms of evolution with densities that increase monotonically with redshift require that the BATSE data correspond to bursts at larger redshifts, or to incorporate a wider range of burst luminosities, or both. Independent estimates of the maximum observed redshift in the BATSE data and/or the range of luminosity from which a large fraction of the observed bursts are drawn therefore allow for constraints to be placed on the amount of evolution that may be present in the burst population. Specifically, if recent measurements obtained from analysis of the BATSE duration distribution of the actual limiting redshift in the BATSE data at z(sub lim) = 2 are correct, the BATSE N(P) distribution in a Lambda = 0 universe is inconsistent at a level of approximately 3 alpha with nonevolving gamma-ray bursts and some form of evolution in the population is required. The sense of this required source evolution is to provide a higher density, larger luminosities, or both with increasing redshift.
    Keywords: SPACE RADIATION
    Type: NASA-TM-111180 , NAS 1.15:111180 , NIPS-96-07104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-28
    Description: Recent in situ Ulysses and Galileo observations of the source regions of type 3 solar radio bursts appear to show an absence of ion acoustic waves S produced by nonlinear Langmuir wave processes such as the electrostatic (ES) decay, in contradiction with earlier ISEE 3 observations and analytic theory. This letter resolves these apparent contradictions. Refined analyses of the maximum S-wave electric fields produced by ES decay and of the characteristics of the Ulysses Wave Form Analyzer (WFA) instrument show that the bursty S waves observed by the ISEE 3 should be essentially undetectable by the Ulysses WFA. It is also shown that the maximum S-wave levels predicted for the Galileo event are approximately less than the instrumental noise level, thereby confirming an earlier suggestion. Thus, no contradictions exist between the ISEE 3 and Ulysses/Galileo observation, and no evidence exists against ES decay in the published Ulysses and Galileo data. All available data are consistent with, or at worst not inconsistent with, the ES decay proceeding and being the dominant nonlinear process in type 3 bursts.
    Keywords: SOLAR PHYSICS
    Type: NASA-CR-199999 , NAS 1.26:199999 , NIPS-96-07103
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-06-28
    Description: Some open questions in the physics of bow shock formation, the evolution of the particle distributions from solar wind into the magnetosheath, and the acceleration of ions at the moment of the shock are summarized. A layout of the current situation is presented in view of recent theoretical developments and the new diagnostic tools provided by the Cluster mission. The transition of ions across the quasi-perpendicular bow shock and their downstream thermalization are discussed. The processes and spatial scales are found to be species dependent and are discussed for H(+), He(2+), and He(+). The theory of particle acceleration at quasi-parallel shocks are reviewed. It is shown how Cluster can study the time variable structures of the shock as predicted by hybrid simulation. It is emphasized that high time resolution measurement with simultaneous species separation is necessary for the study of the ion acceleration. Suggestions for the spacecraft separations at the bow shock are suggested.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of the Cluster Workshops on Data Analysis Tools, and Physical Measurements and Mission-Oriented Theory; p 127-135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-06-28
    Description: A historical highlight and analysis of the Burst and Transient Source Experiment (BATSE), which has been in operation for more than three years and has detected more than 1,000 cosmic gamma-ray bursts is presented. The questions BATSE has answered and those it has not are assessed, along with the problems and data correlation and processing that has occured from the BATSE operation.
    Keywords: SPACE RADIATION
    Type: NASA-TM-110740 , NAS 1.15:110740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-06-28
    Description: The line trio (O III) 52, 88 microns, (N III) 57 microns has been measured in a number of planetary nebulae (PNe) and used to determine nebular properties such as density, temperature, and N/O abundance. The N/O ratios, which are elevated in many PNe due to nuclear processing in the progenitor star, agree well with optical determinations. The (O I) 63 micron line has been detected in about a dozen PNe, demonstrating the ubiquity of neutral envelopes. Measurements of (O I) 63, 146 microns and (C II) 158 microns, the primary cooling lines from the ionized/neutral interface zone or photodissociation region (PDR), have been made for six PNe. The line strengths indicate that the line-emitting regions are warm (T greater than or equal to 500 K), dense (log n greater than or equal to 4), and contain of order 0.1 solar masses.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 387-394
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-06-28
    Description: Far-IR continuum maps made with the KAO of W3 at 47 and 95 micrometers show peaks identified with the mid-IR sources IRS4 and IRS5 and extended emission identified with the radio source W3A. We have taken the steepest radial scan profiles from the peaks at IRS4 and IRS5 to represent the objects as spherical clouds. Spherically symmetric models were created in an attempt to match the observed profiles. Radiative transfer dust cloud models heated by central protostars or stars do not match extended emission in the 47 micrometers scan profile for any assumed density distribution for either source. However, both sources can be approximately fit by power law density profiles and ad hoc temperature profiles which are much less steep than those by the single source radiative transfer models. One possible physical explanation for the shallow temperature gradients suggested by the data is heating by a distribution of luminosity sources.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 259-262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: The size of far-infrared emission in luminous IR galaxies is an important parameter in studies of its source. The KAO is the largest aperture that can be brought to bear on the continuum emission of these galaxies at their far-infrared spectral peak. It therefore offers the best opportunity for probing the extent of this emission on the smallest possible scales. In this paper, I give a retrospective on efforts at the University of Texas, over the last decade, to use the KAO to understand the distribution of far-infrared continuum emission in luminous IR galaxies.
    Keywords: SPACE RADIATION
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 159-168
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-06-28
    Description: Activities covered the following areas: (1) continuing analysis of the Cygnus Experiment data on the shadowing of cosmic rays by the moon and sun, which led to a direct confirmation of the angular resolution of the CYGNUS EAS array; and (2) development of analysis methods for the daily search overlapping with EGRET targets. To date, no steady emission of ultrahigh energy (UHE) gamma rays from any source has been detected by the Cygnus Experiment, but some evidence for sporadic emission had been found. Upper limits on steady fluxes from 49 sources in the northern hemisphere have been published. In addition, a daily search of 51 possible sources over the interval April 1986 to June 1992 found no evidence for emission. From these source lists, four candidates were selected for comparison with EGRET data.
    Keywords: SPACE RADIATION
    Type: NASA-CR-199214 , NAS 1.26:199214
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: In order to investigate how solar activity is organized in longitude, major solar flares, large sunspot groups, and large scale photospheric magnetic field strengths were analyzed. The results of these analyses are reported. The following results are discussed: hot spots, initially recognized as areas of high concentration of major flares, are the preferred locations for the emergence of big sunspot groups; double hot spots appear in pairs that rotate at the same rate separated by about 180 deg in longitude, whereas, single hot spots have no such companions; the northern and southern hemispheres behave differently in organizing solar activity in longitude; the lifetime of hot spots range from one to several solar cycles; a hot spot is not always active throughout its lifetime, but goes through dormant periods; and hot spots with different rotational periods coexist in the same hemisphere during the same solar cycle.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 113-118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: The Mount Wilson (California) synoptic program of solar magnetic observations scans the solar disk between 1 and 20 times per day. As part of this program, the radius is determined as an average distance between the image center and the point where the intensity in the FeI line at lambda = 525.0 nm drops to 25 percent of its value at the disk's center. The data base of information was analyzed and corrected for effects such as scattered light and atmospheric reflection. The solar variability and the measurement techniques are described. The observation data sets, the corrections made to the data, and the observed variations, are discussed. It is stated that similar spectral lines at lambda = 525.0 nm, which are common in the solar spectrum, probably exhibit similar radius changes. All portions of the sun are weighted equally so that it is concluded that, within spectral lines, the radiating area of the sun is increased at the solar maximum.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 107-111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: We study the evolution of the vector magnetic field and the sunspot motions observed in AR 6555 during 23-26 Mar. 1991. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first, but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in relation to the large flares in the first location. These flares occurred around the same included polarity, and have very similar characteristics (soft X-ray light curves, energies, etc.). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear related to the occurrence of these flares. (1) The flares occurred near regions of large magnetic 'shear,' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares, and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and sunspot motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenla and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the available data we suggest that these changes made the flaring possible, and we develop a scenario that can explain the origin of the magnetic free energy that was released in these flares.
    Keywords: SPACE RADIATION
    Type: NASA-CR-199317 , NAS 1.26:199317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: We have studied an outstanding sequence of continuum images of the solar granulation from Pic du Midi Observatory. We have calculated the horizontal vector flow field using a correlation tracking algorithm, and from this determined three scalar field: the vertical component of the curl; the horizontal divergence; and the horizontal flow speed. The divergence field has substantially longer coherence time and more power than does the curl field. Statistically, curl is better correlated with regions of negative divergence - that is, the vertical vorticity is higher in downflow regions, suggesting excess vorticity in intergranular lanes. The average value of the divergence is largest (i.e., outflow is largest) where the horizontal speed is large; we associate these regions with exploding granules. A numerical simulation of general convection also shows similar statistical differences between curl and divergence. Some individual small bright points in the granulation pattern show large local vorticities.
    Keywords: SOLAR PHYSICS
    Type: Smithsonian Astrophysical Observatory, Study of Magnetic Notions in the Solar Photosphere and Their Implications for Heating the Solar Atmosphere; 9 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: The Multiple Experiment Transporter into Earth Orbit and Return-Solar EUV Experiment (METEOR-SEE) project will take daily extreme ultraviolet (EUV) irradiance spectra starting in the summer of 1995. The METEOR-SEE package consists of an EUV grating spectrograph (EGS) and a cluster of 5 soft x-ray photometers (XP's). Both these instruments have flown previously on NASA sounding rockets. Because of the scope of the project, new data processing algorithms had to be developed for the SEE instruments onboard the METEOR satellite. An overview of the data flow describes how satellite data are collected and processed. Detailed descriptions of specific routines will show what data processing entails.
    Keywords: SOLAR PHYSICS
    Type: NASA-CR-200091 , NAS 1.26:200091 , NIPS-96-07662
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Progress made in understanding of the physics of the upper boundary layer of the sun, its influence on frequencies of five-minute oscillations, and its role in the excitation of the oscillations, are reviewed. The approaches taken for the seismological diagnosis of the properties of the layer are discussed. Information concerning the properties of the layer are obtained from Michelson Doppler imagery high-resolution data. The structure of the convective boundary layer is discussed considering high-resolution observations, three dimensional numerical simulations, the mean stratification of the convective layers, and the effects of momentum transfer by convection. The effects of convection on the oscillation frequencies, mode excitation, and mode damping, are discussed.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 1: Invited Reviews and Working Group Reports; p 165-176
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Helioseismology reveals that there appears to be a discrepancy between the differential rotation profile with the radius and latitude deduced from the inversion of the observed frequency splitting of p-modes and the rotation profile anticipated from various global simulations of convection in rotating shells. The problem may be caused by deductions in numerical simulations of convection which was considered near laminar flows. A high performance computing offers paths for studying the properties of such astrophysical turbulence. A range of approaches to study the basic dynamics of convection is reviewed, along with its ability to redistribute angular momentum in rotating systems. The results of recent three-dimensional simulations of turbulent compressible convection constrained by the effects of rotation are described for the cases in spherical shells and local area f-planes. The turbulence possesses intense vortex tubes with intricate interactions and instabilities. The theoretical studies reveal that the transition to turbulent states has contributed to significant changes in flow symmetries and transports, and that such a turbulent convection can drive substantial mean flows, which are distinctly different from those in which the convection is dominantly laminar.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 1: Invited Reviews and Working Group Reports; p 47-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Active region seismology is concerned with the determination and interpretation of the interaction of the solar acoustic oscillations with near-surface target structures, such as magnetic flux concentration, sunspots, and plage. Recent observations made with a high spatial resolution and a long temporal duration enabled measurements of the scattering matrix for sunspots and solar active regions to be carried out as a function of the mode properties. Based on this information, the amount of p-mode absorption, partial-wave phase shift, and mode mixing introduced by the sunspot, could be determined. In addition, the possibility of detecting the presence of completely submerged magnetic fields was raised, and new procedures for performing acoustic holography of the solar interior are being developed. The accumulating evidence points to the mode conversion of p-modes to various magneto-atmospheric waves within the magnetic flux concentration as being the unifying physical mechanism responsible for these diverse phenomena.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 1: Invited Reviews and Working Group Reports; p 31-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-06-28
    Description: The potential of future data sets from global oscillations network group (GONG) and solar oscillations investigation (SOI) for resolving long-lived azimuthal jets and shearing flows, is investigated. Various artificial data sets are constructed, containing noise resembling that of a one-year observation run. These are inverted using a two dimensional regularized least squares inversion. The ability of this method to form well localized averages of the rotation rate, as measured by the averaging kernels, is investigated using an extensive mode set and subsets. It is shown that it is possible to keep the noise in the solution down to a few nHz in much of the solar interior, while obtaining a reasonable resolution for a GONG-like data set. At low latitudes in the middle of the convection zone, an angular resolution of less than 10 deg and a radial resolution of about 0.04 solar radii, are obtained. The averaging kernels depend on the mode set, and a reduction in the number of modes tends to introduce small-scale near surface structures into the averaging kernels which would adversely affect the inferred rotation rate.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 41-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-06-28
    Description: A preliminary inversion procedure that carries out a local area analysis on simulated oscillation data is presented and discussed. The procedure is carried out in order to deduce two dimensional subsurface structures in the horizontal plane, representative of thermal variations, as a function of depth. The aim is the evaluation of an inversion procedure that utilizes information gained from the phase distortion occurring in artificially generated acoustic waves in order to determine the subsurface thermal structure. These distortions would naturally occur as a direct consequence of convective motions in the solar interior.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 155-160
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-06-28
    Description: The local area analysis of five-minute solar oscillations using ring diagrams to determine subphotospheric velocity flows is a tool for convection zone dynamics. In relation to the problem of the large computational task of fitting the rings, a faster method is presented that carries out the ring fitting using data obtained with a high l helioseismometer. Noise sources are eliminated, and a perturbation approach is used to fit the azimuthally averaged spectrum. The parameters determined in this way are held constant while the ring diagram is fitted. The results obtained are presented and discussed.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 141-146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Description: The effects of a vertical magnetic field on p-mode frequencies, line widths, and eigenfunctions, are examined. A solar model, consisting of a neutrally stable polytropic interior matched to an isothermal chromosphere, is applied. The p-modes are produced by a spatially distributed driver. The atmosphere is threaded by a constant vertical magnetic field. The frequency shifts due to the vertical magnetic field are found to be much smaller than the shifts caused by horizontal fields of similar strength. A large vertical field of 2000 G produces shifts of several nHz. It is found that the frequency shifts decrease with increasing frequency and increase with field strength. The coupling of the acoustic fast mode to the escaping slow modes is inefficient. Constant vertical magnetic field models are therefore incapable of explaining the high level of absorption observed in sunspots and plage.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 77-82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.
    Keywords: SPACE RADIATION
    Type: NASA-TM-111182 , NAS 1.15:111182 , NIPS-96-07108
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-28
    Description: We apply a DC-electric field model to the analysis of soft and hard X-ray observations of a solar flare observed by Yohkoh and the Compton Gamma Ray Observatory (CGRO) on 6 September 1992. The flare was observed simultaneously in the soft X-ray Ca XIX line by the Yohkoh Bragg Crystal Spectrometer (BCS) and in hard X-rays (greater than 50 keV) by the CGRO Burst and Transient Spectrometer Experiment (BATSE). A strong stationary component of Ca XIX emission was present at the start of impulsive hard X-ray emission indicating an extended phase of heating prior to the production of energetic nonthermal electrons. We interpret the preflare Ca XIX emission as a signature of Joule heating by field-aligned currents. We relate the temporal variation of impulsive hard X-ray emission to the rate of runaway electron acceleration by the DC-electric field associated with the current. We find that the initial rise in hard X-ray emission is consistent with electron acceleration by a DC-electric field that increased from a preflare value of less than approximately 10(exp -5) V/cm to approximately (9 +/- 1) x 10(exp -5) V/cm at the time of the first hard X-ray peak and then remained constant during the rest of the impulsive phase. We attribute the increase in electric field strength to the formation of a current sheet at the reconnection point of two loop structures. The decrease in hard X-ray emission after flare maximum is consistent with a reduction in the number of runaway electrons due to an increase in coronal density produced by chromospheric evaporation. The increased density quenches the runaway process by enhancing collisional thermalization of electrons. To avoid the generation of an unrealistically large magnetic field, the flaring region must be highly filamented into greater than approximately 10(exp 6) oppositely directed current channels of approximately 30 cm width with an initial preflare current of approximately 3 x 10(exp 10) A per channel.
    Keywords: SOLAR PHYSICS
    Type: NASA-CR-200002 , NAS 1.26:200002 , NIPS-96-07109
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: A semiempirical abrasion-ablation model has been successful in generating a large nuclear database for the study of high charge and energy (HZE) ion beams, radiation physics, and galactic cosmic ray shielding. The cross sections that are generated are compared with measured HZE fragmentation data from various experimental groups. A research program for improvement of the database generator is also discussed.
    Keywords: SPACE RADIATION
    Type: NASA-TP-3533 , NAS 1.60:3533 , L-17470 , NIPS-95-05718
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...